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Abstract

Motivation: Molecular subtypes of cancers and autoimmune disease, defined by transcriptomic

profiling, have provided insight into disease pathogenesis, molecular heterogeneity and therapeutic

responses. However, technical biases inherent to different gene expression profiling platforms

present a unique problem when analyzing data generated from different studies. Currently, there is a

lack of effective methods designed to eliminate platform-based bias. We present a method to normal-

ize and classify RNA-seq data using machine learning classifiers trained on DNA microarray data and

molecular subtypes in two datasets: breast invasive carcinoma (BRCA) and colorectal cancer (CRC).

Results: Multiple analyses show that feature specific quantile normalization (FSQN) successfully

removes platform-based bias from RNA-seq data, regardless of feature scaling or machine learning

algorithm. We achieve up to 98% accuracy for BRCA data and 97% accuracy for CRC data in assigning

molecular subtypes to RNA-seq data normalized using FSQN and a support vector machine trained

exclusively on DNA microarray data. We find that maximum accuracy was achieved when normalizing

RNA-seq datasets that contain at least 25 samples. FSQN allows comparison of RNA-seq data to existing

DNA microarray datasets. Using these techniques, we can successfully leverage information from exist-

ing gene expression data in new analyses despite different platforms used for gene expression profiling.

Availability and implementation: FSQN has been submitted as an R package to CRAN. All code

used for this study is available on Github (https://github.com/jenniferfranks/FSQN).

Contact: michael.l.whitfield@dartmouth.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular subtypes of human disease have been defined in various

cancers and autoimmune diseases. These subtypes are based on con-

served changes in gene expression across groups of individuals and

reveal patterns of disease heterogeneity and insights into disease

pathogenesis that may not be apparent from clinical information

alone. Molecular subtypes have previously been identified using de

novo analyses and unsupervised clustering methods on large study

cohorts in cancer and autoimmune diseases (Milano et al., 2008;

Perou et al., 2000), but assigning these subtypes in clinical trials or

for diagnostic testing requires supervised classification methods that

can assign an individual, single sample to a subtype.

For many diseases, the volume of DNA microarray data avail-

able in NCBI GEO is far greater than the volume of RNA-seq data,

thus it is important that we can leverage well-validated DNA micro-

array datasets to analyze data generated on newer platforms with

updated technology, such as RNA-seq. Although DNA microarray

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1868

Bioinformatics, 34(11), 2018, 1868–1874

doi: 10.1093/bioinformatics/bty026

Advance Access Publication Date: 17 January 2018

Original Paper

https://github.com/jenniferfranks/FSQN
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty026#supplementary-data
https://academic.oup.com/


and RNA-seq data have been shown to have a high correlation (Guo

et al., 2013; Zhao et al., 2014), overall processing and standard quan-

tification methods specific to each platform result in different data

distributions. This violates the assumption of identical distributions that

is required for many statistical and machine learning approaches.

Consequently, there is a need for methods that allow accurate molecular

subtype assignments using RNA-seq data, which leverages DNA micro-

array experiments for training of the classification models.

Several methods have been proposed to translate RNA-seq data

into DNA microarray-comparable values. Probe Region Expression

estimation Based on Sequencing (PREBS) (Uziela and Honkela,

2015) was designed to map RNA-seq reads to probes used for

microarrays. This method requires raw reads and can be computa-

tionally time-consuming and memory intensive. Moreover, it is

often necessary to use data reported as gene-level expression when

considering publicly available large-scale analyses. In this study, we

focus on utilizing log2 transformed RPKM (Reads Per Kilobase of

transcript per Million mapped reads) values, a commonly reported

measure of gene expression which are normalized based on gene

length and total counts (Robinson and Oshlack, 2010).

Feature scaling is an important and often overlooked component

of cross-platform gene expression analyses. It is well-established

that features which have been rescaled to a determined interval train

a better-performing model (Jain and Dubes, 1988; Milligan and

Cooper, 1988). However, feature scaling is considered most appropri-

ate in cases when the features are not measured on the same scale, and

thus the comparative difference is irrelevant (e.g. comparing an indi-

vidual’s income and height). The relative differences in values between

genes are certainly not meaningless and are essential for biological

interpretation. Additionally, many studies that apply classification

algorithms to gene expression achieve good results by using z-score

transformations, which does not rescale each genes value to a defined

interval (Sorlie et al., 2001; Tibshirani et al., 2002, 2003).

In order to render RPKM values comparable to DNA microarray

data, it is necessary to consider both center and spread of the data.

With these criteria in mind, we introduce a novel method termed

Feature Specific Quantile Normalization (FSQN) for normalizing

RNA-seq data for optimal comparability when analyzing data gen-

erated from different gene expression profiling platforms. We

benchmark our approach against other methods reported for this

purpose including Quantile Normalization (QN) (Bolstad et al.,

2003), Training Distribution Matching (TDM) (Thompson et al.,

2016), Non-paranormal transformation (NPN) (Liu et al., 2009)

and untransformed data (LOG2). Also, we explore the effects of fea-

ture scaling on classification accuracy by rescaling each feature fol-

lowing each normalization method. The methods we have chosen

for our analyses are those that either are explicitly designed to use

DNA microarray data as the target distribution (e.g. QN, TDM) or

assume that the reference data follow a normal distribution (e.g.

NPN). It should be noted that NPN should be considered an inap-

propriate normalization method in cases where training data do not

follow a normal distribution but despite this caveat, has been shown

to give good results. The goal of the study was to define a robust

method to render two datasets, originating from different platforms,

comparable for the purposes of machine learning classification.

2 Materials and methods

2.1 TCGA dataset curation and pre-processing
DNA microarray data were from TCGA level 3 breast cancer

(BRCA) 3.1.8.0 data that were downloaded from the TCGA data

portal (https://tcga-data.nci.nih.gov/tcga/) and included 590 samples

with molecular subtype reported in the 2012 paper (Cancer Genome

Atlas, 2012). RNA-seq data were re-calculated from RSEM esti-

mated read counts to log2RPKM. For scaled feature analysis, data

were scaled by gene to an interval [0, 1] using the rescale function as

part of the plotrix package (Lemon, 2006) in R version 3.3.2. For

the CRC dataset, DNA microarray data, RNA-seq data and molecu-

lar subtype labels were downloaded from the data repository as

described (Guinney et al., 2015). CRC datasets included an overlap

of 186 samples for TCGA microarray and RNA-seq datasets and

an overlap of zero samples for KFSYSCC microarray and TCGA

RNA-seq datasets.

2.2 Model training and classification
The KernSmooth (Wand, 2015), glmnet (Friedman et al., 2010), ran-

dom forest (Liaw and Wiener, 2002) and caret (Kuhn, 2008) packages

implemented in R were used to train the supervised classifiers. The

SVM classifier was trained with a linear kernel. GLMnet and random

forest were run with default parameters. Repeated cross-validation

(10x, 3-fold) was used to train the model and simultaneously assess

robustness based on classification accuracy metrics. Overall accuracy

and Cohen’s kappa coefficient were measured across all repeated

cross-validated folds. Sensitivity and sensitivity for each subset were

calculated and recorded for each repeated fold. Average value was cal-

culated for accuracy, and error bars represent SEM.

2.3 Normalization procedures
For quantile normalization (QN), we utilized the normalize.quanti-

les.use.target function from the preprocessCore package (Bolstad,

2016) in R with the entire microarray dataset matrix as the target

distribution. For training distribution matching (TDM), we down-

loaded the package and followed implementation notes from Github

(https://github.com/greenelab/TDM). For non-paranormal transfor-

mation (NPN), we used the huge package (Zhao et al., 2012) imple-

mented in R. For all scaled analyses, feature scaling was performed

post-normalization for all methods.

2.4 Feature specific quantile normalization (FSQN)
For each corresponding feature (gene), we quantile normalized

log2RPKM counts from RNA-seq data using DNA microarray data

as the target distribution. When N¼number of samples in the target

distribution, d is the 1 x N unit diagonal:

1ffiffiffiffiffi
N
p ; . . . ;

1ffiffiffiffiffi
N
p

� �
(1)

and qi is a vector of expression values from one gene:

ðqi1; . . . ; qiNÞ (2)

then the resulting vector for the corresponding gene in the new

dataset is

q0i ¼ projdqi ¼
~qi � ~d
~qij j

(3)

This projection is equivalent to substituting the average of the quan-

tile for each value in the new dataset.

2.5 Bootstrapping procedure
For each sample size (n¼5–54), samples were randomly drawn with

replacement from the corresponding RNA-seq dataset. RNA-seq

data were normalized using each method described above and
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classified with each machine learning model trained from DNA

microarray data. Average values of classification accuracy were cal-

culated from 100 trials of each sample size and plotted along with

error bars representing SEM.

2.6 Statistical tests
We used the Kolmogorov–Smirnov (K–S) test statistic for two sam-

ples to determine if two datasets were drawn from the same distribu-

tion. We utilized the Guided Principal Components Analysis (gPCA)

package (Reese et al., 2013) implemented in R to plot principal com-

ponents and determine statistically significant batch effects between

platforms. P-values<0.05 were considered significant.

3 Results

3.1 Data curation and processing
We identified samples from The Cancer Genome Atlas breast invasive

carcinoma (TCGA-BRCA) study (Cancer Genome Atlas, 2012),

which included both DNA microarray and RNA-seq gene expression

data in addition to PAM50 subtype (Parker et al., 2009) information

determined from the DNA microarray data. We chose this dataset

because it is well characterized, breast cancer molecular subtypes have

been validated in multiple cohorts (Carey et al., 2006; Perou et al.,

2000; Sorlie et al., 2001) and PAM50 subtype labels determined from

DNA microarray are a true gold standard to test the accuracy of sub-

type assignments for corresponding RNA-seq samples. These criteria

resulted in 539 samples (Table 1; Supplementary Tables S1, S2). DNA

microarray data were collected as processed gene-level data from

Agilent custom 244 K whole genome DNA microarrays and median

centered by gene as previously described (Cancer Genome Atlas,

2012). RNA-seq data were obtained as RSEM (RNA-seq by

Expectation Maximization; Li and Dewey, 2011) data generated from

Illumina HiSeq, then recalculated as RPKM values and log2 trans-

formed. Similarly, we obtained data from The Cancer Genome Atlas

colorectal cancer samples, which included DNA microarray, RNA-

seq gene expression data and molecular subtypes (Guinney et al.,

2015). CRC datasets included an overlap of 186 samples across

TCGA microarray and RNA-seq datasets and an overlap of zero sam-

ples for KFSYSCC microarray and TCGA RNA-seq datasets (Table 1;

Supplementary Table S3).

3.2 Model training and initial evaluation
Classifiers were trained using three different machine learning meth-

ods on both scaled and unscaled gene expression data from DNA

microarrays. Classification was based on previously described molec-

ular subtypes: Luminal A, Luminal B, Basal-like, HER2-enriched

and Normal-like for the BRCA dataset. For the CRC dataset, classifi-

cation was based on the molecular subtype labels: CMS1, CMS2,

CMS3 and CMS4. Performance of the classifiers was evaluated using

sensitivity and specificity of assigning each class label through

repeated 3-fold cross-validation (Fig. 1). Overall, SVM, GLMnet and

random forest achieved high classification accuracy for DNA micro-

array data in repeated cross-validation analyses using either unscaled

(Fig. 1A–C) or scaled data (Fig. 1D–E). All three classifiers demon-

strated strength in accurate classification of Basal-like and Luminal

A subtypes. However, performance suffered slightly for HER2-

enriched, Luminal-B and Normal-like subtypes. Overall, GLMnet

and SVM performed best with very comparable average sensitivity

and specificity for all subtypes. GLMnet trained on scaled DNA

microarray values demonstrated a very slight increase in perform-

ance over the other methods. The numbers of genes included in the

final models as well as the models trained on the CRC dataset are

described in Supplementary Material (Supplementary Fig. S1,

Supplementary Table S4).

3.3 Normalizing RNA-seq data
Processed DNA microarray data have a different distribution

compared to LOG2 values from RNA-seq data (Fig. 2A;

Supplementary Fig. S2A). However, it is important to note that the

shapes observed in Figure 2 are global depictions of the expression

distributions. If, instead, we consider distributions from a local

level (Fig. 2B; Supplementary Fig. S2B), we see that they can differ

both in center and spread for each gene. Notably, some genes

may even take on a distribution markedly different from the over-

all global distribution. These distribution differences persist to

Table 1. Summary of training and testing gene expression datasets

Dataset Training data Testing data Sample overlap

BRCA TCGA TCGA 539

Agilent 244K Illumina HiSeq

CRC TCGA TCGA 186

Agilent Illumina HiSeq

CRC KFSYSCC TCGA 0

Affymetrix HG133plus2 Illumina HiSeq

All data were derived from breast tissue samples (TCGA) analyzed by The

Cancer Genome Atlas (2012) or colorectal cancer samples (TCGA, KFSYSCC)

analyzed in Guinney et al. (2015).
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Fig. 1. Training dataset performance. Training dataset performance for

TCGA-BRCA (sensitivity and specificity for each subtype) across repeated

cross-fold validation for support vector machine, GLMnet and random forest

using unscaled (A–C) and scaled (D–F) microarray data. Bold lines indicate

mean value and error bars represent SEM
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varying degrees in the RNA-seq data as shown for multiple exam-

ple genes in Figure 2.

3.4 Performance of normalization techniques on

unscaled data
We normalized data using FSQN, QN, TDM and NPN using both

unscaled and scaled data to investigate how each normalization

technique impacts the global and local distributions of each feature.

Classification models were trained on DNA microarray data alone,

and normalized RNA-seq data was used to assign molecular subtype

labels and assess overall accuracy and robustness of normalization

methods.

In the unscaled data, there were statistical differences between

DNA microarray data and LOG2 data distributions (p¼2.2E–16,

K–S). For global distributions, all methods make visual improve-

ments in rendering the RNA-seq data to resemble that of the

DNA microarray data (Fig. 3A; Supplementary Fig. S3A). There

was no difference in distribution for DNA microarray compared to

RNA-seq data normalized with FSQN (p¼1, K–S) indicating

that normalization resulted in a nearly indistinguishable match

between distributions. However, statistically significant differences

remained in the distributions between DNA microarray and QN

(p¼7.1E–11, K–S), TDM (p¼2.2E–16, K–S) and NPN (p¼2.2E–

16, K–S) normalized datasets. Additionally, we see that each

normalization method produces widely ranging results for a single

gene (Fig. 3B; Supplementary Figs S3B and S4). Based on these

results, we find that FSQN is the only method that preserves

feature-level distribution information.

Next, we examined platform-related batch effects on DNA microar-

ray and pre-normalized RNA-seq data using principal components

analysis (PCA). In comparing untransformed RNA-seq data to DNA

microarray, PC1 clearly separates data based on the gene expression

profiling system used, and there is a statistically significant batch effect

(P<0.001, gPCA; Fig. 3G). We evaluated each normalization technique

in ability to remove platform-specific bias (Fig. 3D–F; Supplementary

Figs S3D–F). For QN (P<0.001, gPCA), TDM (P<0.001, gPCA) and

NPN (P<0.001, gPCA), normalization is insufficient for eliminating

platform-based bias. We find that FSQN successfully integrates the data

without significant platform bias (P¼1, gPCA).

We assigned subtypes to all samples in each normalized dataset

using the classifiers trained on unscaled DNA microarray data

(Fig. 3H–K, Supplementary Table S4). In both BRCA and CRC

datasets, the highest classification accuracies are attained with

FSQN and QN normalization methods. However, across datasets

and machine learning algorithms, FSQN is consistently the most

accurate. Although SVM is able to classify FSQN and QN data

equally well, there are substantial differences in the GLMnet and RF

models, indicating that it may be more important to use feature spe-

cific estimators, like FSQN, in contexts where classifiers use small

numbers of genes for classification. NPN, TDM and LOG2 perform

with very low accuracy, often barely surpassing the no-information

rate for each dataset (0.4286 for BRCA, 0.4677 for CRC).
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3.5 Performance of normalization techniques on

scaled data
The distributions for DNA microarray data and LOG2 RNA-seq

data were scaled [0, 1] and plotted (Fig. 4A; Supplementary Fig.

S5A). When comparing data distributions at the global level, statisti-

cal differences exist between DNA microarray data and LOG2

RNA-seq data (p¼2.2E–16, K–S). These differences persisted

despite QN (p¼7.82E–11, K–S), TDM (p¼2.2E–16, K–S) and

NPN (p¼2.2E–16, K–S) normalization. Again, there were no statis-

tically significant differences detected between DNA microarray and

FSQN normalized RNA-seq data (p¼1, K–S). These trends are con-

served at the feature level as distribution differences are evident for

several examples genes that are normalized using each method

(Fig. 4B; Supplementary Figs S5B and S6).

We then evaluated each normalization technique with regard

to its ability to remove platform-specific bias on scaled data

(Fig. 4C–G; Supplementary Figs S5C–G). For analyzing the exis-

tence of platform-related batch effects on DNA microarray and

pre-normalized RNA-seq data, we used gPCA based on the expres-

sion profiling system used. LOG2 (P<0.001, gPCA), QN

(P<0.001, gPCA), NPN (P<0.001, gPCA) and TDM (P<0.001,

gPCA) normalization methods are insufficient for eliminating

platform-based bias and this is evidenced by distinct clusters of

data corresponding to dataset. FSQN (Fig. 4C) is the only method

which shows no significant platform bias post-normalization

(P¼1, gPCA).

Finally, we assigned subtypes to all samples in each normalized

and scaled dataset using the classifiers trained using scaled DNA

microarray data (models described in Fig. 1D–E). The classification

results for scaled data classified using SVM, GLMnet and RF for

the BRCA and CRC datasets are summarized in Fig. 4I–K and

Supplementary Table S5. With scaled data, we see that all normal-

ization methods result in high classification accuracy. For both

BRCA and CRC datasets, high accuracy in classification (Fig. 4H

and J) and kappa (Fig. 4I and K) are reached in nearly every model.

The SVM classifies all datasets with high accuracy regardless of nor-

malization method. However, differences in overall classification

accuracy and kappa are evident in the GLMnet and RF models. For

the GLMnet model, FSQN and NPN are the most accurate, fol-

lowed by QN. For the RF model, FSQN and NPN are the most

accurate in the BRCA dataset, but in the CRC dataset, FSQN and

QN are the most accurate. Overall, FSQN is the most reliable nor-

malization method for accurate classification, regardless of dataset

or machine learning classifiers.

3.6 Considerations of sample size and matching
We performed a bootstrapping procedure to determine the mini-

mum sample size to reach maximum classification accuracy and to

evaluate the power of classification on possible composition change

of subtypes due to random selection and small sample size (Fig. 5).

For each sample size, we randomly selected samples from the RNA-

seq dataset, used each normalization method to normalize the values

using the full DNA microarray dataset as the target distribution,

and classified the samples to assess accuracy. In this way, we simu-

late comparing a small novel dataset, with varying distribution of

molecular subtypes, to a larger legacy dataset used for training the

original model while still maintaining gold standard classification

labels to assess accuracy. We find our bootstrap analyses largely

mimic the results shown in our earlier analysis: the best performan-

ces are reached with FSQN, QN and NPN. In unscaled analyses

(Fig. 5A), FSQN and QN result in the most accurate classifications.

In SVM, there is a slight increase in accuracy for FSQN at lower

sample sizes. For GLMnet and RF, FSQN is clearly superior to the

other normalization methods. In scaled analyses (Fig. 5B), FSQN,

NPN and LOG2 perform the best overall. For SVM, TDM quickly

gains power in classification accuracy with increasing samples sizes,

while FSQN and LOG2 remain consistently accurate. For GLMnet

and RF, FSQN, LOG2 and NPN perform very comparably. FSQN

displays a slight edge in performance at larger sample size in RF.

Importantly, FSQN is consistently in the top performing range

regardless of dataset, feature scaling or machine learning method.

To apply the methods outlined in our analysis, it is unlikely that

there will be matched samples with gene expression data from both

platforms. Thus, we further explore the utility of our method in

assigning colorectal subtype labels with machine learning classifiers

trained on a set of DNA microarray samples (KFSYSCC) and tested

on a set of RNA-seq samples from a different study (TCGA).

Importantly, there were no matched samples between the two data-

sets (Guinney et al., 2015) (Table 1). In this analysis, we find that

FSQN results in the overall highest and most consistent subtype clas-

sification accuracy and kappa when compared to QN, NPN, TDM

and LOG2 regardless of feature scaling and machine learning algo-

rithm (Supplementary Fig. S7). Additional information for this anal-

ysis is included in Supplementary Material.

In conclusion, we find that FSQN often reaches maximum classi-

fication accuracy and low standard error with sample sizes of n¼25

and that matched samples are not necessary to achieve accurate
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classification rates. Taken together, these results support FSQN as

the most robust normalization method in our analysis.

4 Discussion

This study introduces FSQN as a robust method of rendering RNA-

seq data comparable to DNA microarray data. We trained three

classifiers, which represent a spectrum of supervised machine learn-

ing classifiers, and have the ability to assign samples to molecular

subtypes using gene expression data. We then show that FSQN is a

simple and effective method of normalizing RNA-seq data to a tar-

get DNA microarray distribution. We achieve extremely high accu-

racy in classifying RNA-seq data that has been normalized using

FSQN with all classifiers regardless of feature scaling. SVM is the

most reliable classifier we tested and demonstrates strength in using

large compendia of data for classifying genome-wide expression.

In our analysis, feature scaling improves the results of classifica-

tion accuracy for every normalization method except for FSQN.

This is because FSQN capitalizes on the rigorous computational

processing of the original DNA microarray dataset by preserving

distribution information about the center and spread of each indi-

vidual gene. Furthermore, the results of this series of experiments

highlight an important nuance of our initial hypothesis; considering

data in terms of center and spread on a feature-specific level is cru-

cial to proper normalization, and in general, feature-specific estima-

tors may perform better. Ultimately, the simplicity of our

normalization method eliminates the need for explicit feature scal-

ing, which preserves biological interpretation and results in a highly

robust and reliable method.

We tested sample sizes which are appropriate for applying

FSQN as well as a scenario with no matched samples. Our study

shows that datasets with small sample numbers and datasets with

no matched samples both benefit from FSQN normalization, espe-

cially when comparing to a large target distribution that contains

the full spectrum of interest; in this case, all subtypes of breast inva-

sive carcinoma or colorectal cancer.

Although we have demonstrated strength in assigning subtypes

to normalized RNA-seq data using DNA microarray reference data,

several considerations should be taken into account. The distribu-

tion of the training dataset (in this case, DNA microarray data)

should be carefully considered when selecting data that will be used

to develop a supervised classifier and used as a target distribution

for normalization techniques. In cases where there are clinical cova-

riates associated with molecular subtypes, it is logical to limit the

target distribution to appropriate samples matched according to

those covariates, as described (Zhao et al., 2015). For example, a test

distribution consisting solely of estrogen receptor positive (ERþ) breast

cancer patients should use a target distribution that only includes

ERþpatients and excludes ER- patients and healthy controls. These

considerations will result in a more accurate target distribution for each

feature and likely will produce correct subtype classifications overall.

Molecular subtypes have proven to be an effective method of

grouping patients, especially in the context of complex diseases

which often exhibit heterogeneous phenotypes. In diseases such as

breast invasive carcinoma, intrinsic molecular subtypes have

improved many diagnostic and prognostic measures. Intrinsic

molecular subtypes have been implicated in many other diseases

including systemic sclerosis (Milano et al., 2008) and psoriasis

(Ainali et al., 2012). Especially for rare diseases, like systemic sclero-

sis, it is very important to utilize existing data compendia and vali-

dated subtypes for new analyses while embracing technology

advancements. With our newly developed approach, we can success-

fully leverage information from validated gene expression datasets

despite the different platforms used for gene expression profiling.

5 Conclusions

We have developed a cross-platform normalization method using

FSQN to improve comparability of DNA microarray and RNA-seq

datasets. We have shown that using datasets composed entirely of

legacy DNA microarray data can be effectively used for training

machine learning classifiers. Using FSQN for RNA-seq data ensures

that the testing data follow the same distribution as the training

data, even when inspected on a feature-specific level. This improved

comparability provides data distributions that do not violate

assumptions in statistical and machine learning methods and, over-

all, results in extremely accurate subtype assignments.

These methods are most relevant when investigators wish to lever-

age large compendia of validated data to analyze new studies.

Moreover, our method is widely applicable to any situation aiming to

render a novel dataset comparable to an existing and validated target

distribution that represents the underlying spectrum of interest.
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