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STEF/TIAM2-mediated Rac1 activity at the nuclear
envelope regulates the perinuclear actin cap
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The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear

morphology and re-orientation during front-rear polarisation. The mechanisms regulating the

actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a

Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-

localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB

(NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces

apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear

envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation

also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear

envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote

stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness

and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing

pathways as a consequence of disruption of the actin cap.
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Control of nuclear shape is important for many dynamic
cellular processes and aberrant nuclear morphology is a
feature of a number of cancer sub-types1–4. The actin cap,

a contractile structure composed of thick, aligned actomyosin
filaments that interact with the apical surface of the interphase
nucleus via the Linker of the Nucleus and Cytoskeleton (LINC)
complex, is a key regulator of nuclear morphology1,2,5. Filaments
of the actin cap can be distinguished from other stress fibres, such
as basal stress fibres or the transverse arcs that constitute trans-
membrane actin-associated nuclear (TAN) lines, both through
their parallel orientation with the cellular axis and their termi-
nation at specific actin cap associated focal adhesions (ACAFA)6.
The functional roles of this recently discovered cytoskeletal
organelle are expanding. The contractile structure of the cap
functions to constrain the nucleus, coupling nuclear and cellular
geometry, which is particularly important in migrating cells2. In
addition, the perinuclear actin cap co-operates with the inter-
mediate filament network to oppose dynein-microtubule driven
rotation of the interphase nucleus1,7–9 and an intact actin cap is
required for efficient re-orientation of the nucleus in polarising
fibroblasts10. The tension force required to constrain and anchor
the nucleus is dependent on actomyosin contractility generated
by the actin motor Non-muscle myosin IIB (NMMIIB); depletion
of NMMIIB causes nuclear expansion and an over-rotation
phenotype11. There is mounting evidence that the actin cap works
to bridge the extracellular environment and the nucleus via its
connection with ACAFA and the LINC complex, providing a
direct, rapid pathway for mechanotransduction5,6,12. Stress fibres
of the actin cap exhibit greater sensitivity to changes in substrate
compliance or shear stress than basal stress fibres, and formation
of the actin cap has been shown to regulate chromatin arrange-
ment in the nucleus, supplying further evidence that the actin cap
is essential for providing mechanical continuity for rapid signal
transmission to regulate gene expression and elicit cellular
responses6,13,14.

The molecular basis of actin cap formation and stability is
poorly understood. Actin regulatory proteins are known to be
involved, including the refilin/filamin proteins. Refilin B recruits
filamin A to pre-existing perinuclear actin cables and converts its
activity from actin branching to actin bundling, promoting the
formation of the actin cap15,16. The Rho GTPase family of pro-
teins are strongly associated with the regulation of cytoskeletal
dynamics17,18, and there is a proposed role for RhoA in the
generation of perinuclear actin stress fibres and ROCK-mediated
regulation of actomyosin contractility2,19. Lipid modifications at
the C-terminal polybasic region of Rho GTPases enable their
association with membranes, where they can be regulated by
guanine nucleotide exchange factors (GEFs)/GTPase activating
proteins (GAPs) and interact with effectors20–22. Rac1 has been
shown to be localised at the nuclear membrane20, and utilisation
of a FLAIR (FLuorescence Activation Indicator for Rho proteins)
Rac1 biosensor revealed an activation of juxtanuclear Rac1 in
migrating fibroblasts23. However, very little is known about the
regulation or the functional role of localised Rac1 activity at the
nuclear envelope.

Here, we identify that the Rac1 selective GEF Sif and TIAM1-
like Exchange Factor STEF, also known as TIAM2, localises to the
nuclear envelope, co-localises with key perinuclear proteins and
regulates the activity of perinuclear Rac1. We show that down-
regulation of STEF-mediated Rac1 activity at the nuclear envelope
results in a disruption of the perinuclear actin cap, increased
nuclear height and an impairment of nuclear re-orientation
during front-rear polarisation. Moreover, we observe a decrease
in pMLC and myosin-generated tension at the nuclear envelope
in STEF-depleted cells, indicating that localised STEF-mediated
Rac1 activity might regulate NMMIIB activity to promote

stabilisation of the actin cap. Consistent with these data, STEF
depletion results in a decrease in nuclear stiffness and reduced
expression of TAZ-regulated genes, indicating that mechan-
osensing pathways are altered.

Results
The Rac activator STEF localises to the nuclear envelope. We
observed that endogenous STEF localises to the nuclear envelope
of U2OS cells, with fluorescence intensity profiles displaying two
clear peaks of STEF signal intensity correlating with the nuclear
periphery, as verified by DAPI staining (Fig. 1a, b). Two inde-
pendent STEF-depleted CRISPR clones (CRISPR#1 and
CRISPR#2) were generated in the U2OS cell line and validated by
SURVEYOR assay, which revealed the targeted disruption of one
STEF allele (Supplementary Fig. 1a, b). The STEF-depleted
CRISPR clones exhibited a substantial reduction in fluorescence
intensity for STEF, with a loss of the nuclear ring localisation,
indicating that the fluorescence signal is specific for STEF (Fig. 1a,
Supplementary Fig. 1c, d). The perinuclear localisation of endo-
genous STEF was observed in multiple cell types including mouse
embryonic fibroblasts (MEFs), COS-7 cells and lung adeno-
carcinoma A549 cells (Fig. 1c). Furthermore, exogenous full-
length STEF (FL-STEF) clearly exhibited a perinuclear localisa-
tion (Fig. 1d). Interestingly, we also observed what appears to be
intra-nuclear STEF, including puncta, which are reduced in the
CRISPR clones (Fig. 1a); however, this study focuses on the role
of the perinuclear pool of STEF.

To determine the structural domain of STEF responsible for
this interesting perinuclear localisation, we analysed the localisa-
tion of a range of deletion mutants of STEF in U2OS cells and
compared their localisation to exogenous FL-STEF (Fig. 1d–f).
Deletion of the STEF N-terminus (ΔN-STEF) did not affect
localisation to the nuclear membrane (Fig. 1d). In addition,
deletion of the CC-EX, PDZ, DH or the N-terminal PH domain
(PHn) of STEF did not affect its ability to localise to the nuclear
membrane (Fig. 1e, f); however, deletion of its C-terminal PH
domain (PHc) abolished its perinuclear localisation (Fig. 1e, f).
Additionally, we observed that a truncated form of STEF
containing only the DH-PHc domains does localise at the nuclear
envelope (Fig. 1e, f). Taken together these results indicate the
importance of the C-terminal PH domain in mediating the
localisation of STEF at the nuclear envelope. Fractionation of
total-cell lysates, as performed in ref 24, confirmed a substantial
pool of perinuclear-enriched STEF in both U2OS and MEFs
(Fig. 1g and Supplementary Fig. 1e). To our knowledge, this is the
first identification of a GEF for Rac1 at the nuclear envelope, and
interestingly this localisation is not shared by the close
homologue of STEF, TIAM1 (Supplementary Fig. 1f, g). To
investigate the localisation of STEF in relation to the structure of
the nuclear envelope, U2OS cells were treated with digitonin to
selectively permeabilise the cholesterol-rich plasma membrane
while leaving the nuclear membrane intact25. We then probed
with antibodies for STEF and Lamin A/C (which localises on the
interior of the nuclear envelope) (Fig. 1h). We observed
substantial staining for STEF in digitonin-permeabilised cells,
with no staining for the intranuclear control Lamin A/C,
indicating the presence of a pool of STEF at the cytoplasmic
face of the outer nuclear membrane (Fig. 1h).

STEF indirectly interacts with Nesprin-2G and NMMIIB. To
corroborate the perinuclear localisation of STEF, we investigated
the co-localisation of STEF with key proteins of the perinuclear
region. Nesprin-2G is a giant structural scaffolding protein
anchored in the outer nuclear envelope, with a crucial role in
coupling the nucleus to the overlying actin network for the
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regulation of nuclear positioning, re-orientation and mechan-
osensing pathways5,12,26–28. Co-staining of U2OS cells showed a
high degree of co-localisation between STEF and Nesprin-2G,
with both proteins exhibiting a characteristic nuclear ring loca-
lisation and similar fluorescence intensity profiles (Fig. 2a, b). To
further characterise this co-localisation, we performed the

Duolink® proximity ligation assay (Fig. 2c, d); we saw puncta
when using antibodies against both STEF and Nesprin-2G,
indicating that these two proteins are closely localised (typically
less than 40 nm between the two antibodies is required to gen-
erate a signal). We assessed the nature of the interaction between
STEF and Nesprin-2G in co-immunoprecipitation assays. We
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confirmed the specificity of our antibody by knocking down
endogenous Nesprin-2G with two distinct siRNAs (Supplemen-
tary Fig. 2a) and by comparing the size of the Nesprin-2G band
with that of another large protein, Huwe1 (482 kDa) (Supple-
mentary Fig. 2b). Pull-down of endogenous STEF from U2OS cell
lysates efficiently co-precipitated endogenous Nesprin-2G (Sup-
plementary Fig. 2c). Due to the large size of Nesprin-2G (796
kDa), previous experiments to probe its function have often
utilised the truncated mini-Nesprin-2G (mN2G) construct, which
is composed of the minimal functional domains of the giant-
form: the N-terminal Calponin homology domains and first two
spectrin repeats fused to the last two spectrin repeats and the C-
terminal transmembrane and KASH domains27,29 (Supplemen-
tary Fig. 2d). Interestingly, although mN2G localised in the
nuclear envelope (Supplementary Fig. 2e), we did not observe an
interaction between STEF and mN2G through either conven-
tional co-immunoprecipitation or GFP-trap techniques, indicat-
ing the importance of the spectrin repeat domains in mediating
the interaction with STEF. Moreover, endogenous immunopre-
cipitated Nesprin-2G did not pull-down recombinant STEF,
indicating that the interaction is indirect (Supplementary Fig. 2f),
and that the proteins may be part of a larger complex.

NMMIIB is another key component of the actin cap, where it
functions as a crucial regulator of actomyosin contractility30. We
observed that it localises to perinuclear filaments in U2OS cells
(Fig. 2e), and that there are points of co-localisation between
STEF at the nuclear membrane and NMMIIB filamentous
staining (indicated by the arrow heads in the magnified insert).
We further showed that pull-down of endogenous STEF from
U2OS cell lysates efficiently co-precipitated endogenous NMMIIB
(Fig. 2f). We examined if the interaction between STEF and
NMMIIB occurs directly using an in vitro assay; however, while
STEF was efficiently pulled down by the positive control PAR331,
recombinant full-length STEF was not pulled-down by endogen-
ous immunoprecipitated NMMIIB, indicating that STEF and
NMMIIB interact indirectly (Supplementary Fig. 2g). Overall
these results support the localisation of STEF at the outer nuclear
envelope in close proximity to key perinuclear protein complexes
containing NMMIIB and Nesprin-2G.

STEF is a key regulator of perinuclear actin dynamics. The
identification of a GEF for Rac1 that co-localises with key peri-
nuclear actin-binding and actin-regulating proteins led us to
hypothesise that STEF regulates actomyosin contractility at the
nuclear envelope. Rac1 is a critical regulator of actin dynamics
through both Arp2/3 complex and formin-mediated actin poly-
merisation pathways32–34, and there is also increasing evidence of
a role for Rac1 in the regulation of myosin II activity35–37. Uti-
lising the Cre/LoxP system we generated inducible Stef knockout
mice and isolated MEFs. These were further modified with
doxycycline-inducible expression of STEF (pRETROXT-Pur-

STEF-HALO) for subsequent rescue experiments (Fig. 3a, Sup-
plementary Fig. 3a–c). Infection of MEFs with adenoviral Cre
resulted in a substantial reduction in STEF expression levels
(STEF KO) relative to cells infected with control virus (control),
which could be rescued through re-expression of wild-type (WT)
STEF via addition of doxycycline (STEF KO+WT STEF)
(Fig. 3a).

To investigate the effect of STEF depletion on perinuclear
actin, sparsely plated MEFs (treated as in Fig. 3a) were stained
with Phalloidin and the number of apical actin cables overlying
the nuclear surface was quantified (Fig. 3b, c). In control MEFs,
many cells exhibited a well-formed actin cap, with numerous
linear cables evident in the z-planes above the apical nuclear
surface (Fig. 3b, c). However, STEF-depleted MEFs (STEF KO)
exhibited a substantial reduction in the number of apical actin
cables overlying the nucleus (Fig. 3b, c). This reduction could be
rescued through re-expression of WT STEF (STEF KO+WT
STEF) (Fig. 3b, c). Depletion of STEF specifically disrupted the
perinuclear actin cap, as we observed no substantial change in the
number or organisation of basal stress fibres (Supplementary
Fig. 3d, e). The impairment in perinuclear actin was also observed
in STEF-depleted U2OS cells (Supplementary Fig. 3f, g). To
determine the dependency of this phenotype on the GEF activity
of STEF, as opposed to a purely scaffolding function of STEF,
conditional STEF KO MEFs were generated with inducible
expression of a GEF-mutant STEF (pRETROXT-Pur-STEF-
HALO-DH*), (Fig. 3d) which cannot activate Rac138. Expression
of the GEF-mutant construct did not rescue the perinuclear actin
cable phenotype in STEF-depleted cells (STEF KO+ STEF DH*)
(Fig. 3e, f). These results demonstrate that the GEF activity of
STEF is required for the formation and/or stabilisation of the
perinuclear actin cables of the actin cap.

Localised Rac1 activity regulates the actin cap. The failure of the
GEF-dead form of STEF to rescue the disruption of the actin cap
in STEF-depleted cells suggested that STEF-mediated Rac1 acti-
vation is essential for the perinuclear actin cap. Previously, RhoA
activity has been implicated in the regulation of the perinuclear
actin cap2,19. We therefore tested the effect of STEF depletion on
the activity of RhoA as well as Rac1 and Cdc42 GTPases using an
ELISA assay. Depletion of STEF resulted in a substantial decrease
in Rac1 activity, with no effect on the activity of RhoA and Cdc42
(Supplementary Fig. 4a), consistent with previously published
work showing that STEF is a Rac1 specific GEF39 and also work
demonstrating that down-regulation of STEF results in a global
decrease in Rac1 activity38. To determine if STEF regulates
perinuclear Rac1 activity we used a Rac1 Fluorescence Resonance
Energy Transfer (FRET) biosensor. A Raichu-Rac1 FRET probe
was expressed in parental U2OS cells and two STEF-depleted
CRISPR clones (CRISPR#1 and CRISPR#2), where it localised
throughout the cytoplasm and around the nuclear periphery

Fig. 1 The Rac activator STEF localises at the nuclear envelope. a Representative high-resolution confocal immunofluorescence images of parental U2OS cells
and two U2OS CRISPR clones stained for DNA (DAPI) and STEF. b Fluorescence intensity profiles of DAPI and STEF signals across the nuclei of U2OS
parental cells. Position of line scan indicated by the dashed white line in a. c Immunofluorescence images of endogenous STEF expression in mouse
embryonic fibroblasts (MEFs) (top), primate fibroblast-like COS-7 cells (middle) and human lung adenocarcinoma A549 cells (bottom). d
Immunofluorescence images of STEF expression in U2OS cells transfected with pcDNA3-FL-STEF-FLAG (left), pRETROXT-WT STEF-HALO (middle) or
pcDNA3-ΔNSTEF-HA expressing a truncated STEF mutant (right). e Schematic representation of the domain structure of full-length STEF and a range of
deletion mutant constructs of STEF. f Representative confocal images of U2OS cells transfected with a range of deletion mutant constructs of STEF (all in the
pcDNA3 vector, with a C-terminal HA tag), stained for DNA (Hoechst) and HA. g U2OS cells were fractionated into cytoplasmic (Cyto), perinuclear-
enriched (P.E.) and core-nuclear (Nuc) extracts using a successive lysis protocol. Lysates from each fraction were prepared containing equal total protein,
and probed for expression levels of STEF alongside Tubulin (as a marker of the cytoplasmic fraction), Lamin B1 (LMNB1, as a marker of the core-nuclear
fraction) and Nesprin-2G (as a marker of the perinuclear-enriched fraction). h Representative confocal images of parental U2OS cells permeabilised either
with triton (top panels) or digitonin (bottom panels) and stained for STEF, DNA (Hoechst) and Lamin A/C. Scale bars throughout= 10 µm, except in (h)=
5 µm
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(Fig. 4a). Measurement of the FRET ratio in the perinuclear
region showed a substantial decrease in perinuclear Rac1 activa-
tion in the STEF-depleted CRISPR clones compared to controls

(Fig. 4b), confirming that STEF regulates the activity of Rac1
adjacent to the nuclear envelope.

To further investigate the role of perinuclear Rac1 activity in
the formation and/or maintenance of the actin cap, we generated
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constructs to target Rac1 to the nuclear envelope. The KASHext
domain, based on the KASH domain of Nesprin-2α with an
additional 13 C-terminal amino acids, retains the perinuclear
targeting ability of the WT KASH domain without disrupting the
Nesprin-SUN2 interaction40. We fused the KASHext domain
onto the C-terminus of eGFP-WT-Rac1, eGFP-V12-Rac1 (con-
stitutively active Rac1) and eGFP-N17-Rac1 (dominant negative
Rac1) (Fig. 4c) and verified that all constructs localised to the
nuclear envelope (Supplementary Fig. 4b). We also verified that
WT and V12 constructs expressed to the same level as measured
by western blotting and fluorescence intensity of individual cells
(Supplementary Fig. 4c and d). Targeting constitutively active-
Rac1 to the nuclear envelope in STEF KO MEFs was sufficient to
rescue the disruption of the perinuclear actin cap caused by loss
of STEF (Fig. 4d, e) with no change observed in basal actin fibres
(Supplementary Fig. 4e). However, expression of WT-Rac1 at the
nuclear envelope was unable to rescue the phenotype of STEF KO
MEFs, highlighting the requirement of STEF to activate Rac1 at
the nuclear periphery and suggesting that no other Rac1 GEF is
able to compensate for the loss of STEF (Fig. 4d, e). Additionally,
we expressed the dominant-negative form of Rac1 at the nuclear
envelope in WT MEFs. N17-Rac1 commonly exists in a
nucleotide-free state, binding strongly to GEFs and preventing
them from activating endogenous Rac1. Localised expression of
N17-Rac1 at the nuclear envelope caused a substantial disruption
of the actin cap (Fig. 4f, g). These experiments confirm that STEF
regulates the perinuclear actin cap via Rac1 activation.

STEF regulates nuclear re-orientation and height. The con-
tractile actin cap has been shown to constrain nuclear morphol-
ogy and be required for re-orientation of the nucleus during the
establishment of front-rear polarity2,10. Fibroblast nuclei display a
restricted rotation in the x/y plane during the establishment of
front-rear polarity, such that the longitudinal axis of the nucleus
is re-oriented with the cellular axis of future migration26. Dis-
ruption of this nuclear re-orientation process has been shown to
impair directionality of migration, indicating it to be a critical
priming step for periods of cellular movement26,41. Given our
data above showing a reduction in perinuclear actin cables fol-
lowing STEF depletion, we further examined the nuclear char-
acteristics of STEF-depleted MEFs. Control, STEF KO, or STEF
KO+WT STEF MEFs were plated onto collagen-coated cross-
bow shaped micropatterns, which provide the adhesive patterning
required to recapitulate the classic front-rear polarised pheno-
type42. Following plating, cells were allowed to adhere and
polarise, before fixation and staining for the nucleus (DRAQ5)
and actin cytoskeleton (Phalloidin) (Fig. 5a). Representative
images of control MEFs demonstrate characteristic front-rear
polarised morphology (Supplementary Fig. 5a). We quantified the
nuclear angle relative to the cellular axis in polarised MEFs
(Fig. 5b). There was a noticeable failure of nuclear orientation to
align with the cellular axis in STEF KO MEFs, which could be
rescued through re-expression of WT STEF (Fig. 5c). This defect

in nuclear re-orientation was also observed in STEF-depleted
U2OS CRISPR clones undergoing polarised migration into an
in vitro wound during a scratch assay (Supplementary Fig. 5b–d).
Moreover, tracking individual cells revealed a defect in the
directionality of migration of U2OS cells with depleted STEF
(Supplementary Fig. 5e–h) consistent with the inability of these
cells to re-orient their nuclei and the reduced migration of STEF
knockdown cells we have previously reported 38.

The physical dimensions of the nucleus reflect the functionality
of the perinuclear actin cap, as disruption of the cap results in an
increase in nuclear height11. Therefore, we measured the height of
the nucleus in MEFs on micro-patterned plates and found that
STEF depletion induced a substantial increase in the height of the
nucleus, which was rescued by WT STEF (Fig. 5d, e). Taken
together, these results indicate that the disrupted actin cap in
STEF-depleted cells translates into impaired constraint of the
nucleus, which alters nuclear morphology and nuclear re-
orientation during the establishment of front-rear polarity.

STEF regulates nuclear stiffness and perinuclear tension.
Nuclear stiffness is regulated by the actin cap as well as by the
underlying lamin network and chromatin2,43,44. To assess whe-
ther STEF depletion affects nuclear rigidity, we used atomic force
microscopy (AFM) to measure the elastic modulus of the nucleus
in control and STEF KO MEFs and identified a substantial
reduction in the Young’s Modulus of STEF KO MEFs relative to
the control MEFs (Fig. 6a). This indicates that disruption of the
actin cap in STEF KO MEFs results in a softer nucleus. To
confirm that this decrease in nuclear stiffness is not due to a
perturbation in the expression of the intranuclear lamin proteins,
we analysed the expression of Lamin A/C and B1 in control and
STEF-depleted MEFs. Western blotting showed no change in the
expression of Lamin A/C (LMNA/C) and B1 (LMNB1) upon
depletion of STEF (Supplementary Fig. 6a, b) and immuno-
fluorescence imaging revealed no change in the distribution of
Lamin A/C following STEF depletion (Supplementary Fig. 6c).

To investigate further the role of STEF-mediated Rac1
activation in perinuclear actin cap formation and/or maintenance,
we examined actomyosin contractility at the nuclear envelope.
Tension sensors provide a useful tool for determining whether a
specific protein is subject to cytoskeletal-generated force. The
development of a mini-Nesprin-2G tension sensor (mN2G-TS)
revealed that Nesprin-2G is subject to actomyosin-generated
tension, transducing force from the perinuclear cytoskeleton to the
nuclear surface45. We utilised mN2G-TS as a reporter of
actomyosin-generated tension at the nuclear envelope to deter-
mine whether STEF depletion and the consequent impairment of
the actin cap affects perinuclear tension. The mN2G-TS is a FRET
based reporter with a Teal Fluorescent Protein (TFP)-Venus
donor/acceptor pair (Fig. 6b)45,46. Binding of overlying actin
cables to the N-terminal actin-binding domain of the sensor
induces tension, resulting in a conformational change of the
protein that leads to a reduction in the FRET index (Fig. 6b)45. In

Fig. 2 STEF co-localises and interacts with Nesprin-2G and NMMIIB. a High-resolution confocal immunofluorescence images of parental U2OS cells co-
stained for DNA (DAPI), STEF and Nesprin-2G, with an intensity look-up table (16-colours, ImageJ). b Fluorescence intensity profile of STEF (black) and
Nesprin-2G (red) signals across the nuclei of U2OS parental cells. Position of line scan indicated by the dashed white line in a. c The Duolink® PLA assay
was conducted in parental U2OS cells with the Duolink® II red kit, and cells were imaged in the red fluorescence channel. Immunofluorescence images of
the fluorescent signal obtained for single primary antibody controls (STEF only, Nesprin-2G only) and interaction between STEF and Nesprin-2G (STEF/
Nesprin-2G). d Quantification of Duolink® signal from primary antibody controls and STEF-Nesprin-2G antibodies ( >100 cells per condition per replicate).
Values represent the mean of three independent experiments. Statistical significance was verified using a one-way ANOVA, using Tukey’s multiple
comparison test to compare the means of each sample. ** p < 0.01, *** p < 0.001. Error bars represent S.E.M. e Immunofluorescence images taken on the
high-resolution confocal microscope of parental U2OS cells stained for DNA (DAPI), STEF and NMMIIB. White arrowheads indicate co-localisation
between STEF and NNMIIB. f Co-immunoprecipitation (IP) of endogenous NMMIIB with endogenous STEF from parental U2OS cell lysates, compared to
the IgG control. Representative western blot shown from four independent immunoprecipitation experiments. Scale bars= 10 µm throughout

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04404-4

6 NATURE COMMUNICATIONS |  (2018) 9:2124 | DOI: 10.1038/s41467-018-04404-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


control and STEF-depleted MEFs, the mN2G-TS construct
correctly localised to the nuclear envelope, similar to endogenous
Nesprin-2G (Fig. 6c). As a positive control, we treated control
MEFs with a combination of a Myosin light-chain kinase inhibitor

(ML7) and a ROCK inhibitor (Y-27632) in order to ablate
myosin-generated tension45, which substantially increased the
FRET index in the control MEFs (Fig. 6d). In STEF-depleted
MEFs, we observed a substantial increase in the FRET index,
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indicating a reduction in tension on the construct (Fig. 6c, d)
compared with cells expressing WT levels of STEF.

To further investigate the effect of depleting STEF on
actomyosin contractility, we analysed the number of pMLC-

positive cables overlying the nucleus of control and STEF-
depleted MEFs as an indicator of localised NMMIIB activity at
the nuclear envelope (Fig. 6e). We saw a substantial reduction in
the number of pMLC-positive cables in STEF-depleted MEFs in
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comparison with control MEFs, indicating substantially lower
levels of active NMMIIB at the nuclear envelope (Fig. 6e, f). These
results indicate that the myosin-dependent tension on the LINC
complex is considerably reduced by depletion of STEF, consistent
with the impaired actin cap formation of these cells, indicating a
potential role for STEF-mediated Rac1 activity in the regulation
of NMMIIB.

To analyse whether a reduction in nuclear stiffness and
myosin-generated tension at the nuclear envelope might impact
on mechanotransduction pathways, we investigated the effect of
STEF depletion on the activity of the Transcriptional Coactivator
with PDZ-binding Motif (TAZ), a key transcriptional mediator of
mechanical force47. YAP/TAZ mediated regulation of gene
expression can be force-regulated, and has been demonstrated
to be dependent on actin stress fibre formation and actomyosin
contractility47–49. To investigate whether the impairment of the
contractile perinuclear actin cap in STEF-depleted cells influences
the transcriptional activity of TAZ, we measured the expression
levels of two well-characterised TAZ-regulated genes, Ctgf and
Cyr61, by qRT-PCR in control and STEF-depleted MEFs. We
observed a substantial down-regulation of both Ctgf and Cyr61 in
STEF KO MEFs (STEF KO DMSO) in comparison to control
MEFs (Control DMSO) (Fig. 6g and Supplementary Fig. 6d).
Furthermore, this observed down-regulation of TAZ target genes
in STEF KO MEFs was equivalent to or greater than the effect of
treating control MEFs with ML7 as a positive control (Fig. 6g and
Supplementary Fig. 6d). We subsequently observed similar
changes in vivo, as Ctgf expression levels were substantially lower
in liver tissue isolated from STEF KO mice compared with WT
mice (Fig. 6h). Taken together, these results indicate that the loss
of STEF and consequent disruption of the actin cap may impact
on mechanosensing signalling pathways and alter gene
expression.

Discussion
Our study provides important new insights linking the spatial
regulation of Rac1 activation and signalling with the functioning
of the perinuclear actin cap, a cytoskeletal organelle important for
regulating nuclear shape and positioning, and cellular processes
including directed migration and mechanotransduction (see
model in Fig. 7).

Localised small GTPase signalling is important in cell migra-
tion. TIAM1-driven Rac1 activation at the leading edge underpins
lamellipodial protrusion32,50. However, Rac1 is not restricted to
the leading edge; it is known to also localise to the nuclear
envelope, an association regulated by palmitoylation20, with a
prominent activation of juxtanuclear Rac1 seen in migrating
fibroblasts23. Our work is the first to our knowledge to uncover a

nuclear-envelope localised GEF for Rac1. STEF/TIAM2 is com-
paratively understudied among Rho GEFs. Previous studies have
primarily focussed on the role of STEF-mediated Rac1 activation
in neuronal development and physiology, while our previous
work showed that STEF regulates focal adhesion disassembly38,51.
In this study we found a prominent perinuclear localisation of
STEF in a number of different cell types, where it co-localises with
two key perinuclear proteins linked to the regulation of the actin
cap: Nesprin-2G and NMMIIB. Interestingly, this localisation of
STEF to the nuclear envelope is not shared by its homologue
TIAM1, despite sharing a similar overall domain structure and
significant sequence homology in the catalytic domain49. How-
ever, the C-terminal PH domain required for perinuclear STEF
localisation shares only 54% sequence identity with the homo-
logous domain of TIAM1, which may explain their differential
localisation.

Regulation of the nucleus is emerging as an increasingly
important aspect of cell migration; there is mounting evidence
that control of the orientation, positioning, morphology and
mechanical properties of the nucleus is critical for efficient cell
migration, particularly in a 3D context where the cell has to
navigate the confines of the extracellular matrix1,5,10,11,27. Forces
acting on the nucleus via the actin cap are thought to control
these processes. In both MEFs and polarised, migrating U2OS
cells, we observed that loss of STEF-regulated Rac1 activity
resulted in a profound reduction of actin cap cables, while basal
actin structures were unaffected, suggesting that the localised pool
of Rac1 generated at the nuclear envelope specifically regulates
the actin cap. Proposed roles of the actin cap include limiting
rotation of the interphase nucleus1,7–10, constraining nuclear
shape2 and mechanotransduction5,6,12. In keeping, STEF-
depleted cells failed to re-orientate their nuclei with the cellular
axis of migration, displayed increased nuclear height and had
softer nuclei (which was not due to a perturbation in lamin
expression). In addition, STEF-depleted cells displayed a reduc-
tion in TAZ-regulated gene expression in vitro and in vivo.
Although we observed an alteration of TAZ activity in STEF-
depleted cells, we did not observe an effect on the nucleo-
cytoplasmic shuttling of TAZ, in contrast to our previous studies
on TIAM152, suggesting a different mechanism of action of TAZ
regulation.

Specifically restoring Rac1 activity at the nuclear envelope in
the absence of STEF was sufficient to rescue the effects of STEF-
depletion on perinuclear actin cables, confirming that disruption
of the actin cap upon depletion of STEF is indeed a Rac1
dependent phenotype. Previous studies investigating the forma-
tion of the actin cap indicated a crucial role for RhoA activity in
the generation of perinuclear actin stress fibres and ROCK-
mediated regulation of actomyosin contractility; our study does

Fig. 4 Rac1 activity at the nuclear envelope regulates the actin cap. a Representative spinning disc confocal images of live parental U2OS and STEF-depleted
CRISPR clones (CRISPR#1 and CRISPR #2) expressing the Raichu-Rac1 FRET probe, showing YFP signal intensity, FRET intensity as calculated from CFP/
YFP and the FRET intensity in an isolated region of interest (ROI) around the nuclear envelope. Scale bar= 10 µm. b Quantification of the FRET ratio in the
perinuclear region of parental U2OS and STEF-depleted CRISPR clones (CRISPR #1 and CRISPR #2). Data shown are pooled from three independent
replicates. Statistical significance was verified using a one-way ANOVA, using Dunnett’s multiple comparison test to compare the means of the CRISPR #1
and CRISPR #2 to the control. **** p < 0.0001. c Schematic representation of the structure of the eGFP-Rac1-KASH-Ext construct and its localisation at the
nuclear envelope. d Representative confocal images of control MEFs expressing a GFP-only vector (top row) and STEF KO MEFs expressing either a GFP-
only vector (second row), nuclear envelope localised constitutively active Rac1, eGFP-V12-Rac1-KASHext (third row), or nuclear envelope localised WT
Rac1, eGFP-WT-Rac1-KASHext (fourth row). All MEFs are stained for DNA (Hoechst), GFP and F-actin (Phalloidin). Scale bar= 10 µm. e Quantification of
apical actin cable number over nuclear area from cells as in d. Values represent the mean of three independent experiments ( >10 cells per condition, per
replicate). Statistical significance was verified using a one-way ANOVA, using an uncorrected Fisher’s LSD multiple comparison test to compare the means
of each sample. * p < 0.05, n.s.= not significant. f Representative widefield immunofluorescence images of control MEFs either untransfected (top row) or
expressing nuclear envelope localised dominant negative Rac1, eGFP-N17-Rac1-KASHext (bottom row), stained for DNA (Hoechst), GFP and F-actin
(Phalloidin). Scale bar= 5 µm. g Quantification of apical actin cable number over nuclear area from cells as in f. Values represent the mean of three
independent experiments ( > 15 cells per condition, per replicate). Statistical significance was verified using a paired t-test. * p < 0.05. Error bars represent
S.E.M. throughout
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not contradict these data. While we do not see global changes in
RhoA activation in STEF-depleted cells, we hypothesise that
integrated signalling of Rac1 and RhoA GTPases may be required
for orchestrating the formation and maintenance of the actin cap.
Our previous work has shown a role for GEFs in directing the
specificity of downstream Rac1 activity through scaffolding of
protein complexes that interact with Rac153. Given the ability of

perinuclear targeted V12Rac1 to compensate for STEF depletion,
potential scaffolding roles of STEF seem less relevant to regulat-
ing nuclear shape and position than STEF’s ability to produce a
pool of active Rac1 in the proximity of perinuclear effectors that
regulate the actin cytoskeleton and contractility. Interestingly,
targeting of WT Rac1 to the nuclear envelope in the absence of
STEF did not rescue the actin cap phenotype. This result

R
el

at
iv

e 
fr

eq
ue

nc
y

(p
er

ce
nt

ag
es

)

Angle of orientation (degrees)

c

D
R

A
Q

5
P

ha
llo

id
in

ba Nuclear angle 
measurement:

10°

81°

d
DRAQ5 Phalloidin

x
z

x
z

x
z

DRAQ5 (x–z Plane)

e

3.5

4.0

4.5

5.0

5.5

N
uc

le
ar

 h
ei

gh
t (

μm
)

*

n.s.

0

0 40 80 12
0

16
0 0 40 80 12
0

16
0 0 40 80 12
0

16
0

5

10

15

20

Control

STEF KO

STEF KO +WT STEF

Control STEF KO
STEF KO + 
WT STEF

Control STEF KO STEF KO
+WT STEF

C
on

tr
ol

S
T

E
F

 K
O

S
T

E
F

 K
O

+
W

T
 S

T
E

F

MEFs

MEFs

MEFs

MEFs

Fig. 5 STEF regulates nuclear re-orientation and height. a Spinning disc confocal images of either control MEFs (Control), or MEFs depleted for endogenous
STEF (STEF KO) or depleted for endogenous STEF, but re-expressing exogenous wild-type STEF (STEF KO+WT STEF) plated on collagen-coated cross-
bow micropatterns, fixed after 7 h and stained for nuclei (DRAQ5) and actin (Phalloidin). b Schematic of the front-rear polarised morphology and nuclear
position on micropatterns also showing how nuclear angles were measured. c Histogram showing quantification of nuclear angles relative to x axis in MEFs
of a. Representative replicate from two independent experiments. Analysis conducted using the 'fit ellipse' tool on ImageJ. d Representative
immunofluorescence images of MEFs plated as in a. Right panels, maximal projection images of the x–z plane of the nucleus. e Quantification of nuclear
height of MEFs of d. Image z-stacks for DRAQ5 stain were imported into the Imaris software and the shortest principal axis of the nucleus (height) was
measured. Values represent the mean of three independent experiments, >100 cells per condition, per replicate. Statistical significance was verified using a
one-way ANOVA, using Dunnett’s multiple comparison test to compare the means of each sample to the control. * p < 0.05, n.s.= not significant. Error
bars represent S.E.M. Scale bars= 10 µm throughout

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04404-4

10 NATURE COMMUNICATIONS |  (2018) 9:2124 | DOI: 10.1038/s41467-018-04404-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


highlights the absence of other Rac1 GEFs at the nuclear envelope
that can functionally compensate for STEF.

The exact role of STEF and Rac1 in actin cap regulation
remains to be uncovered; we cannot as yet distinguish between a
role for Rac1 in the formation of the actin cap vs. stabilisation of
the actin cap vs. attachment of preformed actin cables to the
nuclear envelope. Nonetheless, a mechanism involving the reg-
ulation of perinuclear myosin activity seems probable. There is
growing evidence to support a role for Rac1 in the regulation of
actomyosin-driven contractility35–37,53. We show a substantial

loss of myosin activity upon STEF-depletion, as evidenced by a
reduction in both perinuclear pMLC staining as well as a
reduction in tensile forces at the nuclear envelope. Many of the
downstream phenotypes we observe are strikingly similar to those
observed following down-regulation of NMMIIB, again implying
that STEF-regulated Rac1 activity likely impacts on NMMIIB
activation. Rac1 could potentially regulate NMMIIB activity via
PAK1-mediated phosphorylation36 or through inhibition of
myosin light- chain phosphatase37. Further experiments will
determine whether Rac1 directly regulates NMMIIB activity,
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which in turn affects the actin cap, or whether a separate STEF/
Rac1 pathway affects NMMIIB indirectly through regulating actin
polymerisation and bundling.

Our work highlights once more how spatio-temporal regula-
tion of the Rho GTPase family of proteins is vital for a multitude
of cellular processes. Our findings add to the growing literature
on the actin cap by adding an additional layer of regulation by
which the cell can modulate perinuclear actin dynamics. We
hypothesise that STEF regulation of Rac1 activity is a mechanism
by which cells can dynamically alter their nuclear properties, such
as during 3D migration where cells need to respond to a complex
spatial environment, and will therefore likely be important in
normal and malignant cell migration.

Methods
Plasmids and cloning. Details of plasmids used in this study are summarised in
Supplementary Table 1.

Antibodies. Details of primary antibodies, secondary antibodies and fluorescent
stains used in this publication are to be found in Supplementary Table 2.

Primers. Sequences of all primers used in this project are to be found in Supple-
mentary Table 3.

Synthesis of eGFP-Rac1–KASHext constructs. We generated DNA sequence
which included: (1) the C-terminus of Rac1 (the entire 3′ region from an internal
PvuII restriction site to the penultimate codon), (2) codons for the last 65 amino
acids of WT human Nesprin-2a and (3) codons derived from the reverse tran-
scription of the 'ext' amino acids—VDGTAGPGSTGSR, with addition of a STOP
codon and an EcoRI site for cloning into our eGFP-WT-Rac1 vector in pcDNA3.1.

This construct was synthesised by Genewiz and inserted into pcDNA3.1-eGFP-
WT-Rac1. The complete synthesised sequence was:

ACGATCGAGAAACTGAAGGAGAAGAAGCTGACTCCCATCACCTATC
CGCAGGGTCTAGCCATGGCTAAGGAGATTGGTGCCGTAAAATACCTGGA
GTGCTCGGCGCTCACACAGCGAGGCCTCAAGACAGTGTTTGACGAAGCG
ATCCGAGCAGTCCTCTGCCCGCCTCCCGTGAAGAAGAGGAAGAGAAA
ATGCCTGCTGTTGAGCACCCGCCCGCAGCGCAGCTTTCTGAGCCGCGT
GGTGCGCGCGGCGCTGCCGCTGCAGCTGCTGCTGCTGCTGCTGCTGCTG
CTGGCGTGCCTGCTGCCGAGCAGCGAAGAAGATTATAGCTGCACCCAG
GCGAACAACTTTGCGCGCAGCTTTTATCCGATGCTGCGCTATACCAAC
GGCCCGCCGCCGACCGTGGATGGCACCGCGGGCCCGGGCAGCACCGGC
AGCCGCTAGGAATTC

The entire sequence of the tagged Rac1 construct was confirmed by sequencing.
The WT-Rac1 was then mutated to the V12 and N17 variants by QuickChange
site-directed mutagenesis, and confirmed by sequencing.

Cell culture. All cell lines were cultured in a humidified incubator (5% CO2; 37 °C).
MEFs (generated in-house), U2OS (from ECACC), A549, COS-7, and virus-
producing Phoenix GP cell lines (from CRUK MI sources) were maintained in
Dulbecco’s Modified Eagle’s Medium (DMEM AQ Medium) (Gibco), supple-
mented with 10% Tetracycline-free Fetal Bovine Serum (FBS) (Gibco). For anti-
biotic selection, cell lines harbouring the pRETROX-Tet-On were grown in media
supplemented with 750 μg/mL G418 (Sigma-Aldrich). Cell lines harbouring both
the pRETROX-Tet-on and pRETROX-Tight-Pur were grown in media

supplemented with 750 μg/mL G418 (Sigma-Aldrich) and 2 µg/mL Puromycin
(Sigma-Aldrich). Cells were regularly checked for mycoplasma infection through
in-house facilities.

Generation of cell lines. Reverse transfections were performed for all cell lines.
Transfection of plasmid DNA was performed using either FugeneHD® transfection
reagent (Roche) or Lipofectamine® LTX with Plus™ transfection reagent (Thermo
Fisher Scientific), according to manufacturer's protocol. For inducible over-
expression, MEFs were retrovirally transduced (as described in54) with pRETRO-
Tet-On (Clontech) followed by selection with 750 μg/mL G418 (Sigma-Aldrich).
Cells were then further retrovirally transduced with a STEF expression construct
(pRETROX-Tight-Pur-STEF-HALO/ pRETROX-Tight-Pur-STEF-DH*-HALO or
other mutant constructs) and selected using 2 µg/mL Puromycin (Sigma-Aldrich).

To generate STEF-depleted CRISPR clones, the CRISPR design tool (http://
tools.genome-engineering.org) was used to design appropriate sgRNA
oligonucleotides targeting exon 1 of the human STEF sequence. Sequences were
selected with low predicted off-target effects and the forward and reverse
oligonucleotides were generated by MWG operon.

The sequence of the sgRNA used for resultant CRISPR clones in U2OS is
outlined below:

CRISPR sgRNA FOR: 5′-CACCGCCACCGAGTCTCGATGCGTA-3′
CRISPR sgRNA REV: 5′-AAACTACGCATCGAGACTCGGTGGC-3′
Manufactured sgRNA oligonucleotides were resuspended in nuclease-free water

to a final concentration of 100 µM. A mixture was prepared containing 1 µL of each
sgRNA oligonucleotide at 100 µM, 1 µL of 10 × T4 ligation buffer, 1 µL of T4 PNK
(Polynucleotide Kinase), made up in nuclease-free water to a total volume of 10 µL.
Phosphorylation and annealing of oligonucleotides was conducted in a
thermocycler using the following protocol; 37 °C for 30 min, 95 °C for 5 min and a
ramp down to 25 °C at 5 °C per min intervals. The annealed and phosphorylated
oligonucleotides were diluted at 1:200 with nuclease-free water and ligated into the
pSpCas9(BB)-2A-GFP vector. The resultant plasmid was verified by sequencing
from the U6 promoter using the U6-Fwd sequencing primer. CRISPR single cell
clones were generated in the human osteosarcoma cell line, U2OS. U2OS cells were
reverse transfected with the pSpCas9(BB)-2A-GFP vector containing sgRNA
inserts using Fugene6 transfection reagent, according to the manufacturer’s
protocol. Fluorescence activated cell sorting (FACS) was used to select the GFP-
positive cell population and transfer single cells to individual wells of a 96-well
plate. Single-cell clones were grown up for subsequent screening.

Further validation of selected CRISPR clones was conducted to detect the
presence of indels using the SURVEYOR nuclease assay. Genomic DNA was
extracted from parental U2OS cells and selected CRISPR clones, and a 1 kb region
around the CRISPR target was amplified by PCR. The PCR product was purified
using the QIAQuick PCR purification kit (Qiagen), according to the manufacturer's
protocol, and a mixture of the diluted elution product and 10 × Taq polymerase
buffer was prepared. The mixture was annealed in a thermocycler using the
protocol outlined in55, to generate DNA heteroduplexes. The annealed
heteroduplex was then prepared in a mixture with 10 × NEB buffer #2, T7
endonuclease and nuclease-free water and incubated at 37 °C for 20 min. Samples
were prepared and run on a 2%, 1 × agarose/TAE gel.

Generation of MEFs. The conditional STEF knockout mouse was designed and
engineered by the ‘Transgenic Technology’ laboratory at the CRUK Beatson
Institute, Glasgow under National Home Office guidelines and experiments were
approved by the ethical review body of Glasgow University. MEFs were extracted
from embryos of embryonic day 10 (the sex of the embryos was not determined).
Genomic PCR was performed from these embryos to determine their genotype.
Early passage, primary MEFs were immortalised using an SV40 large t-antigen
expression vector, kindly provided by the Cell Regulation laboratory at the CRUK
MI. MEFs were plated at a density of 1 × 105 cells per well in a 6-well plate and

Fig. 6 STEF regulates myosin-generated tension on the nuclear envelope. a Atomic force microscopy measurement of nuclear stiffness (calculated as mean
Young’s modulus) in Control and STEF KO MEFs (10 cells per condition). Representative replicate from two independent experiments. Statistical
significance was verified using an unpaired t-test, * p < 0.05. b Schematic representation of the mini-Nesprin-2G tension sensor construct (mN2G-TS). c
Representative spinning disc confocal images of control and STEF KO MEFs expressing the mN2G-TS construct, imaged using the TFP filter to determine
construct localisation, and the FRET filter to calculate the FRET Index at the nuclear membrane. d Quantification of mN2G-TS FRET Index at the nuclear
envelope in control MEFs, STEF KO MEFs, and control MEFs after treatment with a combination of 10 µMmyosin light-chain kinase inhibitor (ML7) and 10
µM ROCK inhibitor (Y-27632). Values are presented as the mean of three independent experiments. Statistical significance was verified using an unpaired
t-test, * p < 0.05, ** p < 0.01. e Representative confocal immunofluorescence images of control and STEF KO MEFs stained for DNA (Hoechst), pMLC and
F-actin (Phalloidin). f Quantification of apical phospho-MLC positive cables over nuclear area from control and STEF KO MEFs (~20 cells per condition, per
replicate). Values represent the mean of three independent experiments. Statistical significance was verified using a paired t-test. * p < 0.05. g qPCR for the
TAZ target gene Ctgf, normalised to Tbp expression in control and STEF KO MEFs pre-treated with either DMSO or 10 µM ML7 for 2 h. Data are relative to
the negative control (control MEFs+DMSO) and are presented as the mean from four independent replicates. Statistical significance was verified using a
one-way ANOVA, using Tukey’s multiple comparison test to compare the means of each sample. *** p < 0.001, **** p < 0.0001. h qPCR for the TAZ target
gene Ctgf, normalised to Tbp expression in liver tissue isolated from WT (n= 3) and STEF KO (n= 4) mice. Statistical significance was verified using an
unpaired t-test, *** p < 0.001. All error bars represent S.E.M. Scale bars= 10 µm throughout
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incubated for 24 hours before transfection with 2 µg of the SV40 expression vector
using the Lipofectamine® LTX with Plus™ transfection reagent (Thermo Fisher
Scientific). Culture medium was changed the following day, and when cells were
80% confluent, they were split into a 10 cm dish. Immortalised MEFs were split at
1:10 at least five times before use for functional studies as a negative selection
against untransformed cells.

Adenoviral transduction. SV40-immortalised mouse embryonic fibroblasts
(MEFs) were plated at a density of 2 × 105 cells per 10 cm dish. The following
afternoon, cells were washed once with PBS−/− and 5 mL of 0.2% serum culture
medium was added. 5 µL of adenoviral-Cre-GFP (University of Iowa) or an empty
adenoviral-GFP control (University of Iowa) was added to the medium and cells
were incubated overnight. The following morning, medium was replaced with
fresh, 10% serum culture medium and cells were allowed to recover. MEFs were
cultured for a further 72 hours post-infection before use in functional studies, to
allow time for recombination and protein degradation.

Protein analysis. Cells were lysed in an appropriate volume of IP lysis buffer [50
mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton-x-100 (v/v), 10% glycerol (v/v), 2
mM EDTA, 25 mM NaF and 2mM NaH2PO4 containing 1% protease inhibitor
cocktail (Sigma-Aldrich) and 1% phosphatase inhibitor cocktails 1 and 2 (Sigma-
Aldrich) added fresh] or RIPA buffer [25 mM Tris pH 7.5, 150 mM NaCl, 0.1%
SDS (v/v), 0.5% sodium deoxycholate (v/v), 1% Triton-x-100 containing 1 EDTA-
free protease inhibitor tablet (Roche) and 1% phosphatase inhibitor cocktails 1 and
2 (Sigma-Aldrich) added fresh] for 10 min on ice and proteins were resolved by
SDS-PAGE for western blotting. For immunoprecipitation, lysates were pre-cleared
overnight at 4 °C with an appropriate IgG pre-bound to 50 μL of GammaBind G
Sepharose beads (Amersham). After pre-clearing, lysates were incubated with the
appropriate antibody/IgG control pre-bound to 25 μL of GammaBind G Sepharose
beads (Amersham, blocked with 5% BSA overnight at 4 °C), for 4 hours at 4 °C.
Beads were subsequently washed with RIPA buffer, and eluted with 1 × SDS-PAGE
sample buffer (Nupage, Invitrogen). For in vitro pull-down assays, Nesprin-2G,
NMMIIB or PAR3 protein was immunoprecipitated from U2OS cell lysates as
described above. Beads were washed with a high salt solution to remove any
intermediary proteins and were incubated with purified, recombinant STEF protein
for 1 hour at 4 °C. Beads were subsequently washed with RIPA buffer, and eluted
with 1 × SDS-PAGE sample buffer (Nupage, Invitrogen). Full scans of all blots can
be found in Supplementary Fig. 7.

GTPase activity assay. Small GTPase protein activity assays were conducted with
control and STEF KO MEFs using the G-LISA® kit (Cytoskeleton) following the
manufacturer’s instructions.

Biochemical fractionation. Fractionation to enrich for perinuclear proteins was
performed as in ref 24. U2OS or MEF cell pellets were lysed in an appropriate
volume of perinuclear-enriched extraction buffer A (40 mM HEPES pH 7.4, 120
mM KCl, 2 mM EGTA, 0.5% Glycerol, 10 mM beta-glycerophosphate, and 0.5%
NP-40 in ddH2O) for 30 min on ice. Lysates were centrifuged at 500 × g for 5 min
and the supernatant was removed as the cytoplasmic fraction. The pellet was
washed once in perinuclear-enriched extraction buffer A (minus NP40) and then
lysed in an appropriate volume of perinuclear-enriched extraction buffer B (10 mM
Tris-HCl pH 7.4, 1.5 mM KCl, 0.5% Triton X-100, 0.5% deoxycholate in ddH2O

containing 2.5 mM MgCl2 and 0.2 M LiCl added fresh) for 45 min at 4 °C with
rotation. Lysates were centrifuged at 2000 × g for 5 min and the supernatant was
removed as the perinuclear-enriched fraction. The pellet was washed once in
perinuclear-enriched extraction buffer B and the remaining pellet was dissolved in
an appropriate volume of perinuclear-enriched extraction buffer C (8 M Urea in
ddH2O) and centrifuged at 10 × g for 10 min, to yield the core-nuclear fraction.
Finally, all resultant lysate fractions were centrifuged at 15871 × g for 5 min before
preparation of lysates in 1 × SDS-PAGE sample buffer (Nupage, Invitrogen) to
resolve proteins by SDS-PAGE and western blotting.

Immunofluorescence. For immunofluorescence, cells were grown on coverslips
and fixed with either 100% ice-cold methanol for 5 min at −20 °C or 3.7% for-
maldehyde for 15 min at room temperature. Cells were permeabilised for 3 min in
0.2% Triton in PBS−/− (v/v), washed and then blocked in 1% BSA in PBS (v/v) for
1 hour, before successive incubation with primary and then secondary antibodies.
Coverslips were mounted onto glass slides using a droplet of ProLong® Gold anti-
fade reagent containing the DNA stain DAPI. For digitonin permeabilisation,
formaldehyde fixed cells were permeabilised for 3 min in 40 µg/mL digitonin in
PBS (v/v), and stained as outlined above.

Microscopy. Images were obtained using a variety of microscopes. Immuno-
fluorescence imaging of STEF localisation were captured on the Leica GatedSTED
SP8 (gSTED) microscope system. This system utilises LAS AF Lite software (Leica)
to capture and process images. Images were taken using the 100 × or 60 × oil lens.
Immunofluorescence images of actin cables and pMLC were captured using the
Deltavision Core system(based on an Olympus IX71 microscope; fluorescence is
achieved using a 300W Xenon light source with a variety of Sedat filter sets (406,
488, 568, 647 nm) and the attached Roper Cascade 512B camera; images were taken
using 100 × / 60 × oil lens.), or the Zeiss LSM800 Airyscan, with a Zeiss Observer.
Z1 body and Zeiss 63 × / 1.4 NA oil Plan-Apochromat lens. The Deltavision core
system utilises softWorx to capture and process images. Images of micropatterned
cells were obtained using the Opera Phenix™ High Content Screening System,
which is a microlens enhanced Nipkow spinning-disk confocal microscope with
four sCMOS cameras for simultaneous four-channel image capture, with tem-
perature and CO2 control to support live cell imaging. The system utilises the
Harmony software for image capture and processing, with further capacity for
image analysis in the Columbus™ Image Data Storage and Analysis System. FRET
experiments with the mN2G-TS construct were conducted using the 3i Marianas
microscope system, with attached Evolve EMCCD camera. All other images were
captured using a Zeiss Axiovert 200M microscope (Solent Scientific). The system
uses an Andor iXon 888 camera and a 300W Xenon light source is used for
fluorescence illumination with a variety of ET-Sedat filters (406, 488, 568, 647 nm).
The system utilises the Metamorph software to capture and process images. Images
were taken using the 100 × oil lens.

Duolink PLA. Duolink PLA was performed using the Duolink II Red Starter Kits
(Sigma) following the manufacturer’s instructions. A video summarising the steps
of this technique can be found online (www.olink.com/products-services/duolink/
howuseduolink). In summary, cells were seeded at a density of 2 × 105 cells per well
of a 6- well plate, and fixed in 3.7% formaldehyde after 48 hours. Cells were
permeabilised, blocked and stained with appropriate primary antibody solutions, as
described above. Following incubation with primary antibodies, coverslips were
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washed and incubated with a mixture of the PLUS/MINUS Duolink® PLA probes
(OlinkBioscience) for 1 hour at 37 °C. Coverslips were then washed and detection
of signal was conducted using the Duolink® detection reagent kit (red) (Olink-
Bioscience). Coverslips were first incubated with a ligation-ligase mixture for 30
min at 37 °C. Coverslips were subsequently washed and further incubated with an
amplification-polymerase mixture for 100 min at 37 °C. Final washing steps were
conducted; coverslips were first washed twice in Duolink Buffer B for 10 min,
followed by a 1 min wash in a 0.01% diluted Duolink Buffer B (v/v dilution in
ddH2O). Coverslips were left to air-dry, protected from light, before mounting onto
glass slides with ProLong® Gold anti-fade reagent containing the DNA stain DAPI.
Coverslips were imaged using the Zeiss microscope system; at least 10 images were
taken per condition. Duolink® signal in immunofluorescence images was quantified
using the Cell Profiler Software. A pipeline was designed to count fluorescent
speckle number within the nuclear area, delineated by the DNA stain DAPI.

Micropattern experiments. CYTOOplates™ 96 RW-CW-M-A (CYTOO) were
utilised for all experiments; the 96-well plate format had glass-bottomed wells with
medium sized (1100 µm2), crossbow-shaped, activated micropatterns. Prior to the
assay, micropattern plates were coated with 20 µg/mL rat tail collagen type I
(Corning), diluted in sterile PBS. Micropattern plates were pre-warmed at 37 °C
during the preparation of cells for plating. MEFs had been pre-cultured in the
presence or absence of doxycycline for 24 hours before infection with adenovirus as
outlined previously. 3200 cells were plated per well of the 96-well plate, with gentle
agitation to prevent cell clumping and cells were incubated at 37 °C for 7 hours
before fixation in 3.7% formaldehyde and antibody staining as described pre-
viously. DRAQ5 and Phalloidin dyes were used to stain the nucleus and actin
cytoskeleton respectively. Z-stacks were captured at 1 µm steps, across a range of
10 µm. Micropatterns occupied by a single cell, with a single nucleus, with the
front-rear polarised morphology were analysed. To measure nuclear re-orientation,
the middle plane of the stacks was used and images were exported to ImageJ
software. The ‘fit ellipse’ tool was implemented on the DRAQ5 channel image to
calculate the angle of the nucleus, relative to the horizontal axis. For nuclear height
analysis, stacks were exported to the Imaris (Bitplane) software using the ‘cells’
image processing pipeline on the DRAQ5 channel to measure the 3D height of the
nucleus. This was defined by the software as ‘BoundingBoxOO Length A—the
shortest principal axis of the nucleus’.

Cells were manually selected for analysis according to the following criteria;
cells must be occupying the set micropattern position, cells must have only a single
nucleus (with no secondary punctate staining of DRAQ5 in the cell), cells must
have fully adopted the polarised morphology (Phalloidin staining used to verify
this), the nucleus must be completely contained within the boundary of the
Phalloidin staining. These criteria were applied to cells of all treatment conditions
prior to analysis.

FRET imaging of tension sensor. The nuclear force tension sensor (mN2G-TS)
was synthesised as a fusion construct of the tension sensor module (https://www.
addgene.org/26021/)46 and human mini Nesprin-2 construct (Nesprin2
delta460–6643)56. The tension sensor module was inserted after aa460 of the
Nesprin-2 construct. During imaging, fluorescence bleed-through and lifetimes
were controlled using an equivalent construct (mN2G-TFP), lacking only the venus
sequence. Images were taken on a 3i Marianas spinning disk confocal system using
445 nm, 515 nm lasers and 482/35, 542/27 single band-pass emission filters for TFP
and Venus detection, respectively. FRET values were calculated using two channel
sensitised emission FRET in slidebook (3i) software as described by the manu-
facturer. To assess nuclear envelope FRET values only, a single pixel-wide mask
was drawn on the nuclear envelope.

FRET imaging of Rac1 biosensor. Sparsely-seeded U2OS cells expressing the
Raichu-Rac1-KRas-CFP-YFP construct were imaged using a 3i spinning disk
inverted confocal microscope with a Zeiss ObserverZ microscope frame and using
a Plan-Neofluar 100 × /1.3 objective. Samples were excited using 440 and 488 nm
diode lasers via Zeiss CFP, YFP and CFP/YFP filter cubes respectively. Images were
collected using a Photometrics Evolve EMCCD camera. Single confocal planes were
then analysed manually using ImageJ. After application of a Gaussian blur of 0.5
pixels to aid pixel registration between channels, the CFP image was divided by the
YFP image using a 32-bit floating point calculation to generate the FRET ratio
image. A region of interest 2 pixels wide was drawn around the nucleus (as dis-
cerned from the YFP image), and this region was then used to measure the average
FRET intensity from the FRET ratio image.

Atomic force microscopy. AFM experiments were conducted using an AFM
microscope system at the Bioimaging facility, The University of Manchester. MEFs
were plated onto glass bottomed 35 mm dishes and mounted onto the inverted
microscope in media. A silicon nitride, quadratic pyramid cantilever probe was
used at angle 0°. The cantilever was positioned above the nucleus and was des-
cended towards the nucleus at a speed of 2 µm/s. At least 15 force–distance curves
were collected per cell, and at least 10 cells were measured per condition. The
force–distance curves were analysed using the JPK Imaging Processing software to
obtain Young’s modulus values.

qRT-PCR. RNA was extracted from cell pellets or tissue using the RNeasy kit
(Qiagen) with additional digestion of genomic DNA with RNase-free DNase kit
(Qiagen), according to the manufacturer’s instructions. 1 μg of RNA was reverse
transcribed to cDNA using the Omniscript RT Kit (Qiagen) according to the
manufacturer’s instructions. qPCR was performed in quintuplicates in a 10 μL
reaction mixture containing 5 μL of 2 × TaqMan® master mix, 0.5 μM of each of the
primers, 0.1 μL of the appropriate Universal probe and 10 ng of cDNA. Tbp
expression levels were used to normalise for differences in RNA input. Primers for
Ctgf, Cyr61 and Tbp were designed online using the Universal ProbeLibrary Assay
Design Center (Roche). For analysis from mouse livers, livers were obtained from
18.5 day embryos from STEF total knockout mice in C57/BL6 background (the sex
of the embryos was not determined).

Statistical analysis. Appropriate statistical tests were chosen to minimise type I
error associated with significance values. Statistical differences between data were
analysed in Prism (GraphPad Software) with either an unpaired, two-tailed Stu-
dent’s t-test or an unpaired, one-way ANOVA, with appropriate post hoc multiple
comparisons test. Tests are specified in figure legends along with P value
significance.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon reasonable request.
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