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Sir,

We welcome the letter by Wolf et al. (2018). They report

a third family with ATAD1-related lethal encephalopathy,

further confirming ATAD1 as a disease gene for the well

recognizable stiff baby syndrome. ATAD1 encodes thorase,

an AAA + ATPase that helps control postsynaptic AMPA

receptor internalization by disassembling complexes be-

tween glutamate receptor interacting protein (GRIP1) and

the AMPA receptor subunit GluA2 (Zhang et al., 2011).

The common clinical features shared by all affected mem-

bers in the three reported families comprise hypertonia,

absence of spontaneous movements, almost no motor

development, and death within the first months of life

(Ahrens-Nicklas et al., 2017; Piard et al., 2018; Wolf

et al., 2018). Myoclonic jerks and seizures have been

noticed in the affected children reported by Ahrens-

Nicklas et al. (2017) and the female described by Wolf

et al. (2018), but in none of the three affected infants we

reported (Piard et al., 2018). We agree with Wolf et al.

(2018) that ATAD1-related encephalopathy should be a

first-line diagnosis in extremely stiff neonates with or with-

out seizures. However, we are aware of another infantile

epileptic encephalopathy, known as rigidity and multifocal

seizure syndrome, lethal neonatal (RMFSL; MIM 614498),
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showing an overlapping clinical picture. This phenotype is

characterized by intractable seizures, hypertonia, and early

death and caused by biallelic mutations in BRAT1

(Puffenberger et al., 2012; Saunders et al., 2012; Saitsu

et al., 2014). We therefore recommend ATAD1 and

BRAT1 to be preferentially analysed by Sanger-sequencing

or in next-generation sequencing panels in the diagnostic

work-up of stiff neonates.

The ATAD1 variant identified by Wolf et al. (2018), a

homozygous c.162G4C transversion predicting the amino

acid substitution p.(Gln54His), has not been tested in the

patient’s parents to demonstrate that both are heterozygous

carriers. Moreover, Wolf et al. (2018) did not comment

on minor allele frequency or pathogenicity predictions of

the ATAD1 variant. By doing so, we noticed that the

c.162G4C change is absent from population databases

(ExAC and gnomAD Browsers) and predicted to be

damaging by three in silico tools combining previous

pathogenicity scores [CADD (Kircher et al., 2014),

REVEL (Ioannidis et al., 2016), and M-CAP (Jagadeesh

et al., 2016)]. As the G-to-C change affects the last nucleo-

tide of exon 2, splicing of the ATAD1 pre-mRNA has been

postulated to be altered (Wolf et al., 2018). We investigated

the effect of this sequence change on splicing using four

splice site prediction programs: all of them detected the

wild-type donor site (http://www.umd.be/HSF3/HSF.shtml;

http://www.cbs.dtu.dk/services/NetGene2/; http://www.fru

itfly.org/seq_tools/splice.html; http://bioinfo.itb.cnr.it/oriel/

splice-view.html). Three recognized the donor site in the

mutant sequence with reduced splicing efficiency, while

one predicts the complete loss of the donor site. The

effect of the ATAD1 mutation c.162G4C on pre-mRNA

splicing and protein function is difficult to predict in the

absence of mRNA and functional studies. Nonetheless, it is

tempting to speculate that both aberrant ATAD1 mRNAs,

possibly subjected to nonsense-mediated mRNA decay, and

mutant ATAD1Gln54His protein had been produced in the

affected infant and likely caused (nearly) complete ATAD1

loss-of-function. Similarly, the homozygous ATAD1 muta-

tion reported by Ahrens-Nicklas et al. (2017) also was a

loss-of-function mutation as the c.826G4T change pre-

dicted the introduction of a premature termination codon

[p.(Glu276*)]. A drastically decreased ATAD1 mRNA

amount and the absence of thorase protein in lymphoblas-

toid cells derived from one patient further underscored

ATAD1 null alleles in the affected individuals of this

family (Ahrens-Nicklas et al., 2017). In contrast, we

would like to emphasize that the ATAD1 mutation

c.1070_1071delAT/p.(His357Argfs*15) reported in our

family turned out to have a gain-of-function effect, a

rarely observed mechanism in autosomal recessively in-

herited disorders (Piard et al., 2018). Although at first

glance the frameshift variant gives the impression of an

ATAD1 loss-of-function mutation, the functional work

presented in our study indicated that the encoded thorase

mutantHis357Argfs*15 is expressed in patient cells and gained

a novel function of its C-terminal end. We demonstrated

decreased levels of surface AMPA receptors in unstimulated

mutantHis357Argfs*15-expressing neuronal cells compared to

wild-type-expressing neurons. We put forward the hypoth-

esis that the thorase mutantHis357Argfs*15 may inhibit the

recycling back and/or reinsertion of AMPA receptors to

the surface following endocytosis resulting in a decrease

in the steady-state levels of these receptors at the cell

surface (Piard et al., 2018). In contrast, biallelic ATAD1

loss-of-function mutations likely increase the population of

excitatory postsynaptic AMPA receptors in neurons as

shown in Atad1�/� mice (Zhang et al., 2011). In the

latter scenario, perampanel, an AMPA receptor antagonist,

was shown to decrease tonicity and prevent seizures in two

individuals with the homozygous ATAD1 nonsense muta-

tion p.(Glu276*) (Ahrens-Nicklas et al., 2017). Taken

together, these data demonstrate clear benefits of the indi-

vidualized medicine approach in the two severely affected

children reported by Ahrens-Nicklas et al. (2017), as also

pointed out by Wolf and colleagues (2018). However, we

respectfully but strongly disagree with the statement by

Wolf et al. (2018) to ‘. . . ensue a therapeutic trial with

perampanel, even before genetic confirmation’ in an ex-

tremely stiff infant. As both loss- as well as gain-of-function

ATAD1 mutations give rise to the shared neurological fea-

tures of stiffness and absence of spontaneous movements,

we recommend (i) genetic testing in the affected neonates,

including ATAD1 and BRAT1, to unravel the genetic basis

of the disease; and (ii) determining the consequences of the

ATAD1 mutation, at least on mRNA and protein level in

cells obtained from patients. Absence or reduced amount of

mutated ATAD1 transcripts and/or thorase protein in pa-

tient-derived cells provide evidence for ATAD1 deficiency,

thus opening up the therapeutic potential of perampanel in

these patients. On the other hand, therapy with perampanel

is not an option in individuals with an ATAD1 gain-of-

function variant, such as the p.(His357Argfs*15) frameshift

mutation reported in our study (Piard et al., 2018). Wolf

et al. (2018) pointed out the importance of detailed clinical

work-up for rare neurological disorders and we agree.

Beyond that, the work by Ahrens-Nicklas et al. (2017)

and our work (Piard et al., 2018) highlight the need for

determining the molecular basis of rare and devastating

neurological disorders and their underlying pathophysio-

logical mechanisms to develop a targeted therapy.
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