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Gene expression levels exhibit stochastic variations among genetically identical organisms under the
same environmental conditions. In many recent transcriptome analyses based on RNA sequencing
(RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative
binomial distribution, although the physiological basis of this assumption remains unclear. In this study,
RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and

the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene
expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of
gene expression levels were obtained that were classified as Gaussian, power law-like containing a long
tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function
derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting
function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced

by feedback regulation. Furthermore, the features of gene expression levels are correlated with their
functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes
encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.

Stochastic variations in gene expression—known as gene expression noise or phenotype fluctuation—have been
observed among individuals in a genetically identical population under the same environmental conditions'™!.
Such variations are thought to be important for maintaining the pluripotency of embryonic stem cells, cell fate
decisions, and cellular differentiation in multicellular organisms'>-"°. In rice, genes related to stress responses
exhibited larger variations than those involved in other processes's. Furthermore, recent studies in Escherichia
coli, the budding yeast Saccharomyces cerevisiae, and Arabidopsis thaliana have reported that the magnitude of
gene expression noise is positively correlated with plasticity—i.e., the variation in expression levels due to muta-
tion or environmental change'’~?’.

Recent gene expression analyses with sufficiently large replicates have shown that in organisms as diverse as E.
coli and mammals, fluctuations in protein expression level for a given gene follow a log-normal distribution®%”17.
The closely related Frechet distribution was also proposed to describe variations in gene expression levels in E. coli

© and . cerevisiae®®. On the other hand, mathematical modeling of protein expression in E. coli suggested that such
© variations were more closely approximated by a gamma distribution, which is often considered as log-normal®?.
: In many recent high-throughput RNA sequencing (RNA-seq) studies®>*!, variations in gene expression (tran-
scription) levels among replicates were assumed to follow a log-normal distribution®>*® or a negative binomial
(NB) distribution®*-%. An analysis of RNA-seq data from a two-condition, 48-replicate experiment using S. cere-
visiae revealed that variations in expression levels for each gene conformed to both log-normal and NB distribu-
tions. Beta-binomial and Benford distributions have been proposed for fitting gene expression data obtained by
RNA-seq*”*%. However, the physiological basis of these distributions and the significance of associated parameters
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Age Time after No. of
Condition (days) | light (h) Replicate | analyzed genes
7-1 7 1 21 10,499
7-7 7 7 21 9287
7-13 7 13 25 10,760
7-19 7 19 24 10,735
22-1 22 1 22 9619
22-7 22 7 24 12,109
22-13 22 13 24 12,810
22-19 22 19 27 11,338

Table 1. Number of replicates in the RNA-seq experiment and number of analyzed genes for each condition of
Arabidopsis.

remain unclear. Furthermore, it is not known whether such model distributions are applicable to any genes in any
organism, especially multicellular organisms.

Gene expression noise in plants has been investigated in rice and Arabidopsis'®**°. However, recent studies
were based on transcriptome data from experiments with few replicates**-*, which limited the inferences that
could be made regarding the distribution characteristics of gene expression levels. In the present study, we ana-
lyzed RNA-seq data for A. thaliana under eight conditions (21-27 replicates) to observe the empirical probability
distribution profiles of gene expression levels among individuals in a homogeneous population. We fitted the
distribution profiles with a novel function that we termed the Gauss-power (G-P) mixing distribution function,
which was derived from a simple stochastic transcriptional network model containing a feedback loop. Moreover,
the features of each probability distribution function in gene expression level are expected to be correlated with
the strength of feedback regulation for each gene, its average expression level, and its function.

Results

Analysis of Arabidopsis RNA-seq data. RNA-seq data from 7- and 22-day-old Arabidopsis shoots cul-
tured under a 12:12-h light/dark cycle were obtained 1, 7, 13, and 19 h after the lights were turned on. There were
21 to 27 replicates for each condition. In total, 189 individual plants were analyzed by RNA-seq. We obtained 8.4
million reads on average; one sample with fewer than 1 million reads mapped to genes was omitted from sub-
sequent analyses. The expression level was quantified according to a previously described pipeline*® (Table S1).
For each condition, we examined the distribution profiles of expression levels of ~10,000 genes (Table 1) whose
expression levels could be regarded as stationary (see Materials and Methods).

Cluster analysis of empirical cumulative distribution function (eCDF) profiles of genes. eCDF
profiles were obtained for each gene under each condition (harvest time and age of plant) by arranging its expres-
sion levels in ascending order (Fig. 1). For most genes, the eCDFs showed typical profiles but were very noisy. We
then performed a cluster analysis to estimate an ideal curve of eCDF profiles from which noise has been removed
for each gene (see Materials and Methods).

For each condition, 12-15 clusters were obtained from normalized eCDF profiles (Tables S2 and S3), repre-
senting the relationship between standardized expression levels for mean =0 and standard deviation=1 and
normalized eCDF from 0 to 1. The average values of standardized expression levels of genes belonging to the
same cluster were expected to reflect the essential features of their eCDF profiles. Thus, these average values
were considered in order to estimate and analyze eCDF profiles of each gene. Since gene expression levels are
non-negative, we analyzed normalized eCDFs that were shifted such that the minimum value on the horizontal
axis was assumed to be 0 (the value on the horizontal axis represents normalized expression level) (upper and
lower left in Fig. 2).

Inferences on probability density distribution profiles of gene expression levels.  The derivative
of eCDF yielded the profiles of empirical probability density function of normalized expression levels (ePDF)
for each cluster (Figs 2 and S1-S8). The derivative of this function was estimated by differential approximation
(see Supplementary Information S1). ePDF profiles obtained from the clusters showed variable shape, including
Gaussian and power law-like distributions.

G-P mixing distribution function. The ePDF profiles of gene expression levels were systematically clas-
sified based on the following mathematical model. A novel probability density function, which we refer to as
Gauss-power mixing function (G-P function), is described by equation 1.

2gK—K?
K+ x 2
x f

fx (1)

2
18K x?
7; T+(2ng)x+7

P(x) = A

This equation is a fitting function of the probability density function of expression level x of the gene of interest
X; the parameter A is a normalized coeflicient; and f, g, and K are constants whose physiological significance is
described below.
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Figure 1. eCDF profiles of genes in respective clusters. eCDF profiles of indicated genes under specific
conditions. As examples, results obtained from RNA-seq data at 13 h for 7-day-old Arabidopsis are shown.
Similar RED profiles were grouped by cluster analysis.
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Figure 2. Examples of eCDF and ePDF for indicated clusters. Representative profiles of eCDF (left) and ePDF
(right) as a function of normalized expression levels for three clusters. Red and blue represent curves fitted with
the G-P and NB distribution functions, respectively. Least square error was estimated for the fitting curves.

In general, the expression levels of genes are increased by activation and decreased by inhibition of upstream
genes, and influence the expression levels of their downstream targets in a gene regulatory network. They are
also positively or negatively regulated by the expression levels of their downstream targets either directly or indi-
rectly because the gene regulatory network includes many positive and negative feedback loops (Fig. 3). Thus,
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Figure 3. Illustration of a gene network model that fits a G-P function. Gene X is regulated by upstream genes
and by stochastic feedback.

the expression level of each gene may regulate itself through such feedback loops. Furthermore, gene expression
levels always exhibit and are influenced by stochastic noise to a degree that is correlated with the levels themselves.

Thus, a simplified model of the temporal change in the expression level x of gene X influenced by upstream
genes and feedback regulation (Fig. 3) is given by equation 2:

dx
o =G+ R(t) + T n(t) — Cx 2)

where R(t) and 7)(t) are assumed to be Gaussian white noise with (R(¢)) = (n(¢)) = 0,(R(t)R(t")) = 2Dé(t — t'),
and n(t)n(t") = 26(¢+ — t'); the parameters G, K, F, and C are ~ [average activation rate of X by upstream genes], ~
[average expression level of X required to induce maximum expression of downstream genes], ~ [magnitude of
feedback effects], and [degradation rate of X], respectively. If D/C—0 is assumed, P(x) gives the steady-state prob-
ability distribution of x where g= G/C and f= F/C (see Supplementary Information S2).

It is worth noting that the parameter K can be eliminated from Eq. (2) by appropriate variable conversion that
decreases the number of parameters in the model. From this model, a G-P function with two parameters only can
be derived. However, in such a two-parameter-model, a specific scale of x is given in the process of elimination
of K. Thus, generally Eq. (1) appears to be appropriate for the fitting and analysis of ePDF profiles. Moreover, K
and F (or F/K) characterize the feedback effect, similar to the Michaelis constant and maximum reaction velocity,
respectively, of various biochemical reactions. We, therefore, included these parameters in the present argument.

Fitting of ePDF profiles. ePDF profiles of each cluster under each condition were fitted with the G-P func-
tion and (generalized) NB function according to equation 3:

Disx +k+1) 4 -
PR 0N —
T(k)(sx + 1) & Q 3)

where I'(r) is the gamma function; s, k, and Q are fitting parameters; and B is a normalized coefficient. Note that
the parameter s—which is usually equal to 1—contributes to the generalization for various scales of x.

The characteristics of ePDF profiles for some clusters can be extracted from plots with a linear scale axis;
however, it is more difficult to extract those of profiles with much larger maximum values and that exhibit power
law-like profiles, for which log-log plots seem more suitable when the maximum ePDF value is greater than 3. In
order to extract their detailed characteristics, ePDF profiles were fitted using a typical least squares method for
maximum ePDF values <3; ePDF fitting parameters were chosen so as to minimize the sum of squared errors
between log[ePDF] and log|[fitting functions] when the maximum ePDF value was >3.

The results of fitting by the G-P and NB functions suggest that the G-P function has a least square error that
tends to be smaller than that of the NB function for ePDF profiles of most clusters (Fig. 2 and Table S3), whereas
the G-P function has a smaller LSE than the NB function for ~82% of ePDF profiles of clusters (86/105 clusters).
It should be noted that both G-P and NB functions include the same number of parameters. Thus, the former pro-
vides a function that better fits ePDF profiles than the latter. Therefore, in subsequent analyses the ePDF profiles
were classified according to a G-P function.

N(x) =

Classification of ePDF profiles. When ePDF profiles of each cluster were fitted with the G-P function, they
were classified by three clearly divided groups with different log(K/g), K=0 or log(K/g) <—1.3, —0.6 <log(K/g)
<0.1, and log(K/g) >0.4 (Fig. 4 and Table S3). Here, log(f/g) showed a strong positive correlation with log(K/g) in
second and third groups of log(K/g) (Fig. 4). From Eq. (2), the power-law distribution of x was obtained over a wide
range of log x in the case of a much larger K/g (and f/g), while a Gaussian distribution was obtained in the case of
a much smaller K (see Supplementary Information S2). Thus, a G-P function with K>> g was closer to a power law
distribution. Based on these facts, ePDF profiles could be classified as one of three types: Gaussian (K< g), power
law-like (K>>g), or intermediate (K~ g) (Table S3). When the influence of feedback effects is large relative to other
mechanisms regulating gene expression, gene expression levels exhibit a long-tailed power law-like distribution.
Even for the same gene, ePDF profiles varied depending on plant age and harvest time (Table S2). In particu-
lar, genes exhibiting an intermediate ePDF profile at one time point tended to exhibit other profiles at other time
points (Table S2). The ratio of occurrence of Gaussian, intermediate, and power law-like distributions at four time
points in younger plants (7 days old) was ~30:26:44, while that of older plants (22 days old) was ~45:29:26. High
average expression levels were more frequently associated with a Gaussian as compared to a power law-like distri-
bution; average expression levels and peak value of the frequency distribution were higher for the former than for
the latter (Fig. 5). However, it was difficult to clearly classify each gene based solely on the mean expression level,
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Figure 4. Relationships among fitting parameters of the G-P function from each ePDF profile of each cluster.
Scatterplot of f/g and K/g of the G-P function that fits each ePDF profile of each cluster. Overall image (right)
and local image near the origin (left). (f/g, K/g) clearly distinguish three groups—i.e., log(K/g), K= 0 or log(K/g)
<—1.3 (blue), —0.6 <log(K/g) <0.1 (black), and log(K/g) >0.4 (red). For convenience, when K=0, log
(K/g)=log (10~*/g) is plotted.
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Figure 5. Frequency distributions of average gene expression levels of gene groups exhibiting distinct ePDF
profiles. Frequency distributions of average log gene expression levels in cases of Gaussian (blue), intermediate
(black), and power law-like (red) distributions in 7-day-old (left) and 22-day-old (right) Arabidopsis.
Differences in average log gene expression levels between Gaussian and intermediate, and between mixed and
power law-like distributions were significant (P < 0.01, t test) at both plant ages.

since ePDF profiles of genes with moderate mean expression levels exhibit Gaussian, intermediate, or power-law
like distribution.

Gene function was also correlated with ePDF profiles (Tables 2 and S4). For example, more than half of so-called
essential genes*® showed a Gaussian distribution at four time points in young and old plants. Furthermore, genes
encoding important intracellular components and organelles and those associated with electron transport in meta-
bolic pathways tended to show Gaussian distributions. On the other hand, genes encoding transcription factors and
nucleic acid-binding proteins mostly exhibited power law-like and intermediate distributions.

Discussion

More than 20 replicates of A. thaliana gene expression data at four harvest times of 7- and 22-day-old shoots were
obtained and the ePDF profiles of each gene were analyzed. Most profiles could be fitted with a G-P function.
Each gene could be classified by parameters of the G-P function fitting its ePDF profile of expression levels. There
were three typical ePDF profiles—namely, Gaussian, power law-like, and intermediate.

The G-P function suggested that the various types of ePDF profile were highly correlated with network topol-
ogy, particularly a feedback loop regulating gene expression; for instance, gene groups showing a power law-like
distribution were predicted to be significantly influenced by a feedback mechanism, while this was rare for those
exhibiting a Gaussian distribution.

In the present argument, Eq. (1) was obtained under the assumption that D/C is considerably smaller than
any of the other values for the sake of simplicity. Equation (1) can play an important role in unambiguously
classifying genes based on their ePDF profiles. On the other hand, the Gaussian distribution can be derived from
Eq. (2) in cases not only such as (i) K ~ 0 and F/C> 0 (D/C ~ 0) as shown above, but also those such as (ii) F=0
and D/C > 0. For some genes, for example those without any downstream, Eq. (2) with F=0 and D/C > 0 may
provide a more suitable model for the fluctuation of transcription levels.

There are other possible interpretations and mechanisms for a G-P function. In addition, Eq. (2) should be
derived based on the general features of gene regulatory networks to confirm its validity as an effective model of
gene regulatory dynamics. Relevant studies are now underway.

The ePDF profiles of genes were correlated with their average expression levels and functions; gene groups clas-
sified as being essential for survival tended to exhibit Gaussian distributions, whereas those encoding transcription
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7 days old

Power Intermediate | G
All genes 0.435357671 | 0.260434582 | 0.304207747
Essential genes 0.208732694 | 0.248136315 | 0.54313099
GO annotated genes 0.322610702 | 0.276288934 | 0.401100364
(GO slim)
Mitochondria 0.464503043 | 0.249492901 0.286004057
Extracellular 0.45 0.246206897 | 0.303793103
Plastid 0.149706795 | 0.245946878 | 0.604346326
Cytosol 0.205555556 | 0.283597884 | 0.510846561
Ribosome 0.216624685 | 0.258186398 | 0.525188917
Transcription factor activity 0.484303056 0.239849309 0.275847635
Nucleic acid binding 0.458526875 | 0.262773723 | 0.278699403
Other molecular functions 0.448415374 | 0.224544842 | 0.327039784
Structural molecule activity 0.204889406 | 0.263096624 | 0.53201397
Electron transport or energy pathways 0.154351396 0.238095238 0.607553366

Table 2. Relationships between gene groups classified according to function and ratio of occurrence of ePDF
profiles.

factors and nucleic acid-binding proteins mostly followed a non-Gaussian (i.e., power law-like or intermediate)
distribution. Furthermore, the expression levels of many genes classified as “unknown” exhibited power law-like
distributions (Table S4), suggesting that their expression is predominantly modulated by feedback loops.

ePDF profiles of gene expression levels were inferred from publicly available RNA-seq data derived from
48-replicate experiments of S. cerevisiae®® in the same manner as in the present study. The G-P as well as the
NB function fit the ePDF profiles of S. cerevisiae (Fig. S9). However, long-tailed power law-like ePDF profiles
were not observed unlike for Arabidopsis genes for reasons that are unclear. There are many differences between
Arabidopsis and S. cerevisiae: the former is a multicellular organism that undergoes differentiation, in which genes
different genes are required by different cell types; it also exhibits circadian rhythm, with gene expression profiles
showing variations over time; and finally, as a plant it has complex metabolic and gene regulatory networks that
allow it to adapt to environmental stresses. Thus, Arabidopsis is expected to have more complex gene regula-
tory networks that include extensive feedback regulation than yeast; thus, some Arabidopsis genes can exhibit
power-law like ePDEF, unlike those of yeast.

Even when the analysis was performed using 24-replicate data randomly selected from the 48-replicate data-
set, the results were qualitatively similar to those described above, except that the number of clusters differed
(Fig. S10). Although the number of replicates in the present study was smaller than that used in the earlier report,
our results reflect the essential properties of the ePDF profiles of Arabidopsis genes and are expected to apply to a
larger number of replicates.

The present study showed that the expression levels of some Arabidopsis genes often exhibit power-law like
distribution profiles that have not been reported in earlier RNA-seq analyses of various organisms. To obtain a
long-tailed power law-like ePDEF, a sufficient amount of rare data exhibiting a much higher expression levels than
other genes must be observed. Such rare data have mostly been neglected as outliers in recent RNA-seq analyses
with two or three replicates. On the other hand, the present RNA-seq analysis with more than 20 replications
should provide a sufficient amount of such rare data that constitute the long-tail portion of ePDF profiles.

As shown in Fig. 1, the eCDF of transcription levels of each gene did not follow a smooth curve, but had a
staircase-like slope. Accordingly, the obtained ePDF profile was too jagged for fitting and analysis. In the present
study, the expression levels of different genes in the same cluster were mixed in order to simultaneously estimate
and analyze ePDF profiles of each gene. However, it is possible that the present analysis contains some statistical
bias. In order to test the validity of the present method and estimate such bias, it is necessary to analyze more data
on the expression levels under identical conditions that can estimate the ePDF profile of each gene. Experiments
involving larger replicates and additional statistical methods to analyze the present data are being developed and
will be reported in the future.

In the present study, Arabidopsis genes were clearly separated into three classes. However, the underlying
mechanistic and physiological reasons remain unclear; this issue should be analyzed in future.

This study mainly focused on the steady-state probability distributions of gene expression levels. However,
many Arabidopsis genes are regulated by circadian rhythm. Future studies must therefore address the extent to
which the present model can be generalized to dynamic situations. Furthermore, eq. (2) represents the expression
of genes following a power law-like distribution, which is considered to exhibit intermittent temporal changes.
This fact suggests a novel transcriptional burst mechanism®%4-%° for genes based on feedback regulation. Such
dynamic features of gene expression warrant more detailed examination.

Materials and Methods

Plant growth conditions and RNA-seq. Seeds of A. thaliana (accession Col-0) were sown on Murashige
and Skoog medium with 0.5% gellan gum. After incubation for 2 days at 4 °C in dark, the seeds were cultivated
at 22°C on a 12:12-h light/dark cycle. The whole aerial part of plants 7 or 22 days after germination was collected
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1,7, 13, and 19h after the start of light period and immediately frozen in liquid nitrogen and stored on —20°C
until RNA extraction. Each individual plant was used as a sample for RNA-seq. Total RNA was extracted with
the Maxwell 16 LEV Plant RNA kit (Promega, Madison, W1, USA). RNA-seq library preparation was performed
as previously described®’; seven lanes of single-end 50-bp sequencing of the library were analyzed using the
Hiseq. 2000 and HiSeq. 2500 systems (Illumina, San Diego, CA, USA). Sequences were pre-processed, mapped,
and quantified according to a previously described pipeline. Fastq files were deposited into the DNA Data
Bank of Japan Sequence Read Archive as accession no. DRA005887. Quantified expression data are available as
Supplementary Information (Table S1).

Analysis of gene expression level variation bias. Owing to technical limitations, there was a time lag
of several to 10 min during the harvesting of Arabidopsis leaf samples, potentially introducing a bias in the expres-
sion levels of some genes with respect to harvest time. In order to evaluate the variation bias in gene expression
levels under each condition, we calculated the average gene expression levels from half of the samples harvested
at early time points and half harvested at late time points. Gene expression level was regarded as stationary (unbi-
ased) if the P value in the t test was >0.2.

Cluster analysis. k-Means cluster analysis using R software (http://www.r-project.org) was performed for
normalized eCDF profiles using the Eucidian metric. The number of clusters was selected so as to minimize the
Bayesian information criterion.

Data sources for gene classification. To classify each gene, the Gene Ontology Slim classification list was
obtained from TAIR (http://www.arabidopsis.org). Data on essential genes were obtained from the SeedGenes
Project (http://www.seedgenes.org/GeneList)>.
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