Skip to main content
. 2018 May 29;8:8240. doi: 10.1038/s41598-018-26392-7

Table 3.

Performance comparison between models trained with and without distributed contextual feature vectors for kinase-specific phosphorylation site prediction.

ws AGC/PKA AGC/PKC CMGC/CDK CMGC/CK2 TK/Src
Residue-level 0 0.915 +/− 0.013 0.898 +/− 0.022 0.799 +/− 0.040 0.839 +/− 0.040 0.956 +/− 0.011
Context2vec inference 7 0.609 +/− 0.043 0.653 +/− 0.056 0.570 +/− 0.042 0.736 +/− 0.056 0.828 +/− 0.051
11 0.918 +/− 0.013 0.862 +/− 0.031 0.890 +/− 0.029 0.885 +/− 0.048 0.913 +/− 0.014
15 0.895 +/− 0.020 0.862 +/− 0.028 0.885 +/− 0.030 0.893 +/− 0.043 0.895 +/− 0.016
19 0.880 +/− 0.018 0.865 +/− 0.026 0.872 +/− 0.031 0.889 +/− 0.044 0.875 +/− 0.022
Context2vec add 7 0.885 +/− 0.025 0.809 +/− 0.022 0.903 +/− 0.030 0.814 +/− 0.055 0.931 +/− 0.010
11 0.925 +/− 0.013 0.872 +/− 0.026 0.883 +/− 0.026 0.882 +/− 0.037 0.912 +/− 0.014
15 0.906 +/− 0.015 0.882 +/− 0.023 0.872 +/− 0.034 0.898 +/− 0.032 0.893 +/− 0.017
19 0.892 +/− 0.016 0.885 +/− 0.021 0.869 +/− 0.034 0.901 +/− 0.032 0.877 +/− 0.017
Residue-level + Context2vecinference 7 0.928 +/− 0.011 0.897 +/− 0.028 0.925 +/− 0.018 0.866 +/− 0.041 0.960 +/− 0.009
11 0.938 +/− 0.009 0.909 +/− 0.027 0.908 +/− 0.018 0.907 +/− 0.037 0.964 +/− 0.008
15 0.937 +/− 0.010 0.907 +/− 0.028 0.902 +/− 0.024 0.919 +/− 0.034 0.966 +/− 0.007
19 0.937 +/− 0.011 0.909 +/− 0.024 0.899 +/− 0.025 0.917 +/− 0.033 0.965 +/− 0.008
Residue-level + Context2vecadd 7 0.927 +/− 0.012 0.895 +/− 0.028 0.907 +/− 0.020 0.864 +/− 0.040 0.957 +/− 0.009
11 0.939 +/− 0.010 0.911 +/− 0.023 0.896 +/− 0.020 0.911 +/− 0.034 0.962 +/− 0.009
15 0.939 +/− 0.010 0.913 +/− 0.023 0.890 +/− 0.022 0.927 +/− 0.026 0.964 +/− 0.008
19 0.940 +/− 0.010 0.915 +/− 0.020 0.894 +/− 0.024 0.929 +/− 0.024 0.964 +/− 0.008
Residue-level + prot2vecadd(ProtVec) inf 0.908 +/− 0.013 0.874 +/− 0.022 0.738 +/− 0.042 0.827 +/− 0.036 0.954 +/− 0.010

The prediction performance was evaluated in terms of the average AUC score and the standard deviation.