Table 3.
Tool | Parameter | Specificity | Sensitivity | Accuracy | Precision | MCC |
---|---|---|---|---|---|---|
MU-LOC(DNN) | Default | 0.964 | 0.692 | 0.937 | 0.682 | 0.652 |
MU-LOC(SVM) | Default | 0.974 | 0.662 | 0.943 | 0.741 | 0.669 |
TargetP | Sperschneider et al., 2017b | 0.891 | 0.646 | 0.867 | 0.396 | 0.440 |
Predotar | Sperschneider et al., 2017b | 0.944 | 0.600 | 0.910 | 0.542 | 0.520 |
YLoc | Sperschneider et al., 2017b | 0.940 | 0.462 | 0.893 | 0.462 | 0.400 |
MitoProt II | Probability > 0.8a | 0.842 | 0.600 | 0.817 | 0.295 | 0.329 |
MitoFates | Default | 0.966 | 0.615 | 0.931 | 0.667 | 0.602 |
LOCALIZER | Sperschneider et al., 2017b | 0.952 | 0.600 | 0.917 | 0.582 | 0.540 |
For the performance metrics used, the higher the value, the better the prediction accuracy. Results with the best performance are highlighted in bold. aThe webserver of MitoProt II only provides the prediction scores, and we chose a cut-off score of 0.8 to label the prediction class. bWe cited the performance metrics reported by Sperschneider et al. (2017) since the exact same testing set was used.