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Abstract

Purpose Image-guidance systems have the potential to aid in laparoscopic interventions by providing sub-surface structure
information and tumour localisation. The registration of a preoperative 3D image with the intraoperative laparoscopic video
feed is an important component of image guidance, which should be fast, robust and cause minimal disruption to the surgical
procedure. Most methods for rigid and non-rigid registration require a good initial alignment. However, in most research
systems for abdominal surgery, the user has to manually rotate and translate the models, which is usually difficult to perform
quickly and intuitively.

Methods We propose a fast, global method for the initial rigid alignment between a 3D mesh derived from a preoperative CT
of the liver and a surface reconstruction of the intraoperative scene. We formulate the shape matching problem as a quadratic
assignment problem which minimises the dissimilarity between feature descriptors while enforcing geometrical consistency
between all the feature points. We incorporate a novel constraint based on the liver contours which deals specifically with the
challenges introduced by laparoscopic data.

Results We validate our proposed method on synthetic data, on a liver phantom and on retrospective clinical data acquired
during a laparoscopic liver resection. We show robustness over reduced partial size and increasing levels of deformation.
Our results on the phantom and on the real data show good initial alignment, which can successfully converge to the correct
position using fine alignment techniques. Furthermore, since we can pre-process the CT scan before surgery, the proposed
method runs faster than current algorithms.

Conclusion The proposed shape matching method can provide a fast, global initial registration, which can be further refined
by fine alignment methods. This approach will lead to a more usable and intuitive image-guidance system for laparoscopic
liver surgery.

Keywords Image guidance - Laparoscopic liver surgery - Global registration - Shape matching - Surface descriptors -
Computer-assisted surgery

Introduction

Minimally invasive surgery offers the patient major bene-
fits over open surgery, including less trauma, less pain and
shorter hospital stays. However, these interventions present
several challenges for clinicians, such as weak depth percep-

B<I Maria R. Robu
maria.robu.14 @ucl.ac.uk

Wellcome/EPSRC Centre for Interventional and Surgical
Sciences, University College London, London, UK

Centre For Medical Image Computing, University College
London, London, UK

Division of Surgery and Interventional Science, University
College London, London, UK

tion, constrained vantage point, limited field of view, poor
haptic feedback and occluded anatomy [1]. Image guidance
aims to assist the clinicians in localising and tracking sub-
surface structures such as abnormalities or major vessel trees.
Thus, these systems have the potential to aid in surgical inter-
ventions through improved resection quality and a reduction
in positive surgical margins [2]. The safety margin around a
possible tumour in current laparoscopic procedures is a min-
imum of 10 mm [3], so it is considered desirable to develop
systems with accuracy below 5 mm on average [4,5]. Current
rigid registration methods achieve accuracies of approxi-
mately 10 mm in phantom experiments [5—7]. Improving the
robustness, accessibility and reliability of image-guidance
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systems could potentially increase the number of patients
benefiting from minimally invasive surgeries.

Most hospitals require an abdominal CT scan to be
acquired before surgery for laparoscopic liver interventions.
A 3D model of the liver, major vessel trees and any abnormal-
ities can be segmented from the CT scan. The registration of
the preoperative liver model and the intraoperative laparo-
scopic images is an essential step towards developing an
image-guidance system. Most methods in the literature can
be divided between coarse alignment, defined as a global
alignment which can match the surfaces irrespective of their
initial transformation, and fine alignment techniques—in
which a good initial alignment is already provided as a
starting point. In this paper, we focus on coarse alignment
methods for surface-based registration.

Furthermore, most methods are only applicable in open
surgery [4,6-8] as a large surface of the intraoperative scene
is required. However, surfaces acquired laparoscopically
present the additional challenges that the camera has access to
arestricted region of the abdomen leading to an even smaller
partial view, lack of reliable landmarks and significant defor-
mation from pneumoperitoneum [7]. We address and discuss
the challenges inherent to laparoscopic surgeries which moti-
vated our method.

We propose a fast, semi-automatic global alignment
method which achieves the initial alignment between the
preoperative CT model of the liver surface and a surface
reconstruction of the intraoperative scene. The resulting
transformation could be further improved by fine alignment
algorithms [9,10] in order to get arigid [5,6,11] or anon-rigid
alignment [3] between the two modalities. Our approach can
lead to a faster and more intuitive use of image-guidance
systems in laparoscopic surgeries. We show robustness to
reduced partial sizes and increasing deformations in the intra-
operative model on synthetic data. Moreover, we evaluate the
proposed method on a liver phantom and on retrospective data
from a dataset acquired in a laparoscopic liver resection with
promising results.

Background

The initial rigid registration of the preoperative 3D image and
the intraoperative scene has been explored through methods
that rely on fiducials, user interaction and through fully auto-
mated methods.

Several approaches propose the use of fiducials, either
on the patient skin [12] for needle guidance, or on the
organ itself [13] for tracking in laparoscopic partial nephrec-
tomy. Another more robust option, which is applicable in
laparoscopic interventions, would be to attach metabolisable
fluorescent markers on the organ [14]. Such fiducials can be
seen in both modalities. However, these strategies are disrup-
tive to the clinical workflow since they require the acquisition
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of an additional CT or MRI scan immediately before the
intervention.

Surface acquisition of the intraoperative scene has been
proposed as an alternative. Several strategies have been
developed using laser range scanners [6], optically tracked
probes [11], time-of-flight (TOF) data [7] and stereo recon-
struction [5]. Once the surface is acquired, the clinician is
required to delineate salient anatomical features leading to
a point-based initial alignment [6,11] or to a more com-
plex non-rigid optimisation framework [3]. Another option
to obtain the rigid alignment is to manually rotate and trans-
late the 3D preoperative image until it fits the intraoperative
data [5]. While some level of user interaction is needed for
these approaches, it is generally more intuitive and faster to
select salient features than to manipulate the six degrees of
freedom associated with a rigid transform.

Hybrid methods have been proposed using cone beam
CT and fluoroscopy [15] as bridging modalities between the
laparoscopic camera and the preoperative CT, which deliv-
ers an additional radiation dose to the patient. Feuerstein
et al. [16] propose using intraoperative cone beam CT and
optical tracking to register directly to the laparoscopic view
without using preoperative information. While their methods
achieve promising results, they are based on advanced hard-
ware which might not be available in most clinical settings.

Finally, fully automated techniques have been proposed
in [7,17]. Fusaglia et al. [17] developed an exhaustive search
over the principal directions of the intraoperative surface,
which is acquired using a laparoscopic laser pointer. While
their proposed approach is promising, it still introduces addi-
tional tools into the clinical workflow. Dos Santos et al. [7]
introduced a novel automatic method to establish surface
correspondences between the 3D preoperative mesh and the
intraoperative surface acquired with a TOF camera in open
liver surgery. Their approach was validated on a phantom
of the human liver and on an ex-vivo porcine liver with
accuracy better than 1 cm and computation time ranging
from one minute to 5.5 h. While their phantom validation
under deformation from breathing motion can be sufficient
for open surgery, livers in laparoscopic interventions undergo
significant general deformation due to pneumoperitoneum.
Furthermore, it is unclear how both methods [7,17] would
be translated to laparoscopic interventions since they rely on
large surfaces of the liver being visible.

While promising results have been achieved in the liter-
ature, we aim to develop an image-guidance system which
can handle the challenges of laparoscopic interventions and
is easy to integrate with the current clinical protocol without
additional hardware or advanced cameras. Furthermore, the
system should be usable during surgical interventions, with
minimal disruption and fast computation.
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Fig.1 An overview of our proposed global alignment framework, showing the preoperative and intraoperative steps

Contributions

We propose a fast, semi-automatic method to obtain a global
initial alignment between a 3D liver model extracted from
the preoperative CT scan and a surface reconstruction of the
intraoperative scene.

An existing formulation of shape matching is extended to
incorporate an additional constraint based on the contours of
the organ (the ridge line—see Fig. 1), which can be identified
on both surfaces with high confidence. Once the delineation
of the liver ridge line is given in the two modalities, no further
user interaction or initialisation is required for the alignment
stage. The proposed method is able to robustly estimate a
correspondence set between the two surfaces under defor-
mation, sparse data, partial views and realistic noise levels.

We validate our technique in a simulated environment to
show robustness to partial data and deformation. Moreover,
we provide quantitative results obtained on a liver phantom
and qualitative results on retrospective data from a laparo-
scopic liver resection to illustrate feasibility in a realistic
clinical setting.

Methods

Figure 1 illustrates the main steps of the proposed pipeline.
The input data include the segmentation of the 3D mesh from
the CT scan, a surface reconstruction represented as a point
cloud of the intraoperative data and the segmented contours
on both surfaces. The liver contour is defined as the ridge
line visible in yellow in Fig. 1 on both the preoperative and
the intraoperative surfaces.

Let M be the moving (preoperative CT mesh) model,
and let 7 be the target (intraoperative point cloud) model.
Sets of features, {m,} C M and {t;} C T, are selected on
both surfaces with f(-) as their corresponding descriptor. Let
dgy(x, y) be the geodesic distance between any two points, x
and y, on a surface.

Generally, it is difficult to match surfaces in laparoscopic
liver surgery only based on descriptors since the surfaces
lack prominent, uniquely identifiable features. The use of
geometric consistency between the correspondences on both
shapes can further constrain the registration problem.

Shape matching can be formulated as a quadratic assign-
ment problem (QAP):

EQC)= Y d(fm), f()
(m,t);eC
+ >0 D delmiimy) —dy(ti 1)) (1)

(m,1);€C (m,1);€C

where C = {(m, t);} C M X T is the initial correspondence
set composed of candidate pairs of feature points from the two
surfaces, d(f(-), f(-)) is the distance between the feature
descriptors and d, (-, -) is the geodesic distance between two
correspondences on the same surface. This energy function
aims to output a set of correspondences for which the dissim-
ilarity between the descriptors is minimised and the geodesic
distances between pairs of correspondences are maintained.

While this approach works well in the vision literature for
complex shapes [18], the intraoperative surfaces pose several
challenges. It has been previously discussed in [7] that con-
straining the correspondence set based only on the geodesic
distances between them is still ambiguous for almost flat sur-
faces, in which the same spatial configuration of features can
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Fig.2 Pairwise constraints on the moving, M (blue) and target, 7 (pink) models used for pruning the correspondence set

be identified in multiple locations. The same behaviour was
observed with our data. So, an additional constraint based on
the liver contour is proposed, which can be reliably observed
on both models. The existing spectral matching framework is
extended to incorporate the new term and robustly estimate
a set of correspondences.

Optimisation

In order to minimise E(C) from Eq. 1, the shape alignment
problem is formulated as graph matching [19]. Each node
consists of a candidate correspondence (i.e. (i, t); ), and each
edge connects twonodes (i.e. (m, t); and (m, t) ;). Moreover,
if pair (m, t); corresponds to (m, t) j, the pairwise constraints
imposed will quantify how consistent this association is from
a geometrical point of view, thus providing weights for the
edges. Figure 2 highlights an example of a correct assign-
ment.

An affinity matrix, W, of the graph is built. The weights
associated with each node and edge will result in a strongly
connected cluster for data with high consistency. On the other
hand, outlier nodes will be either weakly linked or linked
in an unstructured way. In cases with a high number of out-
liers, large deformation or symmetry in the data, some wrong
correspondences might be included in the main cluster. As a
result, the initial correspondence set C is built by choosing for
each target feature point {z;} C T, the closest k neighbour-
ing descriptors on the moving surface {m,} C M, quickly
using kd trees. A spectral analysis method [19] is used to
obtain the filtered correspondence set C}, from the matrix W.
In the next few paragraphs, the proposed formulation for W
is detailed, which incorporates the additional term based on
the liver contours.

The affinity matrix, W, should have values which are non-
negative, symmetric and increasing with higher similarity
between the correspondences [19]. So, instead of working
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with distances as in Eq. 1, the pairwise terms are parametrised
as consistency measures:

dg(mi, mj) dg(ti, t}) }
do(ti tj) +& dg(mi,mj)+e
()

c(mi,mj,ti,tj) ES min|:

where ¢ is a small number to ensure the denominators are
not zero, ¢ € [0, 1] and it quantifies how similar the geodesic
distances are between the pairs (m;, m;) and (¢;, t;). A pair
of correspondences is consistent from a geometric point of
view if the ratio of the geodesic distances on each shape is
close to 1 [20]. However, in the presence of non-isometric
deformation of the data, correct correspondences might have
consistency values, ¢, lower than 1. So, the non-rigidity of
the data is taken into account by using the following function
for c:

(ctmi,mj, ti, 1)) — 1)?
g(mi’mj,ti,tj,o')zexp<_ L 120—12 J

3

where the parameter o sets the amount of non-rigidity
allowed for the correspondence set. Furthermore, the func-
tion g also helps in separating the outliers by lowering the
weights of highly unlikely candidate pairs.

Let BM ¢ M and BT C T be the contour points on each
surface. The closest contour point to each feature point x
on either M or T is computed as b, = min(d,(x, B)). The
expression used for the proposed contour constraint is:

gr(mi,mj, ti,tj, op)

1
= E(g(mi»bmia ti, byi, 0p) +g(mjvbmj,tjabtja0b)>
4)
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where o3 allows some deformation between the candidate
pairs and their corresponding contours. In practice, o), = oy
since they both represent variations in geodesic distances
illustrating how restrictive the geometric pairwise constraints
will be on the data.

Finally, the affinity matrix, W, is built by placing the unary
terms (similarity between descriptors sim( f (m;), f(¢;))) on
the main diagonal and the pairwise constraints on the off-
diagonal:

Wi j)
_ [sim(romo, f@.i=

ag(mi,mj, ti,tj,0q) + (1 —a)gp(mi, mj, ti,tj, 0p), i # j

where o allows different weights for the importance of the
two pairwise constraints.

Spectral analysis on the initial formulation for E(C)
(Eq. 1) enforces high similarity between nodes (m, t); and
(m,t);, as well as approximately equal distances between
them (dy(m;, m;) and dg(%;, t;)). In addition, the proposed
term weighs the edge connecting (m, t); and (m, t) ; higher
if the distances dg(m;, byi),dg(mj, byj) are similar to
dg(ti, byi), dg (2, byj), respectively. As aresult, the estimated
correspondence set, Cp, is explicitly constrained to be con-
sistent with the liver contours on both surfaces, M and T .

Features and descriptors

Reliable landmarks are difficult to identify consistently
between the two surfaces. The strategies used are farthest
point sampling [21] and normal space sampling [22]. The
former approach was chosen for a uniform distribution of
the feature points on the surface. The latter aims to select
samples such that the normals are distributed as evenly as
possible, thus having fewer points in flat regions. The search
space is constrained to only select features on the visible
surface of the moving mesh, M, in order to eliminate unfea-
sible solutions (see Fig. 1). TOLDI was chosen as a feature
descriptor, because it was shown to be robust to data sampled
irregularly (which is the case for multiple stereo reconstruc-
tion surfaces merged together), robust to varying levels of
noise and invariant to rigid transformations [23].

Distances

The geodesic distance represents the shortest distance on the
surface between two points. If the surface changes topology
through holes or irregularities in the data, the geodesic dis-
tances might become unreliable. Another failure case would
be observed if distant parts of the object come into contact
and create new shortest paths between feature points. How-
ever, it is unlikely the liver shape will change topology in the
initial stages of the surgery.

The intraoperative data collected during laparoscopic
surgery will most likely have some degree of sparsity—
sparse point clouds [3], sparse data collection [4], sparse
stereo reconstructed patches [5].

So, let S be a smooth interpolated surface of the intraopera-
tive point cloud, 7. The target feature points, {#,}, and contour
points, BT, can be expressed on the interpolated surface with
nearest neighbour computation. The geodesic distances on
S are computed using the fast marching algorithm [24,25].
This step is the most computationally expensive to compute
in our implementation. However, faster alternatives can be
employed [26].

Estimating the rigid transform

The proposed shape matching technique starts with a large set
of correspondences, C, and spectral analysis prunes out the
outliers, resulting in Cp. The final set of correspondences is
not guaranteed to consist only of correct matches, especially
in cases with significant deformation.

Random sampling and consensus (RANSAC) [27] (see
Fig. 1) is used to get the best minimal solution {(m, t);} € Cp
out of the pruned set of correspondences Cp. The final pairs
{(m, t);} are used for the least squares estimation of rotation
and translation. The estimated transformation is considered
to be a good fit if the root-mean-squared error (RMSE)
between the target and moving models is less than a thresh-
old dransac and the difference between the normals is
less than a specific angle threshold anormals: dot(n,,, n;) <
cos(@normals) VY (. nt)i € Cp.

Results

Three sets of experiments were conducted to validate the
proposed method. Firstly, the robustness to the specific chal-
lenges present in laparoscopic interventions (partial views,
varying degrees of deformation) was tested on synthetic data.
Secondly, the proposed initial alignment method was quan-
titatively validated in a liver phantom experiment. Finally,
qualitative results are shown on retrospective clinical data
from a dataset acquired during a human liver resection.

The same parameters are used for all our experiments
both on synthetic and on clinical data (o; = o, = 0.3,
a = 0.6). The maximum number of iterations used for
RANSAC is 1000. The difference between the normals is
set as dpormals = 00° in order to account for some of the
deformation. Similarly, dransac = 5 mm in the rigid case
scenario (see “Robustness to reduced partial size” section)
and dransac = 10mm for the remaining experiments. If
no solution is found with the RMSE lower than draNsAC,
the transformation which resulted in the smallest error over
all the iterations is used. The feature points, descriptors and
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Fig.3 Experiments on synthetic data. Top: robustness to reduced par-
tial size in the target model, 7', bottom: robustness to increasing levels of
deformation in 7'. The target model representing 23% of the total liver

geodesic distances on the CT mesh are precomputed and
stored, in order to minimise the computation time during
surgery. The liver contours are currently manually delineated
in a matter of seconds, and techniques to automate this step
will be investigated in the future.

The proposed method was implemented in Matlab and
C++, on a MacOS 10.11.2 laptop with an Intel Core i7
3.1 GHz processor. The libraries used as dependencies can
be found in [21,23,25,28]. The mesh processing applications
MeshMixer! and Meshlab [29] were used for visualisation
and simulation purposes.

Synthetic data

We validate the robustness of the proposed method to par-
tial views of the liver and to increasing deformation levels.
The mesh of a liver phantom (OpenCAS [8]) is used as the
moving model, M. The mean distance between the estimated
registration result and ground truth vertex correspondences
is measured. Three algorithms are compared:

— (R) RANSAC applied directly to the initial set of corre-
spondences, C. No pruning is applied.

! http://www.meshmixer.com.
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surface is used in the bottom experiment with increasing deformation
levels. Color coding: moving model, M—blue, target model, 7—pink

— (SM +R1) The initial set, C, is pruned based on geodesic
distances alone, following the spectral analysis technique
detailed above. RANSAC is applied on the pruned set,
Cp.

— (SM + R2—ours) The proposed technique with both
pairwise constraints.

Robustness to reduced partial size

We test the robustness of the proposed method to reduced
partial views of the liver. For this experiment, there is a rigid
transformation between the moving (M) and target (7') mod-
els, with all the remaining parameters fixed.

In this experiment, the target model, 7, is simulated by
creating 10 partial views of decreasing sizes (from 43 to 7%)
by cropping the original liver mesh M. This step was manu-
ally performed in Meshlab. Each algorithm is run 500 times
for each size. The mean and standard deviation of the result-
ing errors are reported in Fig. 3-top.

Robustness to deformation

We validate the robustness of the proposed algorithm to
increasing levels of deformation in the data. A large defor-
mation is applied with control points on the left lobe of the
liver mesh M. Intermediate levels of deformation are gener-
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Fig. 4 Phantom experiment. Our proposed global initial alignment is
sufficient to allow potentially any fine alignment method to successfully
converge. The TRE distribution after convergence of LM-ICP [10] is

ated with vertex linear morphing between the original liver
shape and the deformed one. These steps were achieved in
MeshMixer and Meshlab. Figure 3-bottom shows examples
of the different deformation levels with 17 being the highest.

We choose the size of the partial view as 23% (Fig. 3-
top, middle shape) since this can be registered well by all
algorithms tested. Visually, it represents a realistic size for a
laparoscopic view.

In this experiment, the deformation level is the only vari-
able. Each algorithm is run 500 times for each deformation
level. The mean and standard deviation are presented in
Fig. 3-bottom.

Liver phantom

The proposed method is validated using the OpenCAS [8]
public dataset, which contains 3D meshes from an experi-
ment in which a silicone liver phantom is deformed by an
indentation. The positions of small Teflon marker balls in
both the initial and deformed states of the phantom are given.
Please refer to Suwelack et al. [8] for more details about how
the dataset was built.

The 3D model of the liver phantom in its initial state is
used as the moving model, M. The proposed coarse regis-
tration method is tested in two scenarios. Firstly, a partial
view of the deformed liver phantom is used as the target
model, T (Fig. 4-left), which tests the performance under
deformation, partial and sparse data. Secondly, a partial sur-
face reconstructed from an intraoperative stereo endoscopic
camera (Fig. 4-right) is used as 7. On top of deformation
and partial data, this scenario also tests the proposed method
in realistic noise levels from a stereo reconstruction. After
the global alignment is estimated with the proposed method,
Levenberg—Marquardt iterative closest point (LM-ICP)[10]
is applied. The distribution of target registration error (TRE)
in mm is computed for both cases. The mean TRE for the par-

shown for a partial region of the deformed surface (left) and a partial sur-
face reconstruction from an intraoperative stereo laparoscopic camera
(right) Color coding: moving model, M—blue, target model, 7T—pink

tial deformed surface is 7.94 mm after our proposed global
alignment, which is further reduced to 7.77 mm after LM-
ICP. Similarly, in the case of the intraoperative partial surface,
the mean TRE of 28.62 mm after the global alignment is
decreased to 12.10 mm after LM-ICP. The best case scenario
for rigid registration would be point-based alignment of the
marker ball positions before and after deformation, with a
mean TRE of 5.66 mm.

Application in clinical data

The proposed approach is demonstrated on clinical data from
a video sequence acquired during a laparoscopic liver resec-
tion. The 3D mesh of the liver surface was extracted from a
CT scan before surgery.” We use the SmartLiver system [5]
to process the retrospective data. The liver is automatically
segmented in the laparoscopic video with a deep learning
framework [30]. Surface patches are collected to cover all
the visible surface in each video [31]. They are consequently
merged together using optical tracking data.

Figure 5 shows the visual assessment between the manual
alignment performed on the SmartLiver GUI and the pro-
posed method. The last column illustrates an example of
augmented reality in laparoscopic liver surgery after LM-
ICP is applied to the proposed alignment.

Discussion

The results from the first experiment show that when the
intraoperative surface is large enough, all three methods
have comparable results. However, having surfaces with size
smaller than 23% of the whole mesh becomes challenging
for both R and SM + R1. From what we noticed in our

2 www.visiblepatient.com.
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Manual alignment

Proposed alignment

Laparoscopic video feed

Fig.5 Global alignment on clinical data from a dataset acquired during
a laparoscopic liver resection. Color coding Alignment: moving model,
M—blue, target model, T—pink. The overlay is computed after apply-

datasets, such surfaces are characteristic for videos acquired
on the left lobe in laparoscopic interventions with restricted
camera movement. Note how the proposed method has less
variance in the solutions even for smaller partial shapes. The
additional pairwise term which incorporates the boundaries
of both M and T makes the problem less ambiguous, as
opposed to just using the geodesic distances between pairs
of correspondences.

The second experiment illustrates robustness to increas-
ing deformation levels in the partial views. Similarly to the
previous experiment, the proposed method is more consis-
tent across different deformations, with less variation in the
solutions it provides. This is mostly due to the fact that the set
of correspondences, Cp, obtained from the proposed method
contains fewer outliers than the other methods.

These methods are compared with RANSAC because it
is a popular algorithm for finding correspondences between
point sets related by parametric transformations. f RANSAC
is applied directly on the set of correspondences C, it is
unable to obtain a good alignment. This is mostly due to
the fact that the initial set will contain a high number of out-
liers, due to the low descriptiveness of the data. Moreover,
for partial shape sizes characteristic to laparoscopic surgeries
(less than 23% in Fig. 3), there are multiple locations on the
liver which result in a good fit. However, by allowing for
deformation in the proposed pruning technique, a set of cor-
respondences, Cp, is obtained in the correct region of interest,
which can be further refined by RANSAC. This approach
is also more computationally efficient since RANSAC has
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ing LM-ICP on the proposed alignment. Color coding Overlay: liver
tumour—green, vessels—purple, liver contour—yellow

to find three good pairs of correspondences from small sets
(approximately 10 correspondences, depending on the data).

A quantitative evaluation of the proposed algorithm is per-
formed on a phantom dataset with partial size, deformation
and realistic noise levels. The partial surface used in Fig. 4-
right is illustrative for an intraoperative scenario, since the
data are collected using a stereo laparoscope. The proposed
method succeeds in providing a good initial alignment, and
it is shown that further fine alignment methods (such as LM-
ICP) can successfully converge towards the correct location.
The current errors are comparable to the literature in the rigid
case scenario [5-7]. Since most fine registration algorithms
can converge successfully if the coarse alignment is within a
few cm [9], the proposed method achieves results within the
desired range. In order to decrease the errors further, we will
investigate non-rigid refinement methods in the future.

We show promising results on a retrospective video
acquisition from a laparoscopic liver surgery. The proposed
method is compared against a manual alignment performed
on the SmartLiver GUI Qualitative results are provided to
illustrate that the proposed method manages to correctly
identify the liver region in a challenging environment with
realistic noise levels, significant deformation and small par-
tial views. Note that the proposed method aims to estimate a
coarse surface alignment, which can then be further refined
with a local algorithm. For example, Fig. 5-right shows an
overlay computed by applying LM-ICP on the coarse align-
ment estimated by our method. Furthermore, the current
computational time required to compute the initial alignment
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between surfaces is approximately 20 s with non-optimised
code, which makes it feasible for clinical usage.

Our experiments were all performed using the same choice
of parameters, suggesting the proposed method is not very
sensitive to variations. However, in the future we would like
to investigate their influence. Although the experiments pre-
sented here show promising results, we would like to validate
the proposed technique on clinical data from more patients
to test its robustness with respect to liver surface variations.
Furthermore, we are looking into ways to automate the liver
contour selection, such that no user interaction is needed and
the whole process is fully automated.

Conclusion

We propose a fast and global method for surface-based reg-
istration of a 3D liver mesh extracted from a preoperative
CT scan of the liver and the surface reconstruction of the
intraoperative laparoscopic video feed. We have validated
its performance with respect to the challenges characteris-
tic to laparoscopic surfaces on synthetic data, on a phantom
dataset and on retrospective clinical data. We conclude that
the proposed method could potentially be used as an auto-
matic way of obtaining a good initial alignment between the
two surfaces, given the required features. Moreover, it does
not require any advanced hardware, which makes it accessi-
ble and comparatively easy to translate to a clinical setting.
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