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Abstract

Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, re-

spectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host

genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen

populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen

causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field

populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data

showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions.

Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective

sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that

ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were

found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep

regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in

genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the

prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that

the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
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Introduction

Pathogens pose a major threat to human health and global

food security. Hosts and pathogens are often locked into

strong antagonistic coevolution, which is a major force driving

biodiversity. During coevolution, adaptation in either of the

partners generates selection pressure on the other partner,

which in turn evolves counteradaptations (Brockhurst and

Koskella 2013). Pathogens are considered to be at an advan-

tage in the coevolutionary race as they often exhibit shorter

generation times, higher mutation rates, and larger effective

population sizes relative to their host (Hamilton et al. 1990;

Kaltz and Shykoff 1998; Gandon 2002). Under reduced levels

of gene flow, this asymmetry can lead to locally adapted

pathogen populations, that is, situations where a pathogen

population is better adapted to its sympatric host population

than allopatric host populations (“local” vs “foreign” host)

(Kaltz and Shykoff 1998). In a heterogeneous environment, a

diverse set of host populations connected by variable levels

of gene flow will generate complex selection pressures on

pathogen populations over space and time and strong

frequency-dependent selection can lead to local extinction

and recolonization events (Kaltz and Shykoff 1998). Hence,

the degree of local adaptation exhibited by hosts and their

pathogens will be shaped by multiple factors, including the
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supply of genetic variation and their respective population

sizes (Gandon et al. 1996).

Studies of local adaptation in pathogens have been sparse.

Laine (2005) observed a geographical mosaic in the degrees

of local adaptation in metapopulations of Podosphaera plan-

taginis, an obligate fungal pathogen causing mildew in the

perennial Plantago lanceolata. The major factor shaping the

extent of local adaptation was likely the rate of pathogen

dispersal among host populations. A similar observation was

reported earlier by Thrall and Burdon (2002) in a study of the

flax rust pathogen Melampsora lini and its host wild flax

(Linum marginale). The most resistant host populations har-

bored on average more virulent pathogen genotypes. A main

driver for this correlation was likely a trade-off in spore pro-

duction (i.e., reproduction) and virulence. The causal agent of

common bean anthracnose, Colletotrichum lindemuthianum,

has lower levels of population differentiation compared with

its host plant, which likely favored local adaptation of patho-

gen populations (Sicard et al. 1997, 2007; Cattan-Toupance

et al. 1998). Local adaptation is not only shaped by rates of

gene flow, but also by heterogeneity in the abiotic environ-

ment such as differences in rainfall and temperature. Gorter

et al. (2016) coevolved the bacterium Pseudomonas fluores-

cens and its viral parasite bacteriophage U2 at three different

temperatures and found that the bacteria and phages were

more resistant and infectious at the temperature where they

previously coevolved. Similarly, the coevolution of P. lanceo-

lata–P. plantaginis was found to be tightly linked to climatic

factors (Laine 2008). However, what environmental factors

are conducive to local adaptation and the relative effect of

individual selective agents remain poorly understood.

The process of local adaptation in agricultural ecosystems

may differ from the process that operates in natural host–

pathogen systems (Croll and McDonald 2017). Agricultural

ecosystems usually exhibit homogeneous environments with

genetically uniform hosts planted over large areas. Though

planting a single elite crop variety is thought to improve

crop yields, the resulting massive monoculture in turn imposes

strong directional selection for pathogens to specialize on a

specific host genotype (Stukenbrock and McDonald 2008).

Highly specialized agricultural pathogens cause significant

damage on host plants and lead to large-scale losses. The

Irish famine in the 19th century was caused by the attack of

an oomycete pathogen specialized on potato clones that

destroyed the food supply of one-third of the population

(Scholthof 2007). Widespread planting of a single banana

clone “Gros Michel” in Panama and Costa Rica led to the

emergence of the specialized pathogen Fusarium oxysporum

f. sp. cubense (Ploetz 2000). After the failure of “Gros

Michel”, a new banana variety named Cavendish was more

widely planted. However, this favored the emergence of a

new pathogen strain genotype named tropical race 4 and a

widespread breakdown of Cavendish resistance that was ob-

served across Asia and Africa (Ordonez et al. 2015). More

recently, a new race of the wheat stem rust pathogen

Puccinia graminis f. sp. tritici surmounted the widely deployed

stem rust resistance gene Sr31 (Pretorius et al. 2000).

With the exception of a few highly clonal crops such as

bananas, most agroecosystems exhibit both complex environ-

mental differences and diversified host genotypes at the scale

of countries and continents (Bianchi et al. 2006). The resulting

mosaic in host genotypes and ecological niches creates the

opportunity for divergent selection among pathogen popula-

tions. Zhan and McDonald (2011) found evidence for local

thermal adaptation across global populations of the wheat

pathogen Zymoseptoria tritici. Temperature-dependent local

adaptation was also observed among isolates of Puccinia strii-

formis f.sp. tritici (PST) collected in northern and southern

France (Mboup et al. 2012). The northern PST population

harbored all virulence genes necessary to infect wheat varie-

ties deployed in the south, but it failed to invade the southern

region due to a lack of adaptation to the warmer

Mediterranean climate. In addition to climatic limitations, ex-

tensive use of fungicides can impose strong directional selec-

tion on pathogen populations and lead to local adaptation.

Selection for fungicide tolerance likely led to locally adapted

Z. tritici populations (Zhan et al. 2006). Although evidence for

divergent selection can be found through careful assessment

of phenotypes, direct identification of the genes underlying

the process of local adaptation remains rare.

The genetic basis of pathogen local adaptation in agricul-

tural ecosystems is generally not well understood, though

many microbial pathogens should be highly tractable models

for genomic analyses (Croll and McDonald 2017). Until re-

cently, the identification of adaptive loci in plant pathogens

was largely limited to population analyses of pathogenicity

genes (Schürch et al. 2004; Stukenbrock and McDonald

2007). However, pathogens likely experience a multitude of

biotic and abiotic selection pressures. Hence, many loci across

the pathogen genome are likely to harbor genetic variation

under selection. The analyses of loci under recent selection

have been revolutionized by genome sequencing at the pop-

ulation level. A number of statistical tests were specifically

designed to retrieve signatures of adaptive loci in large-scale

data sets (Voight et al. 2006; Lao et al. 2007; Bigham et al.

2010; Qian et al. 2013; Liu et al. 2017). Many tests of selec-

tion focused on one of the following signatures of a positively

selected allele: an increase in linkage disequilibrium (LD), shifts

in allele frequency spectra, or higher than expected levels of

population differentiation (Vitti et al. 2013). Tools implement-

ing these statistics have been widely used to detect signatures

of recent selection in various organisms including humans,

flies, the malaria pathogen, and livestock animals (Duffy

et al. 2015; Zhao et al. 2015; Garud et al. 2015; Martin

et al. 2016). One of the widely used approaches is to calculate

integrated haplotype homozygosity (iHS), which estimates the

decay of the extended haplotype homozygosity (EHH) be-

tween an ancestral and derived allele at each SNP position
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(Sabeti et al. 2002; Voight et al. 2006). The rationale for this

method is that the increase in frequency of a beneficial mu-

tation will occur too quickly for recombination to homogenize

its genetic background. Hence, a positively selected allele will

be embedded in a less common and longer stretch of homog-

enous chromosomal sequence compared with neutral loci re-

siding in more common and shorter haplotypes. Analyses of

EHH are particularly suited to detection of soft (i.e., incom-

plete) selective sweeps (Voight et al. 2006). An extension to

within-population EHH analyses is the cross-population EHH

(XP-EHH), which is a more powerful method to detect nearly

fixed selective sweeps because it compares haplotypes in a

pair of populations (Sabeti et al. 2002). A combination of iHS

and XP-EHH analyses should lead to a comprehensive set of

candidate loci underlying recent local adaptation.

Rhynchosporium commune is an important fungal patho-

gen that causes barley scald disease globally with particularly

high prevalence in temperate regions with cool and moist

winters (Linde et al. 2003; Brunner et al. 2007; Aoki et al.

2011). R. commune is a member of the host-specialized

Rhynchosporium species complex that split from a common

ancestor 1,200–3,600 years ago (Zaffarano et al. 2008,

2011). The center of origin of R. commune is likely in

Scandinavia, because this region is the diversity hotspot of

the pathogen, unlike many other pathogens of crops that

were domesticated in the Fertile Crescent (Zaffarano et al.

2006; Brunner et al. 2007). Individual field populations of

this sexual pathogen are highly diverse with an average of

76% of the global genetic diversity found within a single

barley field (Linde et al. 2003, 2009). The genetic basis of

adaptation to its host is poorly understood with a few excep-

tions. Three genes encoding necrosis inducing peptides

(NIP1�3) contribute to the development of necrosis (localized

cell death promoting the infection) (Wevelsiep et al. 1991,

1993; Rohe et al. 1995; Schürch et al. 2004; Kirsten et al.

2012; Stefansson, Willi, et al. 2014) and a previously un-

known pathogen-associated molecular pattern named Cell

Death Inducing 1 (RcCDI1) is highly expressed during early

infection of the host (Franco-Orozco et al. 2017). A gene-

for-gene interaction of the NIP1 gene with the Rrs1 resistance

locus in barley has been established in which the pathogen

overcame NIP1 recognition through mutations and complete

deletions of the NIP1 gene (Schürch et al. 2004). R. commune

populations can rapidly adapt to overcome host resistance (Xi

et al. 2000) and were shown to adapt to abiotic selection

pressures including temperature variation and fungicide appli-

cations (Stefansson et al. 2013; Brunner et al. 2015; Mohd-

Assaad et al. 2016). A genome-wide association study

(GWAS) revealed that resistance to azole fungicides emerged

from mutations in multiple loci including the gene encoding

the protein targeted by azoles (Mohd-Assaad et al. 2016).

A genome-wide analysis of nine global populations of R.

commune showed that the species is subdivided into three

main genetic groups (Mohd-Assaad et al. 2016). Each of

these main groups was primarily associated with distinct geo-

graphic and climatic regions including Scandinavia, Central

Europe and Oceania, and Ethiopia. Here we aim to identify

candidate regions of divergent selection in these three genetic

groups of R. commune. For this, we analyzed 125 whole-

genome sequences collected from isolates across the distribu-

tion range of the pathogen. We performed genome-wide

analyses of selection first at the population level using iHS

and then at the between-population level using XP-EHH.

Materials and Methods

Isolates Collection, DNA Preparation, and Full Genome
Sequencing

A total of 125 strains of R. commune were collected from nine

countries: New Zealand, Australia, Ethiopia, Switzerland,

Spain, Norway, Finland, Iceland, and USA (fig. 1A). Fourteen

genetically distinct haplotypes were chosen from each field

population with the exception of the USA population

(n¼ 13). All isolates were previously characterized using mi-

crosatellite markers for population genetics studies

(Stefansson et al. 2013; Stefansson, McDonald, et al. 2014;

Stefansson, Willi, et al. 2014). We added isolates from two

closely related Rhynchosporium species as outgroups, includ-

ing nine isolates of R. secalis from Switzerland, France, and

Russia as well as eight isolates of R. agropyri collected from

different locations in Switzerland. Details for all

Rhynchosporium spp. isolates used in this study are summa-

rized in supplementary table 1, Supplementary Material on-

line. Genomic DNA was isolated from mycelium grown in

Potato Dextrose Broth (PDB) using DNeasy Plant Mini Kits

(Qiagen) according to the manufacturer’s protocol. Paired-

end sequencing of 125 bp reads was performed on a

HiSeq2000 Illumina sequencer with an insert size of approx-

imately 500 bp. The Illumina sequencing was performed to an

average depth of 37�.

Read Mapping, SNP Calling, and Quality Control

Summaries of the read mapping, SNP calling and quality con-

trol pipeline are shown in supplementary figure 1,

Supplementary Material online. Low quality reads and traces

of Illumina adapter sequences were trimmed using

Trimmomatic version 0.32 (Bolger et al. 2014) with the fol-

lowing settings: trailing¼ 10, sliding-window¼ 4: 10, and

minlen¼ 50. Resulting high-quality reads were mapped to

the reference genome of R. commune (Penselin et al. 2016)

using Bowtie2 version 2.2.3 (Langmead et al. 2009). Aligned

reads were flagged for duplicates using the MarkDuplicates

program in Picard tools version 1.119 (http://broadinstitute.

github.io/picard/; last accessed August 2017).

Multi-sample single nucleotide polymorphism (SNP) calling

was performed using two independent variant-calling soft-

ware suites to obtain high confidence SNPs: the Genome
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Analysis Toolkit (GATK) version 3.3-0 (McKenna et al. 2010)

and Freebayes version v1.0.2-29-g41c1313 (Garrison

and Marth 2012). For GATK, SNPs were called using the

tools HaplotypeCaller and GenotypeGVCF. The maximum

number of alternative alleles was set to two with a mini-

mum phred-scaled quality score of 500. In addition, SNPs

were only retained if they matched the following criteria:

QualByDepth> 20 (a measure of alternative allele quality
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independent of read depth), MQ> 30 (the minimum phred-

scaled mapping quality of the reads supporting the alterna-

tive allele), FisherStrand< 10 (whether an alternative allele

was predominantly supported by one read orientation only),

�2< BaseQualityRankSumTest< 2 (a test statistic to assess

whether the base quality of reads supporting the alternative

allele was significantly worse than reads supporting the ref-

erence allele), �2< ReadPosRankSumTest< 2 (a test statis-

tic to assess whether the base position in a read supporting

the alternative allele was significantly different than the

base position in a read supporting the reference allele),

�2<MappingQualityRankSumTest< 2 (a test statistic to

assess whether the mapping quality of reads supporting

the alternative allele was significantly worse than reads sup-

porting the reference allele), RMSMappingQuality> 30 (an

estimation of the overall mapping quality of reads supporting

an alternative allele). For Freebayes, we genotyped only SNPs

and ignored insertion/deletions (indels), multi-nucleotide

polymorphisms (MNPs), and complex events. Reads were re-

quired to have a minimum mapping quality of 30. The max-

imum number of alternative alleles was set to the best two

alleles ranked by the sum of supporting quality scores.

SNPs called by GATK and Freebayes were compared using

vcftools version 0.1.12b (Danecek et al. 2011). We only

retained SNPs that were detected by both SNP caller suites

for subsequent analyses. A 92% of all SNPs retained from the

GATK pipeline could be confirmed by FreeBayes (supplemen-

tary fig. 1, Supplementary Material online). The joint SNP data

set was further filtered to retain only SNPs with a genotyping

rate >90%. The SNP phred-scaled quality (QUAL) values and

SNP allele frequencies called by GATK-HaplotypeCaller and

FreeBayes were highly correlated (supplementary fig. 2A

and B, Supplementary Material online). We found a strong

positive correlation between QUAL and alternative allele fre-

quencies at the SNP loci as expected. The QUAL of a SNP

depends among other factors on the number of reads sup-

porting the alternative (nonreference) allele. We identified a

small number of SNPs in proximity to repeat-rich regions of

the genome exhibiting low QUAL values regardless of the

alternative allele frequency (supplementary fig. 2C and D,

Supplementary Material online). The genotyping rate per iso-

late was>99% for 95% of all R. commune isolates. The

remaining isolates had a genotyping rate>95%.

Isolates from the closely related sister species R. secalis

(n¼ 9) and R. agropyri (n¼ 8) were sequenced to an average

depth of 45� and 56�, respectively, and processed using the

same procedure described for GATK above with the following

exception: SNPs were retained if the genotyping rate

was>50%. The relaxed genotyping threshold in these species

stems from the fact that the sequencing reads of R. secalis and

R. agropyri were mapped to the reference genome of R. com-

mune. The multisample SNPs was performed with the inclu-

sion of all R. commune isolates to ensure better annotation of

SNPs identified in R. secalis and R. agropyri. The genotyping

rate for R. secalis and R. agropyri isolates ranged from 94% to

96%. The lower genotyping rates are most likely due to the

higher divergence between the R. commune reference ge-

nome used for mapping and the sister species. SNP genotypes

retained for R. secalis and R. agropyri were used as outgroups

to infer the ancestral state of SNPs in R. commune. An R.

commune SNP allele was designated as ancestral if the allele

was identified as fixed in both R. secalis and R. agropyri.

Prediction of Gene Functions

We predicted putative functions of all genes identified in the

R. commune genome using InterProScan v.5.23-62.0 (Jones

et al. 2014). The assignment of protein sequence motifs to

protein families (Pfam) and gene ontology (GO) terms was

performed based on hidden Markov models (HMM) imple-

mented in InterProScan. Amino acid sequences were

screened for evidence of secretion signals, and transmem-

brane, cytoplasmic and extracellular domains using a combi-

nation of SignalP v.4.1 (Petersen et al. 2011), Phobius v.1.01

(K€all et al. 2007), and TMHMM v.2.0 (Krogh et al. 2001). The

R. commune secretome was defined as proteins predicted to

include a secretion signal based on analyses using SignalP and

Phobius. We removed any proteins with a predicted trans-

membrane domain based on Phobius and TMHMM analyses

and a predicted cytoplasmic domain based on Phobius. We

used the machine-learning approach implemented in

EffectorP version 1.0 (Sperschneider et al. 2016) to identify

the most likely effector proteins among the secreted proteins.

We retained only predicted effectors with a posterior proba-

bility>0.8. All predicted secretomes were also screened for

carbohydrate-active modules using the carbohydrate-active

enzyme annotation (dbCAN) release 5.0 (Yin et al. 2012)

for the identification of carbohydrate-active enzymes

(CAZymes). We retained only protein hits with e-values

<1e�17 and a coverage>45% following dbCAN recom-

mendations (http://csbl.bmb.uga.edu/dbCAN/download/

readme.txt; last accessed July 1, 2017). Repetitive elements

in the reference genome of R. commune were annotated

using RepeatModeler version 1.0.8 with default settings

(Smit and Hubeley, RepeatModeler Open-1.0, 2008–2015;

http://www.repeatmasker.org; last accessed August 1,

2017). RepeatModeler combines two de novo repeat finding

algorithms (RECON and RepeatScout) to identify repetitive

sequences in a genome. In the final step, the

RepeatModeler annotation of repetitive sequences was

matched against known repeat elements (Repbase version

20160629) using repeatmasker 4.0.6 (Smit, Hubley, and

Green, RepeatMasker Open-4.0, 2013–2015; http://www.

repeatmasker.org; last accessed August 1, 2017).

Analyses of Population Structure

Genetic structure among R. commune samples was analysed

using a principal component analysis (PCA) implemented in

Positive Selection in a Fungal Pathogen GBE
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TASSEL version 20150625 (Bradbury et al. 2007). We also

performed an unsupervised model-based Bayesian clustering

implemented in STRUCTURE version 2.34 (Pritchard et al.

2000) to assign individuals to subgroups. To reduce the com-

putational load, the SNP data set used in STRUCTURE was

reduced to one variant per 5 kb using the “–thin” option in

vcftools, leaving 8,235 SNPs. The assignment of genotypes to

clusters was run for total cluster numbers ranging from K¼ 1

to 10. We used the admixture model with correlated allele

frequencies and no prior information about the demography.

Each of the different Ks was replicated 10 times with a burn-in

period of 50,000 samples followed by 100,000 Monte Carlo

Markov chain replicates. Parameter convergence was

inspected visually. The output of the STRUCTURE analysis

was processed using STRUCTURE HARVESTER (Earl and

vonHoldt 2012) and the optimal number of subgroups was

determined using the DK method (Evanno et al. 2005).

Genome-Wide Scans for Selection

Scans for selective sweeps were performed using two

haplotype-based methods: integrated haplotype scores (iHS)

and cross-population EHH (XP-EHH) implemented in the rehh

package version 2.0.2 (Gautier et al. 2017) in R. For both

analyses, we restricted our data set to include only SNPs for

which the ancestral allele was known (see above). We also

removed all SNP loci which were not segregating variation in

the cluster for which the selection scan was performed to

avoid potential issues introduced by SNP window-based anal-

yses. The iHS analyses were performed independently for

each of the genetic clusters identified with STRUCTURE using

only SNPs that were polymorphic within the genetic cluster.

Significant SNPs were defined by selecting the top 0.05% of

jiHSj for clusters 1 and 3, and top 0.01% of jiHSj for the large

cluster 2. We used a more stringent outlier threshold for clus-

ter 2 because this cluster was genetically (and geographically)

more heterogeneous than clusters 1 and 3. For the XP-EHH

analyses, we performed the test using all SNPs which were

genotyped in at least 90% of isolates within each of the ge-

netic clusters. SNPs were only retained if the ancestral allele

was assigned (see above). The XP-EHH analyses were per-

formed on pairwise comparisons of cluster 1 and cluster 3

against cluster 2 as the reference population unless stated

otherwise. Significant SNPs were selected from the top

0.05% of jXP-EHHj for all clusters. We used default options

for all analyses. However, we set the maxgap option to

20,000 whenever calc_ehh, calc_ehhs, or scan_hh was

used. In addition to that, the threshold of missing data for

haplotypes and SNPs was set to 90%.

Significant SNPs identified from either of the two selection

scan methods and located on the same scaffold were

grouped using a hierarchical clustering approach. If the dis-

tance between significant SNPs was below 50,000 bp, the

SNPs were grouped into a single region under selection.

Then, the extent of the region under selection was further

refined by computing the EHH for each significant SNP within

a region under selection. The extent of the EHH above 0.05

was used to define windows around each SNP contained

within a region and overlapping windows were then merged.

We analyzed coding sequences for ratios of synonymous

and nonsynymous polymorphisms. For this, we used SnpEff

version 4.3p (Cingolani et al. 2012) to distinguish SNP variant

effects. We also performed a McDonald–Kreitman (MK) test

(McDonald and Kreitman 1991) on coding sequence SNPs be-

tween R. commune and R. secalis (as an outgroup). We used a

perl script to extract fixed and polymorphic sites from a variant

call format (vcf) file and perform the MK test. The script mkt.pl

waswrittenbySantiagoS�anchez-Ram�ırez and is available from

https://sites.google.com/site/santiagosnchezrmirez/home/

software/perl; last accessed February 1, 2018.

Gene Function Enrichment Analyses

Enrichment analysis of GO categories was performed using

the R package GSEABase and GOstats (Falcon and Gentleman

2007; Anders et al. 2015) with a false discovery rate set to

0.05. The minimum GO term size to be considered for enrich-

ment analyses was set to at least five members in the refer-

ence genome. The enriched terms were then summarized by

REVIGO (Supek et al. 2011) by removing redundant GO

terms. We also analyzed evidence of enrichment in secreted

proteins, effectors, cell wall degrading enzymes, and major

facilitator superfamily (MFS) transporters using a hypergeo-

metric test in R.

Results

Identification of High Quality Single SNPs with Known
Ancestral State

We sequenced 125 R. commune isolates collected from single

field populations in New Zealand, Australia, Ethiopia, Spain,

Switzerland, Norway, Finland, Iceland, and the USA. The sam-

ple size per population was 13–14 isolates. We identified a

total of 736,839 high quality SNPs using the GATK pipeline.

We could confirm 92% of these SNPs by performing an in-

dependent SNP calling procedure using FreeBayes (supple-

mentary fig. 1, Supplementary Material online). For all

further analyses, we retained only SNPs identified by both

SNP callers and genotyped in>90% of the isolates, resulting

in a data set of 584,053 SNPs (supplementary fig. 1,

Supplementary Material online). SNPs sharing a fixed allele

between the two sister species were used to assign the an-

cestral state of SNPs identified in R. commune. Ancestral

states were assigned for 481,424 SNPs (82.4% of all retained

R. commune SNPs). These SNPs were unevenly distributed

along scaffolds (fig. 2B) and regions of high repeat density

were largely devoid of callable SNPs due to the strict filtering

procedure (fig. 2C).
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Population Structure Analyses Based on Genome-Wide
SNPs

We performed principal component (PC) and Bayesian clus-

tering to analyse evidence for population subdivisions. The

first two PCs explained 17% and 10% of the total genetic

variation, respectively, and grouped the isolate genotypes into

three clusters. Most populations including Scandinavia, New

Zealand, Australia, and Spain were clustered into a single

large group, whereas Ethiopian and Swiss populations formed
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FIG. 2.—Genome-wide selection scans using the standardized integrated haplotype jiHSj score in three genetic clusters of Rhynchosporium

commune. (A) Scaffolds of the reference genome and positions in Mb. (B) Density of single nucleotide polymorphisms (SNPs) across the whole

genome shown in 10 kb nonoverlapping windows (gradient shows coverage between 0% and 5%). The total number of single nucleotide

polymorphisms (SNPs) with known ancestry was 481,424. (C) Coverage of repetitive elements across the whole genome shown in 10 kb non-

overlapping windows (gradient shows coverage between 0% and 100%). (D–F) Dots show jiHSj values for each SNP within the clusters 1, 2, and 3,

respectively. The most significant SNPs (top 0.05% for clusters 1 and 3, and top 0.01% for cluster 2) were highlighted in red. Triangles near the

outermost plot indicate the location of loci most significantly associated with resistance to the fungicide cyproconazole (Bonferroni threshold

a¼0.05) in a genome-wide association study (Mohd-Assaad et al. 2016).
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two individual clusters distinct from the main group (fig. 1B).

The unsupervised Bayesian STRUCTURE analysis identified

two probable genotype clustering scenarios at K¼ 3 and

K¼ 6. K¼ 3 received the highest support consistent with

the PCA (fig. 1B and C). For K¼ 3, cluster 2 was found to

be the most dominant cluster (fig. 1C and D). All genotypes

from the Ethiopian population were assigned to a distinct

cluster (fig. 1D). Genotypes from the Swiss population were

mostly assigned to cluster 1, however, several genotypes

showed mixed ancestries from cluster 1 and 2 (fig. 1D).

Interestingly, two and three genotypes from New Zealand

and Spain, respectively, were assigned to the cluster contain-

ing mainly Swiss isolates. In addition, six genotypes from the

US population showed mixed ancestry with significant contri-

butions from clusters 1 and 2. One genotype from the Finland

population clustered with Ethopian genotypes. Because a mi-

gration event from Ethiopia to Finland is highly unlikely, we

suspected human error and excluded this isolate from further

analyses. After discarding admixed isolates, we retained a to-

tal of 18, 85, and 14 isolates in cluster 1, cluster 2, and cluster

3, respectively, for the selection analyses.

Evidence for Recent Positive Selection Identified by iHS

We screened for loci that experienced recent positive selection

using EHH-based statistics. These statistics contrast the fre-

quency of a haplotype to its relative EHH (defined from a

core ancestral or derived allele). For all analyses, we used

only SNP markers, for which the ancestral state could be

assigned. First, we calculated the iHS statistics that compare

the area under the EHH curve of the ancestral and derived

alleles from the core allele. Performing the analyses separately

for each genetic cluster, we identified a total of 39 genomic

regions with signatures of selection across 27 scaffolds (fig. 2;

supplementary table 2, Supplementary Material online). The

length of regions under selection ranged from 1,851 to

401,914 bp and contained between 2 and 108 genes (sup-

plementary table 2, Supplementary Material online). The

length and total number of genes located within the selective

sweep regions identified by the iHS test for each of the cluster

is summarized in supplementary figure 3, Supplementary

Material online. We found that all regions under selection

identified by iHS were each unique to an individual cluster.

The highest percentage of identified loci was found in clus-

ter 2 (46%), followed by cluster 3 (44%) and cluster 1

(10%). As the SNP density varied considerably along scaf-

folds, we tested whether SNP density had an impact on the

detection of selection. We found that the SNP density of

regions identified to be under selection did not vary sub-

stantially from the SNP density across the genome (supple-

mentary fig. 4, Supplementary Material online). Exceptions

were regions lacking any confidently identified SNPs, as we

required a maximum distance between SNPs of 20 kb for

selection scans. Regions devoid of confidently identified

SNPs showed higher percentages of repetitive elements

than the genome-wide average (supplementary fig. 4,

Supplementary Material online). We also found that the

length of selective sweep regions was not correlated with

SNP density (supplementary fig. 5, Supplementary Material

online). For each cluster, we analyzed the ratio of synon-

ymous versus nonsynonymous polymorphisms segregating

in genes located in selective sweep regions (supplementary

fig. 6, Supplementary Material online). We found that the

ratio was not meaningfully different compared with the

genome-wide background. We performed MK tests on

polymorphism detected in R. commune and R. secalis as

an outgroup. We found only 21 genes with completely

fixed differences between the species. No gene showed

a significantly different ratio for synonymous versus non-

synonymous sites within and between species.

To investigate candidate genes likely to be under the stron-

gest selection pressure, we focused on the three most signif-

icant SNPs identified by iHS in all clusters. We found a total of

15 candidate genes that were located within 5,000 bp of the

most significant SNPs (table 1). For cluster 1, we found two

predicted candidate genes on scaffold 2, including the gene

RCO7_04421 encoding a glucose–methanol–choline (GMC)

oxidoreductase involved in plant cell wall degradation and

RCO7_04423 encoding a multi-antimicrobial extrusion

(MATE) multidrug transporter involved in the secretion of a

wide range of metabolic and xenobiotic substances. In addi-

tion, we identified the gene RCO7_06862 on scaffold 4,

encoding a KES1 oxysterol-binding protein with a role in the

fungal ergosterol biosynthesis pathway. The gene

RCO7_03674 encodes a protein belonging to the acyltrans-

ferase (GNAT) family that catalyzes the transfer of an acyl

group from acyl coenzyme A to an amino group of various

substrates. In close proximity to the third most significant SNP

on scaffold 51, we identified RCO7_03675 which encodes an

alpha-mannosidase involved in the degradation of the plant

cell wall. In cluster 2, we found the candidate gene

RCO7_01309 on scaffold 61, which encodes an enzyme

that catalyses the removal of an ammonia group from gluta-

mine in a variety of substrates. The gene RCO7_02709 on

scaffold 12 encodes a membrane-embedded UbiA prenyl-

transferase. In cluster 3, we found the candidate gene

RC07_07301 on scaffold 42 encoding a concentrative nucle-

oside transporter, which mediates the uptake of nucleosides

and nucleobases across the plasma membrane. We found no

overlap between loci under selection and SNPs significantly

associated with azole resistance in a previous GWAS analysis

(Mohd-Assaad et al. 2016). As we found no effector candi-

date genes in the regions likely under the strongest selection

pressure, we tested whether SNP density had an effect on the

ability to detect selection on effector candidate genes.

However, we found that effector candidate genes were on

average in relatively SNP-dense regions (supplementary fig. 4,

Supplementary Material online).
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Positive Selection Identified by Cross-Population Extended
Haplotype Homozygosity

Unlike analyses of iHS comparing haplotype lengths within

clusters, the XP-EHH test compares the profile of EHH be-

tween pairs of clusters at each focal SNP. We identified a total

of 29 selective sweeps distributed across 19 scaffolds in all 3

pairwise cluster comparisons (fig. 3; supplementary table 2,

Supplementary Material online). The length of regions under

selection ranged from 1,851 to 721,862 bp and contained 2

to 224 genes among the pairwise XP-EHH analyses (supple-

mentary table 2, Supplementary Material online). We summa-

rized the length and total number of genes within the

selective sweep regions in supplementary figure 3,

Supplementary Material online. Fifty-two percent of these se-

lective sweeps were identified in cluster 3 while the remaining

sweeps were shared evenly between cluster 1 and cluster 2.

Interestingly, the selection targets on scaffold 1 (616,499–

1,059,480 bp) and scaffold nine (159,071–349,486 bp)

were identified in two different pairwise comparisons

(fig. 3; supplementary table 2, Supplementary Material on-

line). In addition to that, a selective sweep on scaffold 2

(589,559–926,564 bp) was identified in cluster 1 and cluster

3 when XP-EHH was performed using cluster 2 as the refer-

ence cluster. Four of these selective sweeps (scaffold 1:

961,484–984,586 bp, scaffold 3: 623,832–625,683 bp, scaf-

fold 12: 1,753,708–1,809,408 bp and scaffold 20: 533,694–

710,548 bp) overlapped with selective sweeps identified using

iHS. A total of 85 genes were found in overlapping selective

sweep regions. However, each of these selective sweeps was

detected in different genetic clusters than the sweeps identi-

fied by iHS. Using the same procedure as for selective sweeps

detected by iHS, we tested whether SNP density had an effect

on the detection of selection. We found no evidence that SNP

density had a meaningful impact on the ability to detect se-

lection or on the length of identified selective sweeps (sup-

plementary figs. 4 and 5, Supplementary Material online). For

each XP-EHH analysis of cluster pairs, we analyzed the ratio of

synonymous versus nonsynonymous polymorphisms segre-

gating in genes located in selective sweep regions (supple-

mentary fig. 6, Supplementary Material online). We found

that the ratio was not meaningfully different compared

with the genome-wide background.

We focused on genes located in selective sweep regions

identified by both XP-EHH and iHS analyses. We found a total

of 10 genes that were located within 5,000 bp of the most

significant SNPs identified by both XP-EHH and iHS analyses

(table 2). The two genes identified on scaffold 1 were

RCO7_01116, encoding a phthalate 4,5-dioxygenase oxygen-

ase reductase subunit involved in the degradation of xeno-

biotics, and an unknown protein encoded by RCO7_01117.

We identified an ubiquitin-conjugating enzyme E2 encoded

by RCO7_02480 and a MON2 protein encoded by

RCO7_02479 on scaffold 3. MON2 plays an important role

in endomembrane trafficking and Golgi homeostasis. We

identified the RCO7_02696 gene on scaffold 12 that encodes

a mediator complex subunit 7 (MED7) protein involved in the

transcriptional regulation of nearly all RNA polymerase II-

dependent genes. In addition to that we identified

RCO7_02697, which encodes a type 2 phosphatidic acid

phosphatase (PAP2) gene important for lipid metabolism

and signaling. We tested whether SNP density had an effect

on the ability to detect selection on effector candidate genes

in the XP-EHH analyses. However, effector candidate genes

Table 1

Genes in Selective Sweep Regions Identified Using Integrated Haplotype Score (jiHSj) Analyses in the Three Genetic Clusters of Rhynchosporium commune

Cluster Scaffold SNP Position jiHSj Genes in Sweep Region

Cluster 1 RCO7_scaffold002 262395 4.57691295 RCO7_04421 (glucose–methanol–choline (GMC) oxidoreductase)

RCO7_04422 (related to DUF 202 domain protein)

RCO7_04423 (multi-antimicrobial extrusion (MATE) multidrug transporter)

Cluster 1 RCO7_scaffold004 707629 4.655198545 RCO7_06862 (KES1 oxysterol-binding protein involved in ergosterol biosynthesis)

Cluster 1 RCO7_scaffold051 125465 3.966106351 RCO7_03673 (uncharacterized protein)

RCO7_03674 (acyltransferase GNAT family)

RCO7_03675 (glycosyl hydrolase family 47 alpha-mannosidase)

Cluster 2 RCO7_scaffold061 469958 9.75730438 RCO7_01309 (class I glutamine amidotransferase (GAT1)-like protein)

Cluster 2 RCO7_scaffold012 1864317 9.31713174 RCO7_02708 (uncharacterized protein)

RCO7_02709 (UbiA prenyltransferase family)

Cluster 2 RCO7_scaffold020 646208 8.83413424 RCO7_14617 (uncharacterized protein)

Cluster 3 RCO7_scaffold042 286253 7.03521568 RCO7_07300 (uncharacterized protein)

RCO7_07301 (concentrative nucleoside transporter (CNT))

Cluster 3 RCO7_scaffold040 75641 6.70227808 Intergenic region

Cluster 3 RCO7_scaffold013 900028 5.4617104 RCO7_00065 (uncharacterized protein with SKP1/BTB/POZ domain)

RCO7_00064 (uncharacterized protein)

NOTE.—Genes were selected if they were within 5,000 bp from the most significant SNPs (top 0.05% in clusters 1 and 3, and 0.01% in cluster 2).

Positive Selection in a Fungal Pathogen GBE

Genome Biol. Evol. 10(5):1315–1332 doi:10.1093/gbe/evy087 Advance Access publication May 2, 2018 1323

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy087#supplementary-data


were on average in relatively SNP-dense regions as for the SNP

sets used for iHS scans (supplementary fig. 4, Supplementary

Material online).

In order to identify additional candidate genes for local

adaptation, we focused on selective sweep regions identified

by two sets of cross-population tests. We found the gene

RCO7_01132 located on scaffold 1 under positive selection

in cluster 1 (using the cluster pairs 2–1 and 1–3 for XP-EHH

analyses). This gene codes for a guanine nucleotide binding

protein (G-protein) alpha chain, which plays an important role

in various signaling systems. However, the two most signifi-

cant SNPs identified on scaffold 9 in cluster 3 were not in

proximity to any known gene. Using cluster 2 as the reference

cluster, the strongest signal of a selective sweep was found in

a large intergenic region. Using cluster 1 as the reference

cluster, we identified RCO7_06601 encoding a Cu/Zn super-

oxide dismutase located 1,758 bp away from the top signifi-

cant SNP. Cu/Zn superoxide dismutases play a role in
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protecting cells from damage caused by oxygen-mediated

free radicals. Finally, we found two candidate genes on scaf-

fold 2 shared by clusters 1 and 3 (when compared against

cluster 2). The first candidate gene was RCO7_04583, encod-

ing a transmembrane gene with a MARVEL domain which

plays a role in membrane apposition events. The function of

the second gene (RCO7_04584) is unknown.

Gene Functions Overrepresented in Selective Sweep
Regions

We found a total of 972 and 811 genes in selective sweep

regions detected by iHS and XP-EHH analyses, respectively.

We analyzed whether genes under selection were enriched

for specific functions by performing a GO enrichment analysis.

We found 16 terms that were significantly enriched (P< 0.01)

for different functional categories (fig. 4; supplementary table

3, Supplementary Material online). Enriched GO terms did not

overlap between gene sets identified by iHS and XP-EHH anal-

yses, respectively. In iHS analyses, we found enrichment for

localization (i.e., any process involved in the establishment

and maintenance of cellular location) (GO: 0051179), trans-

port (GO: 0006810), DNA damage checkpoint (GO:

0000077), and DNA metabolic process (GO: 0006259).

Interestingly, we also found strong enrichment of the term

reproduction (GO: 0000003, P¼ 0.0001) and reproductive

processes (GO: 0022414, P¼ 0.0001) in regions under selec-

tion identified by XP-EHH. We investigated the genes encod-

ing functions assigned to the GO term reproduction and

related functions and found that these genes were related

to meiosis and plasma membrane fusion, including a meiosis

specific protein Spo22/ZIP4/TEX (RCO7_00959), a plasma

membrane fusion protein PRM1 (RCO7_01086), and a DNA

repair protein RAD51 (RCO7_01125). In addition, we investi-

gated whether selective sweep regions identified by both iHS

and XP-EHH were enriched for specific gene functions. We

found enrichment for nucleus associated functions (GO:

0005730, P¼ 0.0055) and vesicle tethering (GO: 0099023,

P¼ 0.0092; fig. 4; supplementary table 3, Supplementary

Material online). We found no evidence for enrichment in

genes encoding secreted proteins, effectors, plant cell wall

degrading enzymes or MFS transporters in regions under selec-

tion (supplementary table 4, Supplementary Material online).

Discussion

We used population whole-genome sequencing to identify

signatures of recent selection in populations of the barley

scald pathogen. Using two different haplotype-based selec-

tion scans, we found widespread signals of divergent

Table 2

Genes Identified in Overlapping Selective Sweep Regions

Regions Scaffold Selection Analyses/Cluster Identities SNP Position jiHSj/XPEHH Candidate Genes under Selection

1 RCO7_scaffold001 (a) XP-EHH—cluster 1 versus Cluster 3 962864 4.785 (a) RCO7_01115 (transcription factor Som1)

(b) iHS—cluster 3 963272 4.343 RCO7_01116 (phthalate 4,5-dioxygenase

oxygenase reductase subunit)

RCO7_01117 (uncharacterized protein)

2 RCO7_scaffold003 (a) XP-EHH—cluster 2 versus Cluster 3 624918 3.564 RCO7_02480 (ubiquitin-conjugating

enzyme E2)

(b) iHS—cluster 3 624918 4.6574 RCO7_02479 (MON2)

3 RCO7_scaffold012 (a) XP-EHH—cluster 2 versus cluster 3 1822306 �3.977 (a) RCO7_02695 (uncharacterized protein)

(b) iHS—cluster 2 1823054 8.694 RCO7_02696 (mediator complex subunit 7

(MED7))

1823058 8.694 RCO7_02697 (Type 2 phosphatidic acid

phosphatase (PAP2))

4 RCO7_scaffold020 (a) XP-EHH—cluster 2 versus cluster 1 647275 �4.251 RCO7_14617 (uncharacterized protein)

(b) iHS—cluster 2 646208 8.834 (a) RCO7_03084 (uncharacterized protein)

5 RCO7_scaffold001 (a) XPEHH—cluster2 versus cluster1 1026013 3.914 RCO7_01132 (G-protein alpha chain)

(b) XPEHH—cluster1 versus cluster3 1025700 4.130

6 RCO7_scaffold009 (a) XPEHH—cluster 2 versus cluster 3 205732 �4.091 (a) intergenic

(b) XPEHH—cluster 1 versus cluster 3 204366 �4.684 (b) RCO7_06601 (Cu/Zn superoxide dismutase)

7 RCO7_scaffold002 (a) XPEHH—cluster 2 versus cluster 1 818548 �3.749 RCO7_04583 (transmembrane protein with

MARVEL domain)

(b) XPEHH—cluster 2 versus cluster 3 818548 �3.574 RCO7_04584 (domain of unknown function

DUF2012)

NOTE.—Regions 1–4 show selective sweep regions identified by both integrated haplotype score (jiHSj) and cross-population extended haplotype homozygosity (XP-EHH)
analyses. Regions 5–7 show selective sweep regions identified in two separate XP-EHH analyses. Genes were reported if they were within 5,000 bp of the most significant single
nucleotide polymorphism (SNP) locus (top 0.05%). For each XP-EHH selection analyses, the genetic cluster in which selection was detected is shown in bold. Gene names shown in
bold are genes found in the overlap of both selection analyses. Gene names labelled with either (a) or (b) refer to which selection analyses identified these genes (see third
column).
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selection in three genetic clusters of R. commune. The stron-

gest signatures of selection were predominantly found in two

of the three clusters. Contrary to expectations for a host spe-

cialized pathogen, loci showing strong evidence for selection

were largely unrelated to adaptation to the host plant.

Instead, we found enrichment in genes encoding functions

in cellular localization, protein transport activity, DNA damage

response, and general metabolism. Genes related to repro-

ductive processes were found to be significantly enriched in

selective sweeps identified by cross-population analyses.

The global collection of the pathogen R. commune showed

strong evidence for subdivision into three genetic clusters. A

total of 85 genotypes were assigned to a predominantly

northern European cluster. This cluster also comprised the

genotypes collected near the center of origin of the pathogen

(i.e., Scandinavia) (Zaffarano et al. 2006). Previous findings

based on multilocus sequence data showed that R. commune

likely expanded across the world from its center of origin

(Brunner et al. 2007; Zaffarano et al. 2009). Nevertheless,

contemporary gene flow was estimated to be low among

continents. Our analyses of genome-wide SNPs confirmed

the strong subdivision among continents. For example, the

Swiss and Ethiopian populations showed striking genetic dif-

ferentiation from the main cluster and each constituted

largely independent clusters. However, multiple genotypes

showed admixture between clusters suggesting ongoing ge-

netic exchange. Interestingly, two and three genotypes of

New Zealand and Spain, respectively, were assigned to the

Swiss genetic cluster (>90% posterior probability), suggesting

recent migration events and the absence of significant

admixture. The US population showed frequent admixture

from Swiss and Scandinavian populations showing that these

two donor populations are playing an important role in the

spread of R. commune to the North American continent.

Previous studies suggested that gene flow from Europe was

facilitated by the introduction of infected seeds during

European colonization and may be ongoing to the present

day (Brunner et al. 2007; Zaffarano et al. 2008; McDonald

2015). Despite evidence for migration events, gene flow was

severely restricted among the genetic clusters. This should

favor the emergence of local adaptation.

We performed genome-wide selection scans indepen-

dently for each of the three genetic clusters and excluded

admixed genotypes to avoid confounding effects of popula-

tion structure. We found widespread evidence for selective

sweeps across the genome, yet there was little overlap in loci

under selection among clusters. The divergent selection pres-

sures among clusters strongly suggest that differences in eco-

logical factors imposed different selection regimes. For

instance, in Ethiopia barley is grown over a broad climatic

and edaphic range (barley is grown at altitudes from 1,400

to over 4,000 m above the sea level). Nevertheless, the path-

ogen is exposed to less seasonal temperature fluctuations

than in Scandinavia (Asfaw 2000; Stefansson et al. 2013).

Similarly, the climate in Oceania covers different seasonal fluc-

tuations than Central European localities. Furthermore, our

samples were isolated from genetically diverse barley land-

races in Ethiopia (Hadado et al. 2010) while the

Scandinavian and Swiss clusters comprised pathogen popula-

tions that were exposed to genetically homogeneous elite
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barley cultivars. Additional differences in environmental con-

ditions include the early application of azole fungicides in

Europe. Azole resistance was detected in many fungal patho-

gens in Europe, including R. commune, because the late

1990s (Cools et al. 2013). The Swiss population of R. com-

mune already accumulated a number of azole resistance

mutations as early as 1999 (Brunner et al. 2015; Mohd-

Assaad et al. 2016). Taken together, the three genetic clusters

comprised populations exposed to quite different environ-

mental conditions, providing substantial opportunity for local

adaptation.

Our scans for selective sweeps in each of the three genetic

clusters using iHS revealed a large number of loci under recent

selection. These loci were broadly distributed across the ge-

nome. Importantly, we found little overlap in loci among the

major genetic clusters, strongly suggesting differences in se-

lection pressures among these clusters. Because R. commune

has a well assembled and annotated genome, we investigated

genes in immediate proximity to each of the selective sweep

regions. We focused on the strongest signals of selection in

each cluster and retrieved a total of 15 genes adjacent to

these sweep regions. Half of these genes coded for proteins

with a conserved function, including two membrane-bound

transporters. The first MATE family transporter is involved in

various metabolic pathways (Moriyama et al. 2008; Kuroda

and Tsuchiya 2009; Liu et al. 2016). In the rice pathogen

Pyricularia oryzae, an MATE-family pump regulates glucose

assimilation, sporulation, and pathogenicity (Fernandez et al.

2012). The second transporter mediates the uptake and re-

lease of nucleosides (Young et al. 2013). It is unclear what

selection pressure would act on such a highly conserved trans-

porter. Previous studies showed that nucleoside transporters

can help attenuate nitrogen starvation, restore nucleotide

pools and regenerate mycelium growth in nitrogen-free me-

dium (Hamari et al. 2009; Dean et al. 2014; Daumann et al.

2016). Uptake of nucleoside and nitrogenous compounds are

important for pathogenicity in Candida albicans,

Xenorhabdus nemaptophila and obligate parasitic protozoan

(de Koning et al. 2005; Orchard and Goodrich-Blair 2005;

Chitty and Fraser 2017). We also identified a GNAT acyltrans-

ferase that plays a role in multiple biological processes includ-

ing the regulation of growth, morphogenesis, cellulase

expression, and stress–response pathways related to the

host and abiotic environment (O’Meara et al. 2010; Xin

et al. 2013; Xue-Franz�en et al. 2013). Additional genes in

immediate proximity to selective sweeps encoded a GMC ox-

idoreductase and an alpha-mannosidase contributing to the

degradation of plant cell walls including lignin and mannose

(Choi et al. 2013; Takahashi et al. 2015).

Fungicide resistance, in particular to azoles, evolved repeat-

edly in many plant pathogens (Cools et al. 2013). Several of

the R. commune populations analyzed in this study were ex-

posed to azoles and multiple loci were shown to confer in-

creased resistance (Brunner et al. 2015; Mohd-Assaad et al.

2016). Azole resistance was found to be particularly high

among isolates assigned to cluster 1. Interestingly, we identi-

fied a gene encoding the KES1 oxysterol-binding protein to be

under selection in cluster 1. Mutations in the KES1 gene can

result in hypersensitivity to fungicides such as azoles that tar-

get ergosterol biosynthesis (Fang et al. 2012). Nevertheless,

we found no evidence for positive selection at the loci previ-

ously associated with azole resistance by GWAS (Mohd-

Assaad et al. 2016). This may be due to a combination of

factors. First, fungicides were applied only for the last 30–

40 years and the number of generations that has elapsed

may have been too short for a strong selection signal to arise.

Second, previous studies showed that azole resistance is a

polygenic trait with possibly dozens of loci contributing to

the overall level of resistance (Mohd-Assaad et al. 2016) mak-

ing the detection of selective sweeps at individual loci less

likely. Third, many mutations that conferred higher levels of

resistance were also found in sensitive populations, suggest-

ing that azole resistance at least partially arose from standing

genetic variation. Fourth, some resistance mutations had neg-

ative pleiotropic effects on growth rates (Mohd-Assaad et al.

2016). Negative pleiotropy would weaken the response to

selection due to fungicide exposure. Furthermore, the patho-

gen is only exposed to significant levels of fungicides during

the crop growing season. Hence, resistance mutations with

negative pleiotropic effects are likely under fluctuating selec-

tion which is not expected to generate strong signatures of

selection.

In addition to our scans of recent positive selection within

each genetic cluster, we used XP-EHH among pairs of clusters

to gain sensitivity in the detection and to identify differences

in signals among clusters. We focused in particular on loci that

were confirmed to be under selection in a specific cluster by

analyzing both pairwise comparisons with the other two clus-

ters. We found such cross-validated loci for clusters 1 and 3. A

gene encoding a guanine nucleotide binding protein was un-

der strong selection specific to cluster 1. This protein is a part

of heterotrimeric complex that has wide ranging roles in sig-

naling, including known effects on reproduction, develop-

mental processes and virulence in fungi (Gao and Nuss

1996; Horwitz et al. 1999; Gronover et al. 2001; Yamagishi

et al. 2006; Tan et al. 2008). In cluster 3, a cross-validated

gene encodes a Cu/Zn superoxide dismutase. These proteins

enable pathogens to withstand reactive oxygen species,

which are among the primary defense responses of plants

during attack by pathogens (Yao et al. 2016; Rolke et al.

2004). Given the signatures of selection unique to individual

clusters, both genes are strong candidates for genes underly-

ing local adaptation.

Detecting signatures of the most recent episodes of selec-

tion is challenging because neutral processes can generate

signatures indistinguishable from selection (Vitti et al. 2013;

Xiang-Yu et al. 2016). Loci across the genome can show shifts

in allele frequency spectra due to recent population
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bottlenecks or expansions. Genome-wide selection scans can

control for the effects of demographic changes to some ex-

tent because neutral processes are affecting all loci across the

genome in contrast to the localized impact of selection

(Biswas and Akey 2006). Haplotype block structure-based

tests for selection such as iHS and XP-EHH used in this study

are particularly powerful in identifying the specific alleles un-

der recent selection by taking ancestral state information into

account (Voight et al. 2006). iHS is robust to heterogeneity in

recombination rates across the genome (Sabeti et al. 2002;

Xiang-Yu et al. 2016). iHS is also fairly robust to SNP ascer-

tainment bias affecting the allele frequency spectrum and

demography (Voight et al. 2006; Xiang-Yu et al. 2016).

However, false positive rates can be high if the populations

experienced extreme bottlenecks. Historic population sizes of

R. commune fluctuated over time, with a bottleneck esti-

mated to have occurred 250–500 years before present ending

a slow contraction over thousands of years (Zaffarano et al.

2008). The bottleneck experienced by R. commune was un-

likely to be strong enough to explain a substantial portion of

the observed haplotype block structure. We focused our anal-

yses mainly on the strongest signals of selection. However,

relatively weak signals of selection in the analyzed populations

should be cautiously evaluated for their significance.

We performed cross-population tests of selection that

aimed at identifying loci potentially involved in local adapta-

tion. However, highly differentiated genomic regions among

populations can also arise in the absence of local adaptation

(Bierne et al. 2011). Underappreciated environment-

independent factors such as pre- and post-zygotic isolation

or epistasis can lead to strong reductions in gene flow at

specific loci. If such factors coincide with ecological variation,

local adaptation is expected to produce indistinguishable sig-

natures at loci under selection. However, we analyzed com-

plete genomes instead of a relying on marker techniques that

generate only reduced marker sets. Hence, we were able to

analyze putative functions within selective sweep regions and

found that many loci were indeed likely to encode functions

related to biotic or abiotic adaptation. Analyzing the contri-

bution of individual loci to phenotypic traits will enable a clear

distinction between loci underlying local adaptation and

endogeneous barriers.

Genes identified in selective sweep loci were only weakly

connected with the repertoire of genes usually associated

with highly specific host–pathogen interactions. Genes under-

lying host specialization often encode small secreted proteins

(i.e., effector candidates). Such proteins directly or indirectly

interact with a host receptor and modulate the host physiol-

ogy to facilitate infection (de Jonge et al. 2011). In the

genomes of many filamentous pathogens, genes encoding

small effector genes are predominantly located in proximity

to repeat-rich regions (Raffaele and Kamoun 2012;

Grandaubert et al. 2014; Plissonneau et al. 2016; Hartmann

et al. 2017). Repetitive sequences are often devoid of

high-quality callable SNPs. We tested whether genes encoding

small secreted proteins (i.e., effector candidates) were located

in regions without a sufficient density of high-quality SNPs.

However, we found that regions containing genes encoding

small secreted proteins showed similar levels of SNP density

compared with the genomic background. Therefore, the lack

of effector candidate genes in selective sweep regions is un-

likely to be explained by callable SNP density variation.

A major gap in our understanding of host specialization is

how many effectors play a role in modulating host immune

responses to the pathogen’s advantage. Bioinformatics

screens of fungal pathogen genomes typically reveal hun-

dreds of genes encoding putative effectors (Jones et al.

2018). However, population-level association mapping analy-

ses suggested that a relatively small number of effectors could

explain most variation in virulence (Fouch�e et al. 2018).

Necrotrophic pathogens such as R. commune may not require

a large arsenal of highly specialized effectors. We also found

no evidence that genes encoding additional essential func-

tions for plant pathogens such as cell wall degrading

enzymes, proteases, lipases, and MFS transporters were

over-represented among selective sweep loci. These proteins

play critical roles in the degradation of cell walls (Esquerr�e-

Tugay�e et al. 2000; Kikot et al. 2009), the secretion of viru-

lence factors or detoxification (Coleman and Mylonakis

2009). In contrast, we found that selective sweep loci were

overrepresented in genes encoding functions in transport,

cellular localization and DNA damage repair. Such functions

are more likely to be associated with selection pressures

exerted by the abiotic environment (e.g., tolerance to external

stresses such as UV or extreme temperature). Genes in loci

detected by XP-EHH were overrepresented in functions re-

lated to reproduction and meiosis. However, these genes

were predominantly encoded on a single scaffold and hitch-

hiking selection may be an alternative explanation for this

enrichment.

Similar to our study, Badouin (2017) found widespread

selection across the genome of anther-smut fungi. Given

the obligate association of anther-smut fungi with their hosts,

selection pressure exerted by the host is likely to have a stron-

ger impact on the pathogen. However, analyses of selective

sweep loci revealed a multitude of possible targets not nec-

essarily related to selection by the host. A number of studies

focused on individual pathogenicity loci that encoded proteins

that modulate the host immune system and may be detected

by the host. Gene sequences encoding these proteins were

found to show strong signatures of positive selection based

on excessive nonsynonymous versus synonymous substitution

rates (Schürch et al. 2004; Stukenbrock and McDonald 2007;

Stukenbrock et al. 2010; Stukenbrock et al. 2011; Guyon

et al. 2014). However, signatures of selection based on sub-

stitution rates arise over much longer time frames and reveal

different selection regimes between species rather than selec-

tion pressure within species. Haplotype-based scans for
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selection across the genome generally detect much younger

selection pressures (Sabeti et al. 2002; Vitti et al. 2013). We

found no evidence for a shift in synonymous versus nonsy-

nonymous polymorphism ratios in selective sweep regions

compared with the genomic background. Extended haplo-

types arise by rapid gains in beneficial allele frequencies cou-

pled with insufficient recombination to breakdown LD

between adjacent sites. Hence, no changes in synonymous

versus nonsynonymous polymorphism ratios are expected for

the most recent episodes of selection.

The emergence of plant pathogens in agricultural ecosys-

tems is a primary concern to ensure food security. The evolu-

tionary processes through which plant pathogens rapidly

overcome resistance in host plants or become resistant to

fungicides provide illuminating case studies for the rapid evo-

lution of complex traits. Our study showed that selection

pressures operating across the distribution range of a globally

distributed pathogen are likely to vary extensively. We found

that the loci under recent positive selection encoded a multi-

tude of functions related to abiotic and biotic stress factors.

We found no evidence that selection imposed by the barley

host played a dominant role in shaping recent selection pres-

sures. This is surprising given the fact that many pathogen

populations are known to encode major effect loci for aggres-

siveness (de Sain and Rep 2015; Lo Presti et al. 2015). Instead,

selection on R. commune led to selection on a large number

of loci likely contributing to the rapid evolution of polygenic

traits. Identifying the adaptive value of individual adaptive

mutations and dissecting the genetic basis of complex traits

will lead to major advances in understanding rapid evolution-

ary processes in populations with large standing genetic

variation.
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