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Abstract

The use of first- and second-generation tyrosine kinase inhibitors (TKIs) significantly improves 

prognosis for patients with early chronic phase chronic myeloid leukemia (CML) and efficiently 

counteracts leukemia in most patients with CML bearing a disease characterized by the expression 

of BCR–ABL1 mutants. However, the so-called ‘tinib’ TKIs (e.g. imatinib, nilotinib, dasatinib, 

and bosutinib) are both ineffective in patients who undergo blastic transformation and unable to 

eradicate CML at the stem cell level. This raises a few important questions. Is BCR–ABL1 
expression and/or activity essential for blastic transformation? Is blastic transformation the result 

of genetic or epigenetic events that occur at the stem cell level which only become apparent in the 

granulocyte-macrophage progenitor (GMP) cell pool, or does it arise directly at the GMP level? 

As altered mRNA metabolism contributes to the phenotype of blast crisis CML progenitors 

(decreased translation of tumor suppressor genes and transcription factors essential for terminal 

differentiation and increased translation of anti-apoptotic genes), one attractive concept is to 

restore levels of these essential molecules to their normal levels. In this review, we discuss the 

mechanisms by which mRNA processing, translation, and degradation are deregulated in BCR–

ABL1 myeloid blast crisis CML progenitors, and present encouraging results from studies with 

pharmacologic inhibitors which support their inclusion in the clinic.
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Introduction

Chronic myeloid leukemia (CML) is a disease that, without treatment, progresses from the 

indolent chronic phase (CML-CP), to an accelerated phase (CML-AP), and then a rapidly 

fatal blast crisis (CML-BC). The chronic phase of the disease is characterized by the 

accumulation of myeloid precursors in peripheral blood, bone marrow, and extramedullary 

sites that display enhanced survival and reduced susceptibility to drug-induced apoptosis 

while retaining the ability to terminally differentiate. CML-BC, which now occurs mostly in 
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patients with CML-CP refractory to tyrosine kinase inhibitor (TKI)-based therapies or with 

non-manageable TKI resistance, is characterized by a marked increase in myeloid (M-BC) 

or lymphoid (L-BC) progenitors in the aforementioned tissues that demonstrate enhanced 

proliferation and self-renewal capability, increased survival and genomic instability, and, 

unlike CML-CP, differentiation arrest [1,2].

The hallmark of the disease is the presence of the Philadelphia chromosome (Ph1), which 

results from the reciprocal translocation of the breakpoint cluster region (BCR) gene on 

chromosome 22 and the c-ABL gene on chromosome 9, t(9;22)(q34:q11). In hematopoietic 

progenitors, BCR–ABL1 functions as a constitutively active tyrosine kinase that has been 

shown to activate numerous pathways both in vitro and in vivo, including Ras/mitogen 

activated protein kinase (MAPK) [3], phosphatidylinositol 3-kinase (PI3K)/Akt [4], and 

signal transducer and activator of transcription (STAT) [5–7] pathways. In CML-CP, 

presence of the Ph1 chromosome is, to date, the sole cytogenetic alteration [1], although it is 

plausible that BCR–ABL1-induced genomic instability is likely to induce a milieu of 

important mutations also in CML-CP [8,9], which ultimately may determine the time of 

emergence of a cell clone undergoing progression. Indeed, additional molecular and 

chromosomal abnormalities are often detected in CML-BC. For example, secondary genetic 

lesions found in patients in M-BC include mutations leading to inactivation of the p53 tumor 

suppressor (12–30%) [1,10], and enhanced transcription of target genes resulting from the 

GATA2 L359V single-nucleotide polymorphism (SNP) or point mutation (10%) [11]. In rare 

cases of CML-BC, mutation of the Ras oncogene has led to its constitutive activity [1]. In L-

BC, mutation of the p16/ARF gene, which helps stabilize p53 by sequestering MDM2, is 

found in 50–60% of patients [1]. Additional mutations/deletions identified in L-BC include 

deletion of the tumor suppressor Rb (18%) [1], and amplification of IKZF1 (70%) [12]. 

Interestingly, the absence of a secondary mutation common to all patients diagnosed with 

M-BC suggests that there are likely one or more unidentified molecular mechanisms leading 

to disease progression [8]. One attractive hypothesis is that increased levels of BCR–ABL1 

activity are responsible for this transition. This notion is supported by the increased BCR–

ABL1 expression/activity in CD34+ common myeloid progenitors (CMPs) and granulocyte-

macrophage progenitors (GMPs) from patients in M-BC [13–20]. The increased BCR–

ABL1 activity leads to genetic instability [21], which causes secondary genetic 

abnormalities that, in many cases, inactivate tumor suppressor genes [1]. This hypothesis is 

supported by the enhanced survival and persistence of Ph+ CD34+ progenitors in TKI-

treated patients in M-BC.

The employment of imatinib mesylate (IM) as first-line therapy has greatly improved the 

prognosis for patients diagnosed in CML-CP; however; its ineffectiveness in patients in 

CML-BC and those with Ph+ B-cell acute lymphoblastic leukemia (B-ALL) [22–24] has led 

to the introduction of second-generation tyrosine kinase inhibitors (e.g. dasatinib, nilotinib, 

and bosutinib) in combination with conventional chemotherapy as first-line treatment for 

CML-BC. While these compounds have shown promise, they are by no means a curative 

therapy as not all patients show long-term response, and relapse within 18 months. Thus, 

additional molecular targets for CML-BC therapy downstream of BCR–ABL1 need to be 

identified.
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As altered mRNA metabolism seems to play a pivotal role in CML-BC, in that the 

processing, export, translation, and degradation of specific mRNAs regulating proliferation, 

survival, and differentiation of myeloid progenitors are aberrantly regulated by increased 

BCR–ABL1 expression and activity, restoring mRNA metabolism to basal levels within 

these cells is an attractive concept. In this review, we describe the mechanisms by which 

mRNA metabolism is deregulated in BCR–ABL1 cells, and present results from studies 

employing pharmacologic agents impairing them, thereby supporting their inclusion in blast 

crisis CML therapy.

Altered mRNA processing in chronic myeloid leukemia

Several mRNA species, including BCR–ABL1 [25,26], have been shown to be alternatively 

spliced in Ph+ leukemias. In Ph+ B-ALL, expression of BCR–ABL1 leads to the absence of 

IKAROS, a transcription factor required for early lymphoid lineage commitment, resulting 

from the BCR–ABL1-induced dominant-negative splice variant of IKAROS, termed IK6. As 

a consequence of defective IKAROS signaling, these cells express myeloid lineage-specific 

molecules [27]. Inhibition of IK6 in BCR–ABL1 cell lines by RNA interference partially 

restores B-lymphoid lineage commitment [27]. Another species that has been found to be 

alternatively spliced in CML, in this instance leading to increased levels, is the β1-integrin-

responsive non-receptor tyrosine kinase PYK2 [28]. It remains to be determined whether 

altered splicing of PYK2 contributes to CML leukemogenesis, but it is reasonable to suspect 

its involvement, as β1-integrin signaling is important for maintenance, proliferation, and 

differentiation of hematopoietic stem cells and is increased in BCR–ABL1 cells [28–32]. 

Additionally, glycogen synthase kinase 3β (GSK3β) has also been shown to be alternatively 

spliced in GMP cells isolated from patients in CML-BC [33]. Sequencing of cDNA from 

GMPs revealed an in-frame splice deletion of the GSK3β kinase domain. This misspliced 

gsk3b results in increased β-catenin expression, a protein shown to be essential for the 

acquisition of self-renewal of CML-BC GMPs [34]. Reintroduction of full-length GSK3β 
mRNA reduced both in vitro replating and in vivo leukemic engraftment, thereby limiting 

the self-renewal ability of the CML-BC leukemia-initiating GMP cells [33]. Altogether, 

these studies indicate that BCR–ABL1 expression affects pre-mRNA splicing, leading to 

deregulated expression of genes contributing to the CML-BC phenotype, and provide 

additional mechanisms (e.g. β-catenin inhibitors) for therapeutic intervention.

Altered mRNA translation in chronic myeloid leukemia

Increased mammalian target of rapamycin signaling in CML

The study of Ras and PI3K/Akt pathways, two pathways that have been shown to be 

essential for transformation in CML [35–37], revealed that BCR–ABL1 expression, through 

PI3K/Akt, results in activation of the mammalian target of rampamycin (mTOR) [38–40]. In 

addition, independent of PI3K/Akt, a pathway involving phospholipase Cγ1 was also shown 

to activate mTOR in BCR–ABL1-expressing cell lines and CML mononuclear cells (MNCs) 

[41]. mTOR is a serine–threonine kinase that functions as two complexes, TORC1 (target of 

rapamycin complex-1) and TORC2 (target of rapamycin complex-2) [4], which regulate cell 

growth and proliferation in response to growth factors [43]. Targets of mTOR include the 
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40S ribosomal protein p70S6-kinase, which promotes translation of specific mRNA through 

its phosphor-ylation of S6, and the eukaryotic initiation factor 4E-binding protein-1 (4E-

BP1), a negative repressor of mRNA translation [43–45]. Phosphorylation of S6 leads to its 

activation, while phosphorylation of 4E-BP1 results in its inactivation, as it no longer binds 

eukaryotic initiation factor 4E (eIF4E), allowing formation of the eIF4F complex which 

performs 5′-cap-dependent translation [46]. In fact, over-expression and phosphorylation of 

eIF4E is essential for β-catenin activation in CML-BC [47]. Imatinib treatment of BCR–

ABL1-expressing cell lines and primary cells from patients with CML (CP and BC) 

indicates that S6 and 4E-BP1 are phosphorylated, in part, in a BCR–ABL1 kinase-dependent 

manner [38,41,48]. Treatment of IM-sensitive and -resistant CML cell lines, as well as 

primary CML (CP and BC) progenitors, with mTOR antagonists suggests that reinstating 

normal levels of mTOR signaling may be effective in inhibiting BCR–ABL1-driven 

leukemogenesis [38,41,48,49]. Interestingly, rapamycin, an mTOR antagonist, acts 

synergistically with IM, and co-treatment of peripheral blood from patients with CML (CP 

and BC) leads to greatly reduced numbers of colony-forming cells [48]. Recently, the 

application of PP242, a more potent mTOR antagonist than rapamycin, reduced the viability 

of Ph+ B-ALL or CML-BC cell lines, and the percentage of blasts in the bone marrow and 

peripheral blood in a Ph B-ALL mouse model [49]. Moreover, CGP57380,+a compound that 

regulates translation initiation and polysomal assembly independently of mTOR, 

synergistically acts with IM to impair polysomal mRNA loading in BCR–ABL1-expressing 

cells, which, in turn, results in inhibited growth and survival of Ba/F3-BCR–ABL1 and 

K562 cells via impaired cell cycle entry and increased apoptosis [50]. The importance of 

increased mTOR signaling in BCR–ABL1 cells was further illustrated upon treatment of 

leukemic cells with arsenic trioxide [51]. Treatment of various acute leukemia cell lines with 

arsenic trioxide resulted in the phosphorylation of 4E-BP1, leading to its above-mentioned 

inactivation, suggestive of increased mTOR signaling, as part of a negative feedback loop 

that counteracts signals triggered by this treatment [51]. Two mRNAs have been reported to 

be more efficiently translated within BCR–ABL1-expressing cells as a result of increased 

mTOR activity. First, treatment of the Ba/F3-BCR–ABL1 cell line and primary cells from a 

patient in blast crisis with IM revealed a decrease in protein levels of the cell cycle 

progression-promoting cyclin D3, while its mRNA levels remained the same [48]. Similar 

results were observed upon treatment of these cells with rapamycin, an inhibitor of mTOR 

signaling [48]. Interestingly, IM and rapamycin acted synergistically against primary CML 

progenitor cells resulting in significantly decreased levels of cyclin D3, thereby causing cell 

cycle arrest [48]. A second mRNA whose translation is increased due to increased mTOR 

activity in BCR–ABL1-expressing cell lines is hypoxia inducible factor-1α (HIF-1α) [52], a 

transcription factor for vascular endothelia growth factor (VEGF), leading to increased 

levels of VEGF, a protein implicated in leukemia-associated angio-genesis [53]. These 

studies indicate that BCR–ABL1 kinase-deregulated mTOR signaling results in altered 

mRNA metabolism of genes involved in pathways that contribute to the phenotype of these 

cells. Taken together, these studies indicate the potential efficacy of mTOR and mRNA 

translation inhibitors in IM-sensitive and, more important, IM-resistant CML and warrant 

further investigation. In fact, clinical trials with a combination of IM and mTOR antagonists 

are currently being performed in patients with CML who were unable to achieve a complete 
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cytogenetic response with IM; however, whether this combination therapy will prolong 

survival of patients with CML-BC needs yet to be determined.

Autophagy in CML cells and altered mRNA translation

Autophagy is a cellular process in eukaryotic cells that results from the destruction of 

intracellular materials (e.g. long-lived proteins, organelles such as mitochondria and 

ribosomes [54]) within lysosomes in the cytoplasm under normal conditions and in response 

to stress stimuli [55,56]. Originally described as an alternative cell death mechanism [57,58], 

it has become more evident that this process can serve as a cell survival mechanism, as 

autophagy occurs in cells deprived of growth factors [59,60], allowing them to evade 

apoptosis. Treatment of the K562 cell line with IM induces autophagy as indicated by the 

expression of autophagy-related genes and increased presence of translucent vacuoles within 

these cells [61]. More important, the addition of the pharmacologic autophagy inhibitor 

chloroquine to IM treatment potentiated IM-induced cell death in CML cell lines and 

primary CML cells, including those carrying partially IM-resistant BCR–ABL1 mutations, 

and reduced the colony formation of CD34+ CD38− CML cells and long-term culture-

initiating cells (LTC-ICs) [61]. Based on these results, it is reasonable to speculate that 

during IM-induced autophagy the number of ribosomes within the cytoplasm is reduced, 

leading to decreased translation of tumor suppressor genes, thereby providing a novel 

mechanism by which CML cells evade apoptosis and supporting the inclusion of autophagy 

inhibitors (e.g. chloroquine) in the treatment of both IM-resistant CML and CML-BC.

Increased RNA binding protein expression in blast crisis chronic myeloid 

leukemia

RNA binding proteins play an essential role in RNA metabolism as they regulate mRNA fate 

from the active site of transcription to that of translation [62]. Throughout this journey the 

mRNA is not unaccompanied, as different RNA binding proteins participate in binding to 

regulatory elements or are involved in maintaining specific mRNA secondary structures 

[62]. Thus, while some RNA binding proteins are general regulators of mRNA transcription, 

processing, nuclear export, stability, and translation, others bind mRNA in a sequence-

specific manner and determine the fate of a specific mRNA [63,64]. Therefore, it is plausible 

that BCR–ABL1-induced alteration in the expression or function of these RNA binding 

proteins has a profound effect on Ph+ progenitor cell proliferation, survival, and 

differentiation (Figure 1). Indeed, enhanced expression of various RNA binding proteins that 

bind mRNA in a sequence-specific manner is among the changes in gene expression found 

in primary mono-nuclear and CD34+ cells from patients with CML-BC and in BCR–ABL1-

transformed murine myeloid progenitors. Enhanced expression of specific RNA binding 

proteins correlates with the levels of BCR–ABL1 and is sensitive to treatment with IM 

[65,66]. Mechanisms by which an increase in these proteins is observed include enhanced 

gene transcription (e.g. heterogeneous nuclear ribonucleoprotein K; hnRNP K [67]) or 

increased protein stability (e.g. TLS/FUS [68], hnRNP A1 [69], hnRNP E2 [18], and 

La/SSB [20]). Increased expression of these RNA binding proteins correlates with enhanced 

activity, which is positively regulated by BCR–ABL1-activated pathways (e.g. PI3K/Akt, 

MAPK/extracellular signal-regulated kinase 1/2 [MAPKERK1/2], protein kinase C). By 
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contrast, expression of the RNA binding protein CUGBP1 inversely correlates with BCR–

ABL1 activity and diminishes in CML-BC compared with CML-CP and normal bone 

marrow progenitors [70].

hnRNP A1 and SET/protein phosphatase 2A interplay

hnRNP A1 is a nucleocytoplasmic shuttling protein that binds the nascent pre-mRNA in a 

sequence-specific manner and regulates splice site selection, exon skipping or inclusion, 

nuclear export of mature mRNA, mRNA turnover, and translation [71]. In addition to its 

interaction with mRNA species, hnRNP A1 has been shown to be required for the 

processing of miR-18a [72], a miRNA that is part of the miR-17–92 cluster which has been 

reported to be differentially expressed in CD34+ progenitors from patients with CML-CP 

and CML-BC [73]. As a consequence of enhanced protein stability, hnRNP A1 expression is 

induced by BCR–ABL1 in a dose-and kinase-dependent manner [17,69]. In fact, hnRNP A1 

levels are higher in CML-BC than in CML-CP progenitors [17,69]. The use of a nucleus-

localized dominant-negative hnRNP A1 mutant deficient in shuttling activity indicates that 

the hnRNP A1 mRNA export activity is required for cytokine-independent proliferation, 

survival, and tumorigenesis of acute phase CML blasts and BCR–ABL1-expressing myeloid 

progenitor cell lines [69], indicating in turn that hnRNP A1 controls the nuclear export of 

mRNAs encoding factors that are important for the leukemic phenotype of CML-BC 

progenitors. For example, the anti-apoptotic factor BCL-XL and the pro-oncogene SET, the 

physiologic inhibitor of protein phosphatase 2A (PP2A), are among some of the cytoplasmic 

mRNAs whose export and translation depend on hnRNP A1 shuttling activity [17,69,74]. 

SET expression is induced by high levels of BCR–ABL1 activity, similar to those detected 

only in CML-BC GMPs, and increases during CML disease progression [17]. Interestingly, 

enhanced SET levels lead to inactivation of the tumor suppressor PP2A in CML-BC and Ph+ 

B-ALL progenitors [17]. In these cells, PP2A loss-of-function accounts for increased and 

sustained BCR–ABL1 activity in CML-BC progenitors [17]. In fact, molecular or 

pharmacologic reactivation of PP2A phosphatase activity inhibits BCR–ABL1 activity and 

triggers BCR–ABL1 proteosomal degradation through a mechanism that requires activity of 

the SHP-1 tyrosine-phosphatase [17]. As a result of the rescue of PP2A activity, IM-

sensitive and -resistant (T315I included) BCR–ABL1+ cell lines and CML-BC patient-cells 

cease to proliferate and undergo apoptosis [17]. Furthermore, impaired clonogenicity of 

CML-BC patient-cells and decreased in vivo BCR–ABL1-driven leukemogenesis are 

observed on treatment with PP2A-activating drugs (e.g. forskolin, 1,9-dideoxy forskolin, and 

FTY720) used at pharmacologic doses that do not exert toxic in vivo effects in rodents 

and/or in ex vivo human normal hematopoietic cells [75]. Interestingly, SET-dependent 

inactivation of PP2A may also occur through the activity of another ribonucleoprotein, 

hnRNP A2. In this regard, it has been reported that hnRNP A2 cooperates with SET in the 

inhibition of PP2A [76]. In agreement, hnRNP A2/B1 is overexpressed in human CD34+ 

progenitors ectopically expressing p210 BCR–ABL1, suggesting the possible involvement 

of hnRNP A2/B1 in blastic transformation of CML [77]. Another mRNA that has been 

shown to interact with hnRNP A1 in a BCR–ABL1 kinase-dependent manner is the 

transcription factor E2F3 [74]. The mRNA encoding E2F3 associates to hnRNP A1 through 

a conserved binding site located in the E2F3 3′-untranslated region (UTR). E2F3 levels 

were up-regulated in CML-BCCD34+ in a BCR–ABL1 kinase- and hnRNP A1 shuttling-
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dependent manner [74]. Furthermore, shRNA-mediated E2F3 knock-down and BCR–ABL1-

transduced lineage-negative bone marrow cells from E2F3+/+ and E2F3−/− mice 

demonstrated that E2F3 is important for BCR–ABL1 clonogenic activity in vitro and in vivo 
and leukemogenic potential [74].

hnRNP K and MYC overexpression in CML-BC

In BCR–ABL1-expressing myeloid and lymphoid cell lines and in primary CML-BC but not 

CML-CP progenitor cells, hnRNP K transcription and mRNA stability are enhanced by 

MAPKERK1/2 in a BCR–ABL1 dose- and kinase-dependent manner [67]. Expression of 

hnRNP K is essential for BCR–ABL1 leukemogenesis as its down-modulation impairs 

cytokine-independent clonogenicity and leukemogenesis of BCR–ABL1+ cells [67]. These 

effects mostly depend on decreased levels of MYC, an oncogene essential for BCR–ABL1 

leukemogenesis [78] and whose expression is transcriptionally and translationally controlled 

by hnRNP K [79,80]. While hnRNP K transcriptional regulation is dispensable for BCR–

ABL1 oncogenic potential, its MAPK-dependent translational-regulatory activity is required 

both in vitro and in vivo [67]. In fact, hnRNP K binds to the internal ribosome entry site 

element of MYC mRNA and enhances its translation in a BCR–ABL1-MAPK-dependent 

manner [67]. These data are consistent with MYC protein but not mRNA overexpression in 

most CML-BC progenitors [67,81]. Several studies suggest that targeting molecules 

responsible for deregulated expression of the RNA binding protein hnRNP K in CML-BC 

may be effective in impairing BCR–ABL1-driven leukemogenesis. First, treatment of the 

32D-BCR–ABL1 and K562 cell lines with the MAPK inhibitors PD098059, U0126, and the 

clinically relevant CI-1040 resulted in substantially decreased levels of hnRNP K protein 

[67]. Second, the introduction of hnRNP K shRNA in BCR–ABL1+ cells reduced MYC 

levels and resulted in decreased viability and clonogenic potential of these cells [67]. Third, 

32D-BCR–ABL1 cells transduced with a MAPK-resistant hnRNP K cDNA demonstrated 

impaired cytokine-independent growth and colony formation. Consistent with these effects 

in vitro, transplantation of these cells into SCID (severe combined immunodeficiency) mice 

resulted in a longer latency in tumor formation and reduced tumor burden in these recipient 

mice when compared with controls. These studies suggest that treatment of CML-BC with 

the MAPK inhibitor PD098059 may be of therapeutic benefit. In addition to MYC, other 

mRNAs found associated with and translationally regulated by hnRNP K in Ph1 cell lines in 

a BCR–ABL1 kinase-dependent manner include LATS1, SIPA1, and protein kinase-Cβ1 

(PKCβI) [74]. LATS1 promotes proliferation by binding to cyclin dependent kinase 1 

(Cdk1), thereby freeing cyclins whose transcriptional functions are necessary for cell cycle 

progression, while SIPA1 levels have been found to correlate with metastatic capability both 

in vitro and in vivo [82]. PKCβ1 is a member of the protein kinase C family of proteins that 

play a key role in the regulation of cell growth and differentiation. Other mRNAs found to 

interact with hnRNP K in BCR–ABL1-expressing cells are those of reticulocyte 15-

lipoxygenase (r15-lox) and c-Src [83]. r15-lox is important for erythroid precursor 

maturation and is regulated by hnRNP K at the translational level. Ectopic expression of 

human r15-lox in the K562 cell line and in primary human CD34+ induced terminal 

erythroid differentiation [83]. In addition, hnRNP K was also found to bind to the 3′-UTR of 

c-Src and inhibit its translation by blocking 80S ribosome formation in K562 [83]. Taken 

together, these studies indicate that hnRNP K contributes to leukemogenesis by BCR–ABL1 
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by enhancing or repressing the translation of mRNA species responsible for the enhanced 

survival, increased proliferation, and differentiation arrest that are characteristic of CML-BC 

progenitors.

La/SSB and MDM2: implication for p53 functional inactivation in CML-BC

The RNA binding protein La/SSB controls RNA metabolism at different levels: it binds and 

protects newly RNA polymerase III-transcribed RNAs, regulates the processing of 5′ and 3′ 
ends of pre-tRNA precursors, functions as an RNA chaperone, and controls translation of 

specific mRNAs [84]. Expression of La is markedly increased by BCR–ABL1 and correlates 

with that of MDM2 [20]. La is more abundant in CML-BC than CML-CP patient-cells, and 

its levels appear to correlate with BCR–ABL1 levels and activity [20]. Interestingly, La is a 

positive regulator of mdm2 translation because: (1) it recognizes a specific conserved 

sequence in the intercistronic region of mdm2 mRNA that is required for efficient MDM2 

expression; (2) a dominant-negative La inhibits mdm2 mRNA translation in BCR–ABL1+ 

cells; (3) La down-regulation leads to a marked decrease in MDM2 levels; and (4) over-

expression of wild-type La increases MDM2 expression [20]. That La-mediated effect on 

MDM2 expression is functionally relevant for BCR–ABL1 leukemogenesis is indicated by 

the changes in susceptibility of BCR–ABL1-expressing cells to p53-dependent drug-induced 

apoptosis [20]. Inactivating mutations of the p53 gene are rarely found in CML-CP but are 

common in M-BC [10], suggesting that loss of function of p53 contributes to disease 

progression. Indeed, loss of wild-type p53 potentiates the leukemic-inducing effects of 

BCR–ABL1 [85,86]. Because genetic inactivation of p53 is in only ~30% of patients with 

CML-BC [10], the La-dependent MDM2 overexpression may represent a mechanism 

whereby BCR–ABL1 functionally inactivates p53 in patients with CML-BC with a wild-

type p53 gene. Thus, the La-dependent stimulation of MDM2 translation is not only relevant 

for survival of CML-BC progenitors but may also contribute to disease progression through 

functional inactivation of the p53 tumor suppressor. In addition to MDM2, other mRNA 

species have been found to be associated with La in BCR–ABL1+ cells in a BCR–ABL1 

kinase-dependent manner. A few examples include the previously mentioned LATS1 [74], 

and the potent suppressor of apoptosis Mcl-1 [74], which has been implicated in CML [87–

89].

hnRNP E2 and CCAAT/enhancer binding protein α: differentiation arrest in M-BC

The main feature of CML-BC is the inability of myeloid progenitors to undergo terminal 

differentiation. This is primarily dependent on inhibition of CCAAT/enhancer binding 

protein α (C/EBPα) [18], a transcription factor essential for granulocytic differentiation 

[90,91]. In M-BC CD34+ progenitors, loss of C/EBPα depends on BCR–ABL1-induced 

activity of the RNA binding protein hnRNP E2, a poly(rC)-binding protein (also referred to 

as PCBP2) that, like hnRNP K, controls the translation of specific mRNAs [65,92]. In fact, 

hnRNP E2, upon interaction with the 5′-UTR of C/EBPA mRNA, inhibits C/EBPA 
translation [18]. As a result, C/EBPα protein but not mRNA expression is down-modulated 

in primary bone marrow cells from patients with CML-BC and inversely correlated with 

BCR–ABL1 levels [18]. Accordingly, hnRNP E2 expression was inversely correlated with 

that of C/EBPα [17] because hnRNP E2 levels were abundant in CML-BC but undetectable 

in CML-CP mononuclear marrow cells. In fact, hnRNP E2 expression is induced by BCR–
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ABL1 in a dose- and kinase-dependent manner through constitutive activation of 

MAPKERK1/2 that, in turn, post-translationally increases hnRNP E2 protein stability [93]. 

The importance of loss of C/EBPα as a central mechanism leading to differentiation arrest 

of CML myeloid blasts is supported by the finding that: (1) ectopic C/EBPα expression 

induces maturation of differentiation-arrested BCR–ABL1-expressing myeloid precursors 

[18]; (2) a blast crisis-like process emerges in mice transplanted with BCR–ABL1-

transduced c/ebpα-null but not heterozygous or wild-type fetal liver cells [94]; and (3) 

genetic or functional inactivation of C/EBPα is a common event in differentiation-arrested 

acute myeloid leukemia [95]. In addition to translational repression of C/EBPα by hnRNP 

E2, hnRNP E2 has been shown to affect levels of the transcription factor FOXO1A in a 

BCR–ABL1 kinase-dependent manner [74]. While the major consequence of increased 

hnRNP E2 expression in CML-BC progenitors is their aforementioned arrest in 

differentiation, the introduction of hnRNP E1 and hnRNP E2 shRNA together in the K562 

cell line results in decreased proliferation as the cells become arrested in the G1 phase of the 

cell cycle [96]. Analysis of mRNP complexes in K562 revealed the association of hnRNP E1 

and hnRNP E2 with the cyclin dependent kinase inhibitor 1A, also known as p21WAF, 

thereby inhibiting its translation [96]. These studies illustrate how BCR–ABL1 kinase-

dependent increased levels of hnRNP E2 contribute to the block in differentiation observed 

in CML-BC myeloid progenitors and how hnRNP E1 and E2 promote proliferation of these 

cells.

Redundancy of the C/EBP network: CUGBP1 and C/EBPβ

C/EBPβ is another transcription regulator that controls myeloid maturation, and is a 

functional equivalent of C/EBPα based on its ability to restore granulocytic differentiation in 

C/EBPα-null mice [97]. In BCR–ABL1-expressing cells, IM treatment restores loading of 

C/EBPB mRNA onto polysomes. The IM effect results from restored activity of the RNA 

binding protein CUGBP1 that binds a CUG-repeat region located between the first and the 

third AUG of C/EBPB mRNA and enhances its translation [70,98]. Like C/EBPα, 

expression of C/EBPβ is repressed in primary CML-BC progenitors [70], suggesting that 

loss of C/EBPα and C/EBPβ activity contributes to differentiation arrest of CML-BC cells. 

Accordingly, levels of CUGBP1 are higher in normal and CML-CP CD34+ cells than in 

CD34+ CML-BC progenitors [70]. Ectopic expression or+ inducible activation of C/EBPβ 
inhibits proliferation and promotes granulocytic maturation of differentiation-arrested BCR–

ABL1+ cells through a mechanism that depends on C/EBPβ transcriptional activity [70]. 

Thus, complete loss of C/EBP activity might be necessary to disrupt the differentiation 

potential of CML-BC progenitors. In addition to hnRNP K, treatment of BCR–ABL1-

expressing cell lines with PD098059 resulted in substantially lower levels of hnRNP E2 

[93]. As a consequence, C/EBPα expression is restored both in vitro and in vivo and these 

cells regain the ability to terminally differentiate as a result of granulocyte-colony 

stimulating factor (G-CSF) stimulation [93]. Taken together, these data support the inclusion 

of clinically relevant MAPK inhibitors in the therapy of CML-BC.

FUS and the G-CSFreceptor

FUS, also known as TLS, is a nucleocytoplasmic shuttling hnRNP protein that contributes to 

the block in differentiation of BCR–ABL1+ myeloid progenitors by altering the expression 
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of cytokine receptors [68]. Expressed at high levels in hematopoietic and non-hematopoietic 

tissues, FUS is involved in pre-mRNA processing and nucleocytoplasmic shuttling, as well 

as in the regulation of basal transcription [99]. FUS expression and its DNA binding activity 

are induced in a BCR–ABL1 kinase-dependent manner in hematopoietic cells [68] through a 

protein kinase CβII-mediated mechanism that increases FUS protein stability by preventing 

its proteasome degradation [100]. Knockdown of FUS in differentiation-arrested BCR–

ABL1+ myeloid cells rescues, in part, granulocytic differentiation by restoring expression of 

the C/EBPα-regulated G-CSF receptor (G-CSFR) and modestly impairs tumorigenesis 

[100]. Alternatively, ectopic FUS expression delays G-CSFR up-regulation in response to 

treatment with G-CSF [100]. The observation that FUS binds in vitro to a segment of G-
CSFR mRNA [100] suggests that FUS binds to the G-CSFR pre-mRNA in the nucleus, 

thereby interfering with its processing or export to the cytoplasm. These studies implicate 

that the activity of another deregulated RNA binding protein contributes to the 

differentiation arrest observed in myeloid CML-BC progenitors.

MicroRNA conventional and decoy activities in chronic myeloid leukemia

MicroRNAs (miRNAs) regulate many cellular functions including cell proliferation, 

differentiation, and apoptosis. These non-coding RNAs silence specific target genes through 

translational repression or direct mRNA degradation [101]. Recently it has been shown that 

deregulated expression of specific miR-NAs regulating the expression of oncogenes, 

including BCR–ABL1 [102], tumor suppressors (e.g. PTEN [103]), and cell cycle regulators 

(e.g. E2F1 [104] and transforming growth factor β [TGFβ] [105]), is associated with the 

development of malignancies. Furthermore, specific miRNA expression signatures can be 

used to effectively classify human tumors [106]. Analysis of Ph1 B-ALL and CML primary 

cells, along with CML cell lines, revealed that the upstream region of the chromosome 

containing the human miR-203 miRNA is heavily methylated in BCR–ABL1-expressing 

cells. This methylation correlates with decreased miR-203 expression and suggests a specific 

pressure to downregulate miR-203 in Ph+ cells [102]. It was predicted that miR-203 binds to 

the 3′-UTR of c-ABL and BCR–ABL1 mRNA, thereby inhibiting their translation. Indeed, 

ectopic expression of miR-203 in the K562 and KCL-22 Ph1 cell lines resulted in 

substantially lower levels of BCR–ABL1 protein, leading to decreased proliferation, and 

increased levels of apoptosis [102].

Initial studies indicated that miRNA expression is higher in normal tissues compared to 

tumors, and led to the hypothesis that global miRNA expression reflects the state of cellular 

differentiation [106]. MicroRNA profiling of the myeloid leukemia cell line HL-60 

following treatment with all-trans retinoic acid, a potent inducer of neutrophilic 

differentiation [107], revealed that the induction of many miRNAs coincided with 

differentiation. Similar results have been found with primary human hematopoietic 

progenitors undergoing erythroid differentiation in vitro. These studies suggest that the 

miRNA profile within these cells is a consequence of the stage at which they arrested [106]. 

However, there is substantial evidence indicating that the kinase activity of BCR–ABL1 is 

responsible for the deregulation of miRNAs in CML (Table I). This includes the 

observations that: (1) treatment of K562 with imatinib and BCR–ABL1 shRNA resulted in 

decreased expression of the miR-17–92 polycistron [73], and levels of miR-328 increased 
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following the treatment of K562 and 32Dcl3-BCR–ABL1 cell lines with imatinib [108]; (2) 

in vivo miR-328 levels were much lower in lineage-negative cells from SCLtTA-BCR–

ABL1 [109] mice and CML-BC CD34+ bone marrow, when compared with wild-type 

controls and CML-CP progenitors, respectively [108]; (3) bone marrow MNCs from patients 

unresponsive to IM and lacking common point mutations in the kinase domain of BCR–

ABL1 (e.g. T315I, Y253H, Y253F, E225K, and E255V) demonstrated lower levels of 

miR-7, miR-23a, miR-26a, miR-29a, miR-29c, miR-30b, miR-30c, miR-100, miR-126#, 

miR-134, miR-141, miR-183, miR-196b, miR-199a, miR-224, miR-326, miR-422b, and 

miR-520a, while miR-191 was up-regulated when compared with patients with CML 

sensitive to IM [110]; (4) miR-96 was up-regulated while the down-regulation of miR-150 

and miR-151 was observed in both BCR-ABL1+ CD34+ cells and MNCs when compared 

with cells from healthy donors [111]; (5) increased expression of the RNA binding proteins 

Lin28 and Lin28b, which block let-7 precursors from being processed to mature miRNAs 

[112–115], was detected in the peripheral blood of patients in CML-BC (42.8%) more 

frequently than in individuals with CML-CP (9.1%) [116]; and (6) miRNA profiles of 

CD34+ cells from patients with childhood ALL resulting from several different genetic 

abnormalities revealed an expression profile unique to Ph1-positive patients [117]. These 

studies indicate that levels of miRNAs are deregulated by BCR–ABL1 in a dose- and kinase-

dependent manner, rather than the miRNA profile of the stage in differentiation at which 

these cells are arrested.

The mRNA targets of many of these miRNAs have yet to be identified; however, as miRNAs 

regulate gene expression by impairing translation or initiating degradation of mRNAs [101], 

and when considering the phenotype of CML-BC progenitors, it is reasonable to speculate 

that some of these deregulated miRNAs normally affect traslation of genes either regulating 

or promoting proliferation and survival (e.g., Figure 2), and differentiation (e.g., Figure 3), 

thereby contributing to the phenotype of CML-BC. The knockdown of Lin28b in CML-BC 

cells restored levels of let-7 family members, reinstating their previously described 

inhibition of c-Myc [118] and k-Ras [119] processing, leading to substantially reduced 

protein levels of these oncogenes [116] (Figure 2). The treatment of the CML cell lines 

K562 and KCL-22 with a combination of 5′-azacytidine and 4-phenylbutyrate demonstrated 

efficient demethylation of the miR-203 upstream region, resulting in substantially increased 

levels of miR-203, and miR-203-dependent decreased levels of BCR–ABL1 [102]. As the 

upstream region of miR-203 is heavily methylated in primary cells from patients with CML 

and Ph1 B-ALL, this study suggests that these epigenetic drugs may have therapeutic 

benefits in CML. Furthermore, enhanced survival of CML-BC CD34+ progenitors may 

result from the absence of miR-328, as ectopic expression of miR-328 greatly reduced 

PIM1, which is known to promote enhanced survival of these cells [108].

Importantly, a non-canonical function of miR-328 was identified, as miR-328 was found to 

compete with C/EBPA for binding to hnRNP E2 [108]. As the absence of miR-328 in CML-

BC progenitors prevents C/EBPA translation, ectopic expression of miR-328 in these cells 

decreased hnRNP E2-mediated inhibition of C/EBPA translation, and allowed these cells to 

undergo terminal granulocytic differentiation upon stimulation with G-CSF [108]. 

Furthermore, ectopic expression of miR-328 in BCR–ABL1+ cell lines, as well as CML-

BCCD34+, reduced methylcellulose colony formation, and impaired survival through the 
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miR-328-dependent degradation of PIM1 [108] (Figure 3). These studies, which heavily 

implicate loss of miR-328 and, generally, altered miRNA expression in determination of the 

biological characteristics of CML-BC progenitors, highlight the important role of exploiting 

new alternative avenues envisioning the use of miRNAs as therapeutic drugs.

Concluding remarks

Together, these studies provide a substantial amount of evidence indicating that BCR–ABL1 

kinase-dependent deregulation of mRNA metabolism contributes to the progression of CML. 

Altered mRNA metabolism in CML-BC resulting from differential pre-mRNA splicing, 

increased mTOR activity, autophagy, altered RNA binding protein expression, and 

deregulated miRNA expression affects the levels of oncogenes (e.g. BCR–ABL1 [102], 

PIM1 [108], MYC [67,112], and K-Ras [112]), potent antiapoptotic proteins (e.g. BCL-XL 

[69] and MCL-1 [74]), a promoter of proliferation (cyclin D3 [48]), a tumor suppressor (p53 

[20]), an antagonist of the PP2A known tumor suppressor (SET [17,75]), and transcription 

factors essential for terminal differentiation (C/EBPα [18] and C/EBPβ [70]) of myeloid 

progenitors.

The lack of long-term response of patients with CML-BC to tyrosine kinase monotherapy 

(imatinib, nilotinib, or dasatinib [2,120,121]) highlights the importance of therapies that 

target multiple oncogenic pathways. As altered mRNA metabolism within CML-BCCD34+ 

progenitors contributes to the increased proliferation, arrest in differentiation, and enhanced 

survival observed by these cells, pharmacologic and molecular therapies reinstating normal 

mRNA metabolism have been successful in impairing leukemogenesis by BCR–ABL1 in 

cell lines, murine models of CML, and primary cells from patients, providing support for 

their inclusion in the clinical setting.
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Figure 1. 
Altered mRNA metabolism in CML-BC resulting from deregulated expression of RNA 

binding proteins. The differential expression of RNA binding proteins in CML-BC, when 

compared with CML-CP, results from increased BCR–ABL expression and activity levels, 

and leads to the altered mRNA metabolism of tumor suppressor genes, genes involved in 

regulating proliferation, and those responsible for differentiation. These altered pathways 

subsequently contribute to the malignant phenotype of this disease.
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Figure 2. 
Increased levels of BCR–ABL in CML-BC results in increased levels of the oncogenes c-

MYC and K-Ras through inhibition of let-7 family-member processing. In CML-BC, 

increased levels of BCR–ABL lead to higher levels of the RNA binding protein Lin28B. 

Lin28B binds let-7 family-member precursors, preventing their processing, and thereby 

relieving their normal inhibition of c-MYC and K-Ras translation. Introduction of Lin28B 

shRNA in cell lines and primary cells restores processing of let-7 family members and, 

subsequently, decreased levels of C-MYC and K-Ras protein are observed.
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Figure 3. 
Schematic representation of the dual miR-328 activity in CML-BC. miR-328 decoy activity 

is essential for the regulation of neutrophil differentiation and its loss determines the blocks 

of C/EBPα expression and, therefore, the differentiation arrest of myeloid CML-BC blasts. 

The canonical miR-328 activity controls, at least in part, survival of CML-BC progenitors by 

regulating the expression of PIM1 serine–threonine kinase.
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