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Abstract

This study examined the effects of bihemispheric and unihemispheric transcranial Direct Current 

Stimulation (tDCS) over the inferior frontal gyrus (IFG) on proactive control.

Sixteen participants were randomized to receive (i) bihemispheric tDCS, with a 35 cm2 anodal 

electrode of the right IFG and a 35 cm2 cathode electrode of left IFG or (ii) unihemispheric tDCS, 

with a 35 cm2 anodal electrode of the right IFG and a 100 cm2 electrode of the left IFG or (iii) 

sham tDCS, while performing a prepotent inhibition task. There were significant speed-accuracy 

tradeoff effects in terms of switch costs: unihemispheric tDCS significantly decreased the accuracy 

when compared to bihemispheric, and sham tDCS, while increased response time when comparing 

to bihemispheric and sham tDCS. The computational model showed a symmetrical field intensity 

for the bihemispheric tDCS montage, and an asymmetrical for the unihemispheric tDCS montage. 

This study confirms that unihemispheric tDCS over the rIFG has a significant impact on response 

inhibition. The lack of results of bihemispheric tDCS brings two important findings for this study: 

(i) left IFG seems to be also critically associated with inhibitory response control, and (ii) these 

results highlight the importance of considering the dual effects of tDCS when choosing the 

electrode montage.
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1. Introduction

The ability to inhibit response tendencies or stopping an ongoing response is a key element 

to understand adaptive goal direct behavior (Bari and Robbins, 2013). This ability is also 

crucial for cognitive flexibility, because in order to successfully change from one rule to 

another, one of the rules needs to be successfully inhibited. For instance, the role of the right 

inferior frontal gyrus (rIFG) and deficits in proactive control (i.e., anticipation of stopping 

based on contextual cues) has already been reported (van Rooij et al., 2014). Several 

neuroimaging studies have supported this association by suggesting that the right inferior 

frontal gyrus (IFG) has a key role on the mediation of response inhibition (Aron et al., 2004; 

Garavan et al., 2006; Garavan et al., 1999; Kelly et al., 2004). Furthermore, studies using 

anodal transcranial direct current stimulation (tDCS) to the right IFG were able to increase 

response inhibition in stop signal tasks (Cunillera et al., 2014; Ditye et al., 2012; Hogeveen 

et al., 2016; Jacobson et al., 2011; Stramaccia et al., 2015). However, it is still unclear 

whether IFG control on proactive control involved in response inhibition is truly a lateralized 

function (i.e., left IFG would have a minimal impact) or if it depends on the successful 

mediation between right and left IFG. One possibility to study this is by testing 

unihemispheric versus bihemispheric tDCS.

tDCS is a non-invasive method of brain stimulation that is able to induce polarity specific 

changes in the neural membrane potential and excitability (Nitsche and Paulus, 2000, 2001). 

Consequently, tDCS can be used as a tool to study the effects of increased neural 

engagement of a given circuit activated by a cognitive task. Computer modeling studies 

predict the resulting brain current flow for a given electrode placement (montage); and while 

the relationship between tDCS montage and resulting brain current flow is not trivial, it can 

be addressed with modeling (Peterchev et al., 2012). A concern in tDCS research is that its 

effects are not due to one electrode only but by the combination of effects between two 

electrodes (anode and cathode polarity) with potentially opposite characteristics. This has 

been the case with most of the studies exploring the effects of tDCS on response inhibition 

(Stramaccia et al., 2015).

Some studies have attempted to leverage the actions of both electrodes synergistically. 

Studies using bihemispheric (“lateralized”) montages are based on the assumption that by 

stimulating simultaneous homotopic regions (with an anode and a cathode), the inter-

hemispheric balance will shift towards the anode, thus potentially favoring the cognitive 

processing performed on that hemisphere (the one receiving anodal tDCS) (Jacobson et al., 

2012). Several studies targeting craving reduction have used bihemispheric tDCS montages 

successfully (Batista et al., 2015; Wietschorke et al., 2016; Yavari et al., 2016), a cognitive 

process that involves inhibitory control. But surprisingly there are no effects of these 
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bihemispheric montages on response inhibition in healthy participants (Dambacher et al., 

2015).

The evidence so far seems to suggest that the rIFG may be the main involved in response 

inhibition. Given this evidence, we hypothesized that anodal tDCS of rIFG would enhance 

response inhibition. We further wanted to test whether decreasing excitability in the left IFG 

would have a synergistic effect. Therefore, in this study we addressed this question by 

placing a 35 cm2 electrode over the right IFG, and using two electrode sizes over the left 

IFG, namely 35 cm2 (for bihemispheric tDCS) and 100 cm2 (for un-ihemispheric tDCS). 

The rationale behind these two types of montages is that with similar electrode sizes, the 

electrode current density between them identical producing neuromodulation (though with 

opposite polarity) under both electrodes. But when one electrode is larger than the other one, 

the current density will be smaller on the larger electrode, producing neuromodulation only 

under the smaller (Nitsche et al., 2007). This rationale was addressed with computational 

modeling. Behaviorally we then tested if the processing over the rIFG is segregated, 

increased activity of that region, with or without decreased left IFG activity will benefit right 

hemisphere processing, and thus will increase task performance.

2. Methods

2.1. Participants

A total of sixteen-college student volunteers (age: 21.5 ± 4.5, 11 females) naïve to tDCS 

participated in this study. All participants were right-handed (Edinburgh Handedness 

Inventory: EHI ≥ 80), healthy, with normal or corrected-to-normal visual acuity and without 

present or past history of neurological or psychiatric disorders. Participants were excluded if 

in the 4 weeks prior to the study they were using any medication or psychotropic drugs. 

Participants were advised to avoid alcohol, cigarettes and caffeinated drinks on the day of 

the experiment, and none reported fatigue due to insufficient sleep. All participants gave 

their written informed consent prior to their inclusion in the study and the study was 

performed in accordance with the Declaration of Helsinki.

2.2. Design

This experiment consisted of 3 sessions, with an intersession interval of at least 72 h. The 

experimental design of each session comprised 3 moments: 1) Pre-task assessment; 2) 

Prepotent Inhibition Task + tDCS; and 3) Post-task assessment. In the pre and post-task 

assessments participants were screened about possible levels of discomfort, fatigue, pain, 

itching, humor, tingling, burning, headache and sleepiness (among others) using a Visual 

Analogue Scale (VAS). The objective of this assessment was to evaluate possible secondary 

effects due to the stimulation. Participants performed the tasks after 3 min of tDCS. Task 

order was kept constant in order to minimize potential differences due to stimulation timing.

2.3. Main task

2.3.1. Prepotent response inhibition task—This task is a modification of the 

Preparing to Overcome Pre-potency task (Snitz et al., 2005). In this task participants were 

instructed to attend to a cue (a green or a red square) and then to respond to a target 
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presented in the center of the screen (an arrow pointing to the left or to the right; or upward 

and downward). If the cue presented on the screen was green, participants should respond 

left or right following the direction of the target − using the left or right index respectively. If 

the cue color was red, participants should instead respond in the opposite direction of the 

target presented on screen. This prepotent response inhibition task implies a cue-dependent 

rule change. However, instead of requiring a response stop, it requires that the participant 

performs an alternate response. The full experiment consisted of 120 trials, with 84 

prepotent response trials (i.e., answer left and right to arrows pointing to left and right, 

respectively), and 36 trials prepotent response inhibition trials (i.e., answer left and right to 

arrows pointing to right and left, respectively). The cues were presented for 500-msec and 

targets were presented for 3000-msec, with a jittered intertrial interval varying between 

1000, 1500, and 3000-msec. Before each cue, a fixation cross in the center of the screen was 

presented for 500-msec, directing participantís attention to the center of the screen (see Fig. 

1).

2.4. Control tasks

2.4.1. Choice Reaction Time (CRT)—In this task a target was presented in the center of 

the computer screen requiring participants to respond as fast as possible. There were a total 

of 64 trials. For each trial, a fixation cross appeared at the center of the computer screen for 

200, 400, 600, or 800 msec before each target. Participants were required to press the “X” 

key with their left index finger if a “*” appeared on the screen, and to press “N” key with the 

right index finger if “#” appeared on the screen. There was a 50% probability for each target 

to be presented on the screen. The duration of this task was approximately 2 min.

2.4.2. Go No-Go task—In this task, stimuli were presented in a continuous stream and 

participants were asked to press the “space” key on a computer keyboard when a letter was 

presented in the center of the computer screen (go trials), and withhold the response only 

when the letter “X” was presented (no go trials). The task consisted of a total of 148 trials, 

25 no go trials and 123 go trials. Each stimulus was presented for 500-msec, followed by a 

fixation cross with a duration of 1000 msec.

2.5. Transcranial direct current stimulation (tDCS)

tDCS was applied using 35/35 cm2 (bihemispheric tDCS) and 35/100 cm2 (uni hemispheric 

tDCS) saline-soaked electrode sponges, using an Eldith DC Stimulator Plus (Neuroconn, 

Germany). The experiment had a within-subject design, in which all participants were 

randomized to receive 3 tDCS conditions in a counterbalanced manner: 2 active 

(bihemispheric tDCS and uni-hemispheric tDCS) and one sham (with uni- or bihemispheric 

tDCS montage). The anode electrode was placed over the right inferior frontal gyrus (rIFG) 

and the cathode over the left inferior frontal gyrus (lIFG), using two rubber bands. There 

was at least 6 cm distance between the anode and the cathode. The IFG placement was 

determined based on the international 10–20 system as previously performed by Kim and 

colleagues (Kim et al., 2007). A 1 mA intensity DC was applied for about 30 min, during the 

entire duration of the task (with a 15-s ramp up and down) for the active condition, while for 

sham the duration was 15-s (with a 15-s ramp up and down).
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2.6. Computational model

An exemplary magnetic resonance imaging (MRI) scan of a template head was segmented 

by ScanIP software (Simpleware, Exeter, UK) into seven tissue masks namely scalp, fat, 

skull, CSF, gray matter, white matter, and air to develop a high resolution (1 mm) MRI 

derived finite element method (FEM) model. Conductivity value for each tissue mask was 

based on prior literature (Bikson et al., 2015). Electrodes for uni-hemisphere montage 

(35/100 cm2 scalp contact area) and bi-hemisphere montage (35/35 cm2 scalp contact area) 

positioned over IFG (Fig. 5A1 and B1) were first imported into the head model, and the 

resulting volumetric meshes were later imported into COMSOL Multiphysics 4.3 

(COMSOL Inc., MA, USA) to solve the model. The final FEM head assembly was solved 

for greater than 10,000,000° of freedom and had greater than 12,000,000 tetrahedral 

elements. For electrical stimulation, a quasistatic approximation was implemented and the 

boundary conditions were applied as normal current density (inward current flow: Jnorm) at 

the top exposed surface of anode (1 mA) and ground at the top surface of return electrode. 

Other remaining external surfaces of the model were electrically insulated. Electric field 

streamlines (seeded uniformly from the top surface of electrode and proportional to the 

logarithm of field intensity magnitude) were generated for each montage (A2, B2) to 

illustrate the distribution of field across different head tissues.

2.7. Data analysis

Switch costs index for Response time (RT) were calculatedsubtracting the mean RT of 

responses to prepotent cue responses from the mean RT of responses to non-prepotent ones. 

Switch costs for accuracy were calculated subtracting the accuracy from responses to 

prepotent cues from responses to non-prepotent ones. Therefore, higher values suggest 

worse performance, while values close to zero or negative suggest better performance.

We performed two one-way repeated measures ANOVAs with three levels (unihemispheric, 

bihemispheric, and sham tDCS) for switch cost accuracy and response time. We also 

performed two way repeated measures ANOVAs with condition (prepotent, non prepotent) 

and tDCS (unihemispheric, sham and bihemispheric tDCS) as factors for analyzing 

participants task performance.

In order to detect any discriminability differences during task performance we performed 

another one-way repeated measures ANOVA for dí (d-prime or signal detection). Dí was 

calculated by using the hit ratio from the nonprepotent condition, and the error ratio from the 

prepotent condition, as the later would be equivalent to a false positive for the non-prepotent 

condition, using the following formula:

d′ = z(Hits) − z(FalseAlarms) .

Moreover, all the control tasks were analyzed by the means of one-way repeated measures 

ANOVAs.
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3. Results

3.1. tDCS self-report side effects

No moderate or severe side effects were reported after tDCS.

3.2. Prepotent inhibition task

3.2.1. Task analysis—There were no significant effects of tDCS [F(2,30) = 1.661, 

p=0.217, ηp
2 =0.100, ε =0.547], nor significant interaction between tDCS and trial condition 

[F(2,30)=0.148, p=0.863, ηp
2 =0.010] for accuracy. But, as expected, there was a main effect 

of trial condition [F(1,15) = 7.003, p=0.018, ηp
2 =0.318], in which participants responded 

significantly with more accuracy to prepotent trials (M = 96.578, SE = 1.233) than to non-

prepotent ones (M = 94.154, SE = 1.471) (p=0.018) (Fig. 2).

Similarly, for response time, there were no significant effects of tDCS [F(2,30)=0.549, p = 

0.583, ηp
2 = 0.035,], nor significant interaction between tDCS and trial condition [F(2.30) = 

1.453, p = 0.250, ηp
2 = 0.088]. But, as expected, there was a main effect of trial condition 

[F(1,15) = 6.255, p = 0.024, ηp
2 = 0.294], in which participants responded significantly 

faster to prepotent trials (M = 629.342, SE = 30.010) than to non prepotent ones (M = 

657.580, SE = 32.488) (p = 0.024) (Fig. 2).

3.2.2. Switch cost accuracy—There were significant effects in terms of switch costs 

accuracy [F(2,30) = 5.284, p=0.007, ηp
2 = 0.280]. Post hoc pairwise LSD comparisons 

showed that unihemispheric tDCS (M = 0.754, SE = 0.827) significantly decreased the 

switch cost when compared to both bihemispheric tDCS (M = 2.779, SE = 0.742) (p = 

0.002) and sham tDCS (M = 1.885, SE = 0.903) (p = 0.035). Additional analysis revealed 

that this effect was not secondary to a change in response criterion [F(2,30) = 1.391, p = 

0.263, ηp
2 = 0.085, ε = 0.660] (Fig. 3).

3.2.3. Switch cost performance (response time)—There were significant effects in 

terms of switch cost for response times [F(2,30) = 4.737, p = 0.016, ηp
2 = 0.240]. Post hoc 

pairwise LSD comparisons showed that unihemispheric tDCS (M = 42.278, SE = 7.024) 

significantly increased the switch cost when comparing to both dual hemispheric (M = 

6.509, SE = 13.538) (p = 0.015) and sham tDCS (M = 20.212, SE = 10.220) (p = 0.042) (see 

Fig. 3).

3.3. Control tasks

There were no significant effects of tDCS on Choice Reaction Time [F(2,30) = 1.452, 

p=0.250, ηp
2 = 0.088], nor on proactive inhibition [F(2.30) = 1.170, p = 0.324, ηp

2 = 0.072], 

as measured by the response time in the go trials from the go/no go task. There were also no 

difference in terms of accuracy for the no go trials [F(2.28) = 0.095, p = 0.837, ηp
2 =0.007, ε 

= 0.686] (Fig. 4).

3.4. Computational model predicted field

The computational model predicted field intensity (Fig. 5 A3 and B3) and trajectories of 

current flow (Fig. 5A2 and B2) through gray matter. The results from these FEM simulations 
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were broadly consistent with the montage design intentions. A symmetrical field intensity 

was predicted for the dual-hemisphere tDCS montage (Fig. 5A3), whereas, field was 

asymmetrical (smaller field intensity/current density under large electrode compared to the 

small electrode) for the unihemisphere tDCS montage (Fig. 5B3).

4. Discussion

This study tested the effects of unihemispheric, bihemispheric, and sham tDCS over the right 

inferior frontal gyrus on inhibitory control, as assessed by the Prepotent Response Inhibition 

Task (PRIT). We hypothesized that if prepotent response inhibition is mostly associated with 

rIFG control then by decreasing excitability in the left IFG with tDCS (bihemispheric 

condition), inhibition would be larger.

Our results showed that unihemispheric tDCS increased accuracy, but at the cost of response 

speed when comparing to bihemispheric and sham tDCS in the PRIT. This task involves a 

response (left or right) to a cue pointing towards the same direction that subjects should 

respond. In approximately 20% of the trials, participants should inhibit the prepotent 

response elicited by the arrow cue, and respond to the opposite direction (non-prepotent 

response). Therefore, the successful completion of the task is dependent on the proactive 

inhibition of the non-prepotent response upon the cue presentation.

Only unihemispheric tDCS induced slowing of motor process in the presence of non-

prepotent stimuli (Aron et al., 2014) – which is thought to be a function of the rIFG. These 

effects of tDCS on response time do not seem to be due to an overall slowing process of 

responses, as shown by the lack of effects on the choice reaction time task.

SAT is a dynamic and inverse process that is often observed between accuracy and speed 

when performing a task. That is, increased response times can occur with a cost of reduced 

accuracy; or response speed is decreased in order to increase overall accuracy (Bogacz et al., 

2010). Despite several theories hypothesizing on how the SAT occurs, what is well known is 

that it is dependent on a cortico-basal ganglia-thalamic circuit (Bogacz et al., 2010). For 

instance, in a scenario with accuracy emphasis, the subthalamic nucleus receives increased 

input from frontal regions (Frank et al., 2007). Thus it is possible that unihemispheric tDCS 

was able to increase these outputs to subcortical regions, which in turn led to slower, but 

more accurate responses. These tDCS effects on accuracy but not response time have already 

been showed in the past (Bolognini et al., 2010; Carvalho et al., 2015; Fregni et al., 2005; 

Zaehle et al., 2011). Accuracy increase has been thought to represent a top down control 

mechanism. For instance, high per- formers in a paced tapping task relied more on top down 

control of motor and sensory regions and low performers on a bottom up approach (Witt and 

Stevens, 2013). Thus, polarity induced effects of tDCS may impact cognition/behavior 

through a top down mod- ulation instead of a bottom up (Morales-Quezada et al., 2016). 

Moreover, a study by Leite et al. (2013) using bihemispheric tDCS over the DLPFC showed 

that on complex versions of a task switching task, increased accuracy was associated with 

decreased response speed. Not surprisingly, the IFG is one of the areas involved in the 

cortico-subcortical network that is responsible for the SAT (Bogacz et al., 2010). It is 

possible that increased activity over the rIFG also increased the activity over the subthalamic 
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nucleous (STN), that subsequently led to slower, yet more accurate, responses (Aron et al., 

2007; Aron and Poldrack, 2006).

Given the results with unihemispheric tDCS, we would expect that by simultaneously 

decreasing excitability in the left IFG would make the effects larger or at least of the same 

magnitude. However, the results for bihemispheric tDCS had the opposite results to what we 

a priori predicted: when excitability diminishing cathodal tDCS of left IFG was combined 

with anodal tDCS to the rIFG, the results of anodal rIFG tDCS disappeared. These results 

suggest that left IFG is also critically associated with inhibitory cortical response. This is 

supported by evidence from human lesion studies, in which the left IFG was associated with 

impairments in inhibitory control during the performance of a go-no go task (Swick et al., 

2008). Moreover, Hampshire et al. (2010) showed that there was a bilateral activation over 

the IFG during a stop signal task. Moreover, no data to support the uniqueness or specialized 

role of the rIFG during response inhibition was found. And interestingly enough, an EEG 

study also suggested the functional relevance of left sided regions for the successful 

response inhibition and switching, which may suggest the role of the left hemisphere in 

action selection (Serrien et al., 2013). Our results also underscore the role of left IFG in 

response control. Left IFG has indeed been suggested to be involved in switching between 

stimulus categorizations (Philipp et al., 2013), which may be also recruited during the 

performance of the PRIT. One could argue that this deleterious effect of bihemispheric tDCS 

on task performance was due to decreased activity over the left IFG induced by the cathode. 

Although possible, a previous study using tDCS over the left DLPFC did not find any 

significant differences in switching between stimulus categorization after cathodal tDCS 

(Leite et al., 2011). Thus, it is also possible that this deleterious effect of bihemispheric 

tDCS cannot be explained by the influence of the cathode per se over the left IFG, but also 

due to differences of current distribution between uni vs. bihemispheric, as shown by the 

computer modeling (Fig. 5).

Nonetheless, the specific role of the IFG on response inhibition has been challenged 

recently. Using several fMRI tasks, Erika-Florence et al. (2014) did not find any specific 

activations in the IFG related to response inhibition, but instead suggested that response 

inhibition relies on several spatially distributed functional fronto-parietal networks related to 

specific cognitive demands (e.g., Erika-Florence et al., 2014). Additionally, a study 

comparing homotopic recruitment in young and elder subjects, showed that elder people 

recruited additional brain areas in order to meet task demands (Davis et al., 2012). Our study 

also highlighted that functional changes in the brain (induced for instance by aging) will be 

dependent on the existing neural structure, which may impact the recruitment within the 

brain network. Such changes are not only dependent on aging, but from a variety of factors, 

tDCS included. For instance, tDCS has already been shown to change resting state 

functional connectivity (Kunze et al., 2016; Mondino et al., 2016). Therefore, it may be 

possible that the combination of single or bihemispheric tDCS with task performance, 

induced very distinct network activations. This is certainly a possibility that could help 

explaining the present results, as on a previous study the polarity induced effects of 

bihemispheric tDCS over the dorsolateral PFC showed an interaction effect with the level of 

task difficulty, thus producing distinct behavioral effects (Leite et al., 2013). One potential 

limitation of the present study is that it cannot fully test the collaborative hypothesis between 
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homotopic regions– as it is possible that anodal tDCS delivered bilaterally to the homotopic 

IFG can increase prepotent response inhibition. Future studies should compare the effects of 

bilateral vs unilateral anodal tDCS over the IFG, also assessing its impact on the SAT. It is 

also important to explore alternative explanations: for instance, it is possible that variability 

during the bihemispheric condition led to the null result. However, it seems that 

bihemispheric tDCS actually led to a distinct effect from the one induced by unihemispheric 

tDCS: as it seems that speed increased at the cost of accuracy when compared to sham 

tDCS. So there is the possibility that with an increased sample size, bihemispheric tDCS 

would likely seem to increase speed, but at a cost of accuracy. Thus, future studies should 

explore this difference in order to assess if bihemispheric tDCS was able to actually induce 

this inverted SAT pattern.

Another important finding is the issue of uni vs. bihemispheric stimulation. Although we 

showed here that bihemispheric stimulation annuls the beneficial effect of unihemispheric 

stimulation; results may also be seen as both having a distintic signature: while 

unihemispheric leads the SAT towards the accuracy trade-off, bihemispheric may lead 

towards the opposite result (though here we donít have the statistical power to confirm this 

result). Regardless, one important recommendation can be derived from the present findings. 

When using tDCS in cognitive studies, it is important to understand the distinct effects of 

unihemispheric and bihemispheric tDCS as to find out which one is better. In fact, there are 

several studies exploring the potential benefits of bihemispheric stimulation. For instance, 

Meinzer et al. (2014) showed that both single and bihemispheric tDCS over the M1 region 

significantly improved word-retrieval. Moreover, bihemispheric tDCS when comparing to 

single hemispheric tDCS seems to activate a widespread network, with stronger bilateral 

activations when left or right hand were used during a fMRI finger tapping task (Linden-

berg et al., 2013). Additionally, bihemispheric montages have been used previously with 

several effects on decision making, craving reduction, and planning ability, among others 

(Batista et al., 2015; Fecteau et al., 2007; Leite et al., 2013; Loftus et al., 2015). Thus, it is 

important to understand the effects of the interaction between the task activated network, 

alongside with the effects of tDCS over that network. For instance, in order to perform a 

task, homotopic brain regions can collaborate, or operate independently (segregation) (Davis 

and Cabeza, 2015). In our study, shifting the balance towards the right hemisphere impaired 

the effects of tDCS over the right inferior frontal gyrus. Therefore, if one would want to 

disrupt response control, bihemispheric stimulation may be an appropriate montage.

It is also important to stress that the high definition FEM model is not intended to be used to 

predict the distribution of the electrical current with gyri-level precision (Bikson et al., 2012; 

Datta et al., 2009; Ruffini et al., 2014). Instead, the model is used to understand current 

distribution (Faria et al., 2011; Miranda et al., 2009; Miranda et al., 2006), namely a 

symmetrical field intensity was predicted for the dual-hemisphere tDCS montage, whereas, 

field prediction was asymmetrical (smaller field intensity/current density under large 

electrode compared to the small electrode) for the unihemisphere tDCS montage. These 

predictions are aligned with our initial hypothesis, and thus support the use of such 

montages to test the effects of dual vs uni-hemispheric tDCS.
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Finally, we did not find any inhibitory effects of tDCS over the IFG on the go/no go task. 

This suggests that the effects of unihemispheric tDCS on proactive control were task 

specific. This specificity of tDCS has been shown extensively in the literature, and is thought 

to be dependent on the activated network, the extension of its activation, its resting state, or 

the level of cognitive demands (Carvalho et al., 2015; Ehlis et al., 2016; Gill et al., 2015; 

Hsu et al., 2016).

In sum, this study shows that the effects of unihemispheric tDCS of the right inferior frontal 

gyrus resemble a pattern of speed accuracy tradeoff (SAT), in which increased task 

performance accuracy is associated with decreased response speed. As the results 

disappeared when right IFG was combined with left cathodal IFG tDCS, it is possible that 

the left IFG is also a critical area in the control of response inhibition and needs to be further 

considered in the network controlling this behavior.
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Fig. 1. 
Schematic representation of the Prepotent Inhibition Task.
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Fig. 2. 
Accuracy (A1) and Response time (A2) for each tDCS condition (Unihemispheric, Sham 

and Bihemispheric) and the overall for the prepotent and nonprepotent trials (P value < 

0.05).
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Fig. 3. 
Switch costs accuracy (A1), discriminability index (A2), and response time (RT) costs (A3) 

(*P value < 0.001, ** P value < 0.05).
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Fig. 4. 
Control tasks used in this experiment: Response time for the choice reaction time task (A1), 

response time for the go-trials (A2) and accuracy for no-go trials (A3) for the go-no go task.
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Fig. 5. 
Computational finite element method(FEM) head models and a predicted field intensity of 

bi-hemisphere and uni-hemisphere tDCS montages. (A1, B1) 3D image of a segmented 

brain generated from an MRI scan of a healthy adult and different views (F, L, R) of 

electrode placement over the inferior frontal gyrus (IFG). (A2, B2) represent an orientation 

of magnitude controlled electric field streamlines inside the head tissue layers during tDCS. 

(A3, B3) Illustration of predicted field intensity and different views of brain under both 

stimulation conditions. Predicted results plotted at same color range (Peak = 0.3 V/m) 

indicated less field intensity under large electrode for unihemisphere tDCS, whereas for 

dual-hemisphere tDCS, field intensity was comparable under both anode and cathode.
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