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Abstract

The aging population and those with amnestic mild cognitive impairment (aMCI) are at increased 

risk for developing Alzheimer’s disease (AD). Individuals with aMCI in particular may display 

pathological changes in brain function that may ultimately result in a diagnosis of AD. This review 

focuses specifically on hippocampal hyperexcitability, a pathology that is sometimes detectable 

years before diagnosis, which has been observed in individuals with aMCI. We describe how 

changes in hippocampal activity are associated with, or in some cases may be permissive for, the 

development of AD. Finally, we describe how lifestyle changes, including exercise and dietary 

changes can attenuate cognitive decline and hippocampal hyperexcitability, potentially reducing 

the risk of developing AD.

Introduction

With the increase in life expectancy, the prevalence of age-related impairments in cognitive 

ability and memory has increased and is expected to increase even more in the next 20 years. 

While a minority of aged individuals will maintain peak cognitive performance during 

senescence (Rowe & Kahn, 1987), characterized by low probability of disease, high 

cognitive and physical functional capacity, and active life engagement (Rowe & Kahn, 

1997), many individuals in their 7th and 8th decades will display detrimental changes in 

memory. A deterioration in episodic memory (memory of autobiographical events), in some 

cases detectable as early as middle-age (Small, Stern, Tang, & Mayeux, 1999; Verhaeghen, 

Vandenbroucke, & Dierckx, 1998), may be indicative of the likelihood to develop mild 

cognitive impairment (MCI) and the debilitating and progressive neurodegenerative 

condition, Alzheimer’s disease (AD) (Small, Dixon, & McArdle, 2011).

Generally, MCI consists of several characteristics that set this diagnosis apart from AD, 

leading some researchers to categorize the two disorders as completely separate entities 

(Albert et al., 2011). Those with amnestic MCI (aMCI) in particular, which is specifically 

characterized by memory loss, will often exhibit impairment of episodic memory in the 

absence of beta-amyloid (Aβ) plaques, tau tangles, and neuronal loss, all of which are 

hallmark characteristics observed in patients with AD (Albert et al., 2011). However, 
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because of the considerably accelerated rate at which these individuals progress to AD 

compared to healthy age-matched individuals, aMCI has frequently been viewed as the 

prodromal stage of Alzheimer’s disease (Mauri, Sinforiani, Zucchella, Cuzzoni, & Bono, 

2012). Cognitive tests assessing episodic memory are useful to both determine the extent of 

memory impairment in these patients and to identify individuals who are most likely to 

develop AD (Albert et al., 2011; Petersen, 2004). Interestingly, in the years preceding AD 

diagnosis, individuals with aMCI often exhibit excess activation (hyperexcitability) in brain 

regions responsible for memory, including the hippocampus. This excess activation is often 

measured using high-resolution fMRI scan while the individual performs a memory task and 

is correlated to the degree of memory impairment in diagnostic tests for presence of aMCI 

and later the likelihood to develop AD (Bakker et al., 2012). However, it is important to note 

that excess hippocampal activation cannot yet be considered a biomarker of AD 

development. Nevertheless, understanding the relationship between the hippocampal 

hyperactivity exhibited in individuals diagnosed with aMCI and the correlation to 

development of AD is crucial. In this section, we highlight how age-related changes in the 

hippocampus can result in hyperexcitability leading to cognitive impairment and the 

potential development of AD.

Hippocampal Hyperexcitability

As individuals age, prominent deficits in spatial learning, working memory, and episodic 

memory can be observed (Gallagher & Rapp, 1997). These specific types of memory-related 

deficits have a common neurobiological source, the hippocampus (Wilson, Gallagher, 

Eichenbaum, & Tanila, 2006). In the years prior to AD diagnosis, a hyperactivity or excess 

activation of the memory network, comprised of the hippocampus, medial temporal lobe, 

and several cortical regions, is detectable (Sperling et al., 2010). Hippocampal hyperactivity 

has been observed in numerous studies examining individuals at genetic or familial risk of 

AD (Bondi, Houston, Eyler, & Brown, 2005; Quiroz et al., 2010), as well as asymptomatic 

and minimally impaired older individuals with Aβ deposition (Sperling et al., 2010). In 

longitudinal studies, the degree of hippocampal overactivation correlates with declines in 

memory (Bookheimer et al., 2000).

For many years, this hyperactivity was thought to be a compensatory response for 

deteriorating neuronal circuitry such that greater cognitive effort was needed to achieve 

comparable (or less than comparable) performance (Bondi et al., 2005), but more recent 

evidence suggests hyperactivity of the memory network may signify neuronal excitotoxicity, 

a pathological process in which neurons are killed due to overactivation, and could be 

permissive for the development of AD, making it a potential therapeutic target. With age-

associated memory deficits, as seen in aMCI, the hippocampal neurons are usually intact 

with little to no detectable neuron loss (Geinisman et al., 2004; Rapp & Gallagher, 1996). 

Rather, there are age-related alterations in the functional connections of the cell groups that 

comprise the hippocampus, and these changes may be permissive for the development of 

AD.

The hippocampus is comprised of three distinct subregions, the dentate gyrus (DG), cornu 

ammonis 3 (CA3), and cornu ammonis 1 (CA1). Flow from layer 2 of the entorhinal cortex 
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enters the DG through what is termed the perforant pathway, which projects to the CA3 

through the mossy fiber pathway. Neurons in the CA3 then connect to the CA1 via the 

schaffer-collateral pathway. Each of these subregions has specific characteristics that 

distinguish them from one another. With increasing age, hyperxcitability exhibited in these 

subregions will affect learning and memory in different ways (Ji & Maren, 2008).

Loss in synaptic strength in the DG is observed in both aMCI patients and aged animals with 

memory impairment. Aged rats exhibiting memory deficits have approximately a fourth to a 

third fewer synaptic connections from the entorhinal cortex (EC) to the DG along the 

perforant pathway (Geinisman, deToledo-Morrell, Morrell, Persina, & Rossi, 1992; Smith, 

Adams, Gallagher, Morrison, & Rapp, 2000). The greater the loss of these synaptic 

connections, the more severe the memory deficits observed (Smith et al., 2000). Though the 

loss of inputs from the EC is associated with less excitation in the DG of aged rats exhibiting 

memory impairments (Barnes & McNaughton, 1980), the individual synapses are actually 

more powerful due to an increase in quantal size, defined as the synaptic response to the 

release of a neurotransmitter from a single vesicle (Foster, Barnes, Rao, & McNaughton, 

1991). Patients with aMCI also have fewer synapses in the DG compared to age-matched 

controls without memory impairments (Scheff, Price, Schmitt, & Mufson, 2006). 

Furthermore, older individuals with memory impairment exhibit atrophy of the perforant 

pathway that connects the EC to the DG (Kalus et al., 2006).

Conversely, the firing rates of CA3 cells are actually increased in aged, memory-impaired 

rats (Wilson, Ikonen, Gallagher, Eichenbaum, & Tanila, 2005). This hyperexcitability of the 

CA3 may be due to the diminished input from the EC to the CA3 (Barnes & McNaughton, 

1980; Geinisman et al., 1992; Smith et al., 2000), without a commiserate loss of the 

excitatory recurrent synapses in the CA3 (Rapp & Gallagher, 1996; Rapp, Stack, & 

Gallagher, 1999; Rapp, Stack., & Gallagher, 1999; Smith et al., 2000). Findings of age-

related CA3 hyperexcitability are not limited to rodents. Studies utilizing fMRI technology 

showcase a greater hippocampal activation, as indicated by increased blood-oxygen level 

dependent (BOLD) activation along the DG-CA3 pathway in aged individuals with poor 

memory performance, as well as aMCI patients (Dickerson et al., 2004; Sperling, 2007), and 

this activation is predictive of both the degree and rate of conversion to AD (Miller, 

Fenstermacher, Bates, Blacker, Sperling, Dickerson, 2008).

The last region discussed, the CA1, is perhaps the most studied of all the hippocampal 

subregions in rodents. CA1-related memory deficits observed in aged, memory-impaired rats 

are not associated with a loss of synapses from the CA3 or EC inputs (Geinisman et al., 

2004; Smith et al., 2000), but rather are believed to result from an increase in the number of 

silent synapses (or synapses without excitatory glutamatergic AMPA receptors) and calcium 

channels, which result in long lasting excitation signals. (Nicholson, Yoshida, Berry, 

Gallagher, & Geinisman, 2004; Thibault & Landfield, 1996). The latter is thought to explain 

why CA1 neurons are highly sensitive to excitotoxicity and more susceptible to loss in AD 

(West, Kawas, Martin, & Troncoso, 2000). Though the alterations described are relatively 

subtle compared to the robust alterations in neuronal functioning observed in AD, these 

changes in neural network activity may serve not only as a future biomarker for AD but also 
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could be permissive for the development of AD, by propagating pathologies exhibited 

during the disease progression.

Animal studies demonstrate that increases in neural activity increase processing of the 

amyloid precursor protein (APP), leading to an increased production of Aβ, a hallmark of 

AD (Kamenetz et al., 2003). Thus, the age-related increase in CA3 activity observed in 

aged, memory-impaired rats and aMCI patients (Bakker et al., 2012; Yassa et al., 2010) 

could increase Aβ production and deposition, eventually leading to the formation of Aβ 
plaques. Additional support comes from mouse models of AD in which Aβ plaques are 

found specifically within the vicinity of hyperactive neurons (Busche et al., 2008). The role 

of hyperactivity in mediating Aβ levels has recently been confirmed in studies using 

chemogenetic modulation of neural activity to either decrease or increase neuronal activity, 

leading to markedly decreased or increased Aβ aggregation and deposition, respectively 

(Yuan & Grutzendler, 2016). Furthermore, circumstantial evidence from patients with 

temporal lobe epilepsy exhibiting elevated neuronal activity show that amyloid plaques 

develop as early as 30 years of age (Mackenzie & Miller, 1994), suggesting the increased 

activity resulting from epilepsy may drive Aβ production and deposition.

The effect of hyperactivity is not limited to Aβ. Tau propagation and pathology, the second 

hallmark of AD, is also enhanced by neural activity (Wu et al., 2016). Increased neuronal 

activity promotes trans-synaptic spread of tau pathology, in which tau can be released into 

the extracellular space independently of cell death (Chai, Dage, & Citron, 2012) and 

compromise the functionality of tau within a neighboring, healthy neuron, thereby inducing 

further tau aggregation (Clavaguera et al., 2009). In addition, in tau −/− mice, an animal 

model in which tau has been genetically removed, seizure susceptibility and cognitive 

impairment are attenuated, suggesting that the relationship between tau pathology and 

hyperactivity is likely cyclical. Indeed, in mouse and Drosopholia genetic models of 

epilepsy, characterized by excess neuronal activation, tau removal dampens the 

hyperexcitability observed by reducing seizure-related mortalities (Holth et al., 2013). Thus, 

reduction in tau levels and hyperexcitability represent viable therapeutic targets for AD 

currently being pursued (Himmelstein, Ward, Lancia, Patterson, & Binder, 2012; Holth et 

al., 2013).

The network dysfunction observed in those at risk for AD may also explain the prevalence 

of epilepsy in AD patients. For example, increased incidence of seizures is highest among 

those with early onset dementia, remaining increased compared to the general population as 

these individuals progress to severe dementia (Cloyd et al., 2006). Pharmaceuticals that 

attenuate this excess activation, such as the anti-epileptic drug levetiracetem, can dose-

dependently improve memory in aged rats (Koh, Haberman, Foti, McCown, & Gallagher, 

2010) and reduce both hippocampal hyperactivity and memory impairments in patients with 

aMCI, as indicated by decreased BOLD activation (Bakker et al., 2012). Together, these 

studies suggest increased hippocampal activation is not merely a compensatory response but 

a dysfunctional condition, and a condition that may be permissive for the development of 

AD. Below, we discuss lifestyle changes that may attenuate this hippocampal 

hyperexcitability, thereby reducing the risk of developing AD.
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Lifestyle Factors that Influence the Risk for Alzheimer’s Disease

With aging comes a normal decline in cognition as well as increased susceptibility to 

developing fatal diseases, such as AD. While the cause of age-related decline may be self-

evident (decrease in brain volume, slowing of neurogenesis, loss of synapses, etc.), the 

mechanisms underlying AD are more complex and may result from numerous machinations 

that are not well understood. However, because these age-related changes in brain function 

are so detrimental, and in some cases deadly, much research has focused on potential 

preventative measures that can be taken in order to slow the progression from excess 

neuronal activation to cognitive decline or to prevent development altogether. These 

measures include, but are not limited to exercise and dietary changes. Below we summarize 

the ways in which changes in exercise habits and dietary choices may prevent or slow 

cognitive decline through a common mechanism, an increase in brain derived neurotrophic 

factor (BDNF), a protein responsible for maintaining neuronal growth and survival.

Exercise

Aerobic exercise has many benefits for the aging population, including improved 

performance on cognitively demanding tasks, as well as reduced risk of neurodegenerative 

conditions, such as Alzheimer’s and Parkinson’s disease (Kalaria et al., 2008). The 

mechanisms by which exercise can serve as a cognitive enhancer have been of interest in the 

literature. Exercise training aids in the growth of neurons in aged rodents exposed to 

voluntary wheel running, an effect associated with an increase in BDNF levels (Littlefield, 

Setti, Priester, & Kohman, 2015). Additionally, BDNF may play a major role in the 

reduction of hyperexcitability potentially by preventing glutamate release from the 

presynaptic neuron, while selectively enhancing the firing of postsynaptic glutamate 

receptors, which promote learning and memory (Kang & Schuman, 1995). Reduction of this 

neuronal activity is also important for the prevention of seizures, which are more prevalent 

in AD patients compared to age-matched individuals without memory deficits (Cloyd, et al., 

2006). While exercise can also protect against seizure susceptibility (Epps et al., 2013), the 

mechanisms are unclear. However, there is evidence to suggest that galanin, a peptide 

involved in a variety of physiological and behavioral functions, acts as an anticonvulsant 

after aerobic exercise. Rats that undergo chronic wheel running exhibit increased latency to 

induced motor seizures, which is associated with an increase in galanin mRNA (Epps et al., 

2013). Reducing seizure susceptibility through exercise is important, even if seizures are 

eventually found to be an epiphenomenon rather than directly linked to pathogenesis of AD, 

because cognitive deterioration is greater after seizure onset (Yamaguchi et al., 1997).

Diet

In addition to exercise, dietary changes, including consumption of omega-3 fatty acids and 

caloric restriction (CR), are also associated with reduced hippocampal hyperactivity, 

increased brain volume, and improvement cognitive performance on spatial memory tasks 

(Bauer et al., 2014). Omega-3 fatty acids, which are important for maintaining cell 

membranes and normal brain function, and curcumin, an anti-inflammatory molecule, 

elevate levels of molecules important for synaptic plasticity, including BDNF (Gomez-

Pinilla, 2011). Additionally, diets of oil rich fish and certain nuts and seeds, which contain 

Setti et al. Page 5

Transl Issues Psychol Sci. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high levels of the beneficial omega-3 polyunsaturated fatty acid, docosahexaenoic acid 

(DHA), can elevate levels of BDNF and enhance cognitive function in rodents (Wu, Ying, & 

Gomez-Pinilla, 2004).

Caloric restriction, or reducing the amount of calories consumed, enhances synaptic 

plasticity by increasing BDNF levels (Lee, Seroogy, & Mattson, 2002). CR can also reduce 

hippocampal damage after seizure (Duan et al., 2001), attenuate AD-related pathology and 

behavioral deficits in AD mouse models (Lu et al., 2016), and improve memory in the 

elderly (Mogi et al., 1994; Witte, Fobker, Gellner, Knecht, & Floel, 2009). These results 

suggest that BDNF signaling pathways can be neuroprotective, potentially by reducing 

neuronal hyperactivity. Other dietary changes, such as the ketogenic diet, can also be 

protective against cognitive decline in aging. For example, a ketogenic diet, consisting of 

high fat and low carbohydrate content, can protect against seizures by reducing neuronal 

excitability (Likhodii et al., 2003; Neal et al., 2009) and is sometimes prescribed by a 

physician for individuals with epilepsy. This protective effect may be due to the release of 

ketone bodies, water-soluble molecules produced by the liver that result from a low 

carbohydrate intake or fasting. Ketone bodies may protect against excessive neuronal 

excitability, as seen in seizures, by blocking the release of glutamate into the extracellular 

space (Juge et al., 2010). This is important because increases in extracellular glutamate are 

associated with memory impairment in rodents (Hunsberger, et al., 2015) and has been 

linked to aging (Stephens et al., 2014) and AD (Butterfield & Pocernich, 2003).

Conclusions

Though there are many risk factors for AD, hyperexcitability is one that occurs early in the 

disease process and in some cases is detectable in patients with aMCI. Additionally, 

hyperactivity of the hippocampal network may be predictive of AD diagnosis and the rate of 

decline (Miller et al., 2008). While there is potential for hyperexcitability to serve as a future 

biomarker for AD, there is still a need for additional clinical studies to examine the 

progression and connections of this excess firing to AD development. In addition, future 

directions of basic research should aim to better understand the mechanisms underlying the 

lifestyle changes that reduce hyperexcitability. In this review, we discuss studies that have 

examined possible ways in which lifestyle changes such as diet and physical activity can 

protect against hippocampal hyperactivity. Specifically, aerobic exercise and diet 

modification reduce the risk for hyperexcitability potentially by 1) preventing the release of 

glutamate from presynaptic neurons, 2) increasing galanin, which is protective against 

seizures, 3) balancing BDNF levels, which in turn promotes cell growth, and 4) increasing 

levels of ketone bodies, which block the release of glutamate. As a decline in glutamate 

transporters and thereby increased extracellular glutamate may be permissive for cognitive 

decline and the spread of AD-related pathology, interventions aimed at reducing or 

preventing these changes could promote healthy cognitive aging. Additionally, promotion of 

cellular growth via increased levels of BDNF is protective against neuronal loss, one of the 

key hallmarks of AD. In summary, implementation of dietary changes and an aerobic 

exercise regimen are two attainable lifestyle changes that may prevent or delay the 

progression from healthy aging to aMCI and AD.
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Public significance statement

Every 66 seconds someone in the United States is diagnosed with Alzheimer’s disease 

and aging represents the greatest risk factor as 5.2 million people with the disease are 65 

and older. Because of the lack of disease-modifying therapeutics available, it is important 

to educate the aging public about possible lifestyle changes that can reduce the risk for 

AD. Importantly, prior to late stage pathology (i.e. neuronal loss), individuals at risk for 

AD often exhibit excess firing, or hyperexcitability, in the hippocampal memory circuit. 

This excess firing could provide a therapeutic target for early intervention. This review 

aims to summarize the beneficial effects of exercise and diet on the aging brain and 

hyperexcitability, in animal models and humans.
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