Skip to main content
. 2018 May 23;9:634. doi: 10.3389/fpls.2018.00634

Table 3.

Performance comparison of MU-LOC with existing tools for predicting plant mitochondrial proteins with N-terminal pre-sequences (independent testing set 2).

Tool Parameter Specificity Sensitivity Accuracy Precision MCC
MU-LOC(DNN) Default 0.964 0.692 0.937 0.682 0.652
MU-LOC(SVM) Default 0.974 0.662 0.943 0.741 0.669
TargetP Sperschneider et al., 2017b 0.891 0.646 0.867 0.396 0.440
Predotar Sperschneider et al., 2017b 0.944 0.600 0.910 0.542 0.520
YLoc Sperschneider et al., 2017b 0.940 0.462 0.893 0.462 0.400
MitoProt II Probability > 0.8a 0.842 0.600 0.817 0.295 0.329
MitoFates Default 0.966 0.615 0.931 0.667 0.602
LOCALIZER Sperschneider et al., 2017b 0.952 0.600 0.917 0.582 0.540

For the performance metrics used, the higher the value, the better the prediction accuracy. Results with the best performance are highlighted in bold. aThe webserver of MitoProt II only provides the prediction scores, and we chose a cut-off score of 0.8 to label the prediction class. bWe cited the performance metrics reported by Sperschneider et al. (2017) since the exact same testing set was used.