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Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but
safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down

to 200 ns, and compared electroporative damage by proportionally more intense shocks of different
duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM)
were loaded with a Ca?* indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude
until a Ca?* transient was optically detected. Then, the voltage was increased 5-fold, and the electric
cellinjury was quantified by the uptake of a membrane permeability marker dye, propidium iodide.
We established that: (1) Stimuli down to 200-ns duration can elicit Ca?* transients, although repeated
ns shocks often evoke abnormal responses, (2) Stimulation thresholds expectedly increase as the
shock duration decreases, similarly for VCMs from different species, (3) Stimulation threshold energy
is minimal for the shortest shocks, (4) VCM orientation with respect to the electric field does not affect
the threshold for ns shocks, and (5) The shortest shocks cause the least electroporation injury. These
findings support further exploration of ns defibrillation, although abnormal response patterns to
repetitive ns stimuli are of a concern and require mechanistic analysis.

Research into bioeffects and applications of nanosecond pulsed electric fields (nsPEF) has been steadily expand-
ing during the last decades. Historically, most studies focused on lethal cell damage by nsPEF, induction of apop-
tosis or necrosis' ¢, and tumor ablation’~?. More recently, the focus has been shifting towards fine mechanisms of
nsPEF interaction with living cells and biomembranes!®!!, as well as excitation and activation of cells and tissues
by nsPEF'?""7. Electrostimulation by nsPEF can exploit unique features, such as direct effects on the endoplasmic
reticulum (ER)'®* and non-chemical induction of Ca?* transients!>!'*!%!? and of phosphoinositol signaling?®2!
even in cells that express no voltage-gated channels. The stimulation process may involve transient injury (“nano-
electroporation”) to the plasma membrane and intracellular membranous structures®.

However, the balance of nanoelectroporation and direct opening of voltage-gated (VG) channels by nsPEF in
excitable cells and tissues remains an open debate. The process of opening of VG channels (the translocation of
the voltage sensor of the channel and the resulting conformational change) takes as long as hundreds of micro-
seconds®~%, so it is not clear how nsPEF stimuli, which are orders of magnitude shorter, cause channel opening.
Indeed, a number of studies reported that nanoporation likely is the first step which precedes the response of ion
channels: it initiates ion leakage and lasting membrane depolarization, resulting in activation of VG Na* and/or
Ca?* channels!®'. However, isolated frog sciatic nerves could be excited tens of thousands times by 10-ns PEF,
suggesting that no membrane injury is involved'. Other studies observed no sign of electroporative damage
in nsPEF-stimulated striated muscles?, rat embryonic cardiomyocytes?”, and neurons®. A recent study in cul-
tured hippocampal neurons reported that electroporation thresholds for 200-ns pulses were always lower than
excitation thresholds; nonetheless, the study concluded that action potentials were not necessarily a result of
electroporation®.

Among many medical applications of electrostimulation, applying intense electric shocks is the most common
life-saving procedure for terminating ventricular fibrillation?*-**. Excitation of a large or of the entire volume of
the myocardium by the shock is essential to halt the propagation of fibrillation front, although the exact mecha-
nisms of defibrillation are not fully understood****. Modern defibrillators deliver biphasic shocks of millisecond
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NaCl? 113 133 125 110 128 133 133.5 133.5 140
KCI? 4.7 5 4.7 16 4.7 5 4 4 5.4
MgSO2 1.2 1.2 1.2 1.2

MgCl,? 2 16 1 2 1.5
CaCly* 12 1.3 0.01 g}zi 05 14 1
Na,HPO,* 0.6

NaH,PO2 1.2 1.2 1.2 1.2 1.2

KH,PO,* 0.6 12

NaHCO;* 12 10 20

KHCO,* 10

HEPES* 10 10 30 10 10 10 10
Glucose? 5.5 10 11.1 11.1 10 11.1 11.1 10
Taurine® 30 58.5

Creatine® 249

2,3-Butanedione monoxime?® 10 10

Bovine serum albumin?® 0.1% 0.1% 0.1%

100x Penicillin/streptomycin® 1%

100x Insulin-transferrin-selenium® 1% 1%

50x MEM Amino Acids® 2%

100x MEM Non-Essential Amino Acid mix® 1%

100x MEM Vitamin solution® 1%

Table 1. Composition of buffers for isolation and experimentation with cardiomyocytes from different animal
species. All concentrations are in mM unless different units are given in the table. pH of all buffers was set to 7.4.
Perfusion/digestion buffers and pig wash buffer were gassed with 95% O,/5% CO, at 37 °C. Suppliers: *Sigma-
Aldrich, St. Louis, MO; bCorning, Corning, NY; °Gibco, Gaithersburg, MD.

duration®®-*, but their advantage over monophasic shocks in out-of-hospital cardiac arrest patients is not that
clear®®®. Since the invention of defibrillation, it was considered desirable to limit the defibrillation energy, to min-
imize collateral damage to the cardiac tissue*'~*. Electrical shocks above a critical amplitude damage cells***, and
adverse effects of defibrillation, especially at higher energy levels, may include pain and anxiety, cardiac ectopy,
tachycardia, arrhythmia, asystole, re-fibrillation, and increased mortality®24¢-5L The principal mechanism of cell
damage is electroporation®*>°>%3, and the reduction of pulse duration into nanosecond range could reduce the
adverse effects by limiting the size of pores formed?>?”>4-36, Furthermore, short duration of nsPEF minimizes the
electrophoretic component of the transmembrane transport®”. Compared to longer pulses, nsPEF may minimize
the undesired loss and uptake of solutes and reduce the osmotic imbalance, improving cardiomyocytes’ chances of
recovery and survival after the electric insult. Other potential benefits of nsPEF include more uniform excitation
of myocardium, which reduces the risk of induction of new wavefronts that can reinitiate fibrillation, and defi-
brillation at lower shock energy'?. Indeed, we were able to both stimulate and defibrillate Langendorft-perfused
rabbit hearts with nanosecond shocks, and the associated defibrillation energy was about an order of magnitude
lower than that of monophasic millisecond defibrillation!2.

The present study continues this work by comparing the excitation efficiency and electric injury by shocks of
different duration at the cellular level. In primary ventricular cardiomyocytes from three different species (mouse,
pig, and rabbit), we established Ca?* activation thresholds for electric shocks of different duration, from several
milliseconds down to 200 ns. Next, the amplitude of the shock was increased proportionally to the excitation
threshold for the individual cell, and one or several shocks were applied to electroporate the cell. We found that
the shortest shocks were the least damaging, as revealed by reduced uptake of the membrane permeability marker
dye, propidium (Pr) iodide. While these data proved a much better safety margin for nsPEF, we also observed
higher occurrence of distorted Ca?" transients already at the excitation threshold. Such abnormal transients could
be caused by the ER damage or inhibition of VG channels; potential role of such effects for defibrillation remains
to be explored.

Materials and Methods

Isolation of adult ventricular cardiomyocytes (VCM). All animal protocols were approved by Old
Dominion University Institutional Animal Care and Use Committee. All experiments were performed in accord-
ance with relevant guidelines and regulations. The formulation of solutions and suppliers of chemicals are pro-
vided in Table 1, with further details or modifications given in text below.

Isolation of mouse VCM.  VCM from 3 to 5 month old DBA/2] female mice were isolated by Langendorff perfu-
sion following protocols by Louch et al.*® with modifications. Mice were injected i.p. with 0.5 cc heparin diluted in
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phosphate buffered saline (PBS) to 100 IU/ml and anesthetized by inhalation of 2-4% isoflurane in O,. The heart
was quickly excised and arrested in ice-cold mouse perfusion buffer (Table 1). Aorta was cannulated and the heart
was retrogradely perfused using a two-channel syringe pump (Harvard Apparatus, Cambridge, MA) to maintain
a stable flow rate of 3 ml/min. Perfusion solution was heated to 37 °C using a rod in-line heater connected to a
TC-344B control unit (Warner Instruments, Hamden, CT); temperature was monitored by a digital thermometer
BAT-12 (Physitemp Clifton, NJ). Hearts were perfused for 4 min with the perfusion buffer and then for 8 min with
digestion buffer (same formulation, but supplemented with 0.1 mg/ml Liberase TM (cat.# 05401127001, Roche,
Switzerland) and 12.5 pM CaCl,). Next, heart was taken off of the cannula, placed in a 35-mm culture dish with
3 ml of the digestion buffer and moved to a sterile laminar flow hood. Atria were removed, and ventricles were
pulled apart with forceps, minced, and then gently triturated with a transfer pipette for 5min. VCM suspension
was filtered through a 100 pm cell strainer into a 50-ml tube and digestion was halted by adding 3 ml of perfu-
sion buffer with 2 mg/ml of BSA fraction V and 12.5 uM CaCl,. Cells were left to settle down for 15 min, and the
supernatant was replaced with 10 ml of perfusion buffer with 1 mg/ml of BSA fraction V and 12.5 uM CaCl,. Next,
Ca*" concentration was increased in several steps. First, two aliquots of 50 ul of 10 mM CaCl, each were added
to the tube with cells with a 4-min interval. In 7-8 min after the second addition, supernatant was removed and
replaced with 10 ml of control buffer with 200 uM CaCl,. This procedure was repeated two more times to raise
CaCl, concentration to 500 and 1,000 uM, with the same time intervals. Cells were seeded on laminin-coated
10 mm glass cover slips, and in 3 hours the medium was replaced with the incubation buffer. Cell were kept at
room temperature and typically used in experiments within 48 hr.

Isolation of rabbit VCM. Female New Zealand white rabbits weighing 2-3 kg were injected with sodium heparin
(1500 units/kg) in the ear vein 10 min prior to euthanasia. Rabbits were anesthetized with isoflurane (3-5% in
100% O,) in an induction chamber. VCM isolation procedures followed on-line instructions by S. C. Armstrong,
http://www.usouthal.edu/ishr/help/myocytes/rabbitmyocytes.htm, with modifications. The chest cavity of the
anesthetized rabbit was opened, the heart rapidly excised and perfused with a syringe in a retrograde Langendorff
mode with ice-cold wash buffer (Table 1). Next, the heart was moved to a Langendorff apparatus and perfused for
5 min with perfusion buffer (PB) gassed with 95% O, 5% CO, at 37 °C. The solution was switched to a digestion
buffer (PB supplemented with 200 U/ml of Type II collagenase (Worthington, Lakewood, NJ)) and continued
for about 40 min, at 25-40 ml/min in a recirculating fashion, until the heart became pale and soft to touch. Left
ventricle was cut out and minced in 60 ml of perfusate. Cells were dispersed by triturating with a plastic transfer
pipette with a cut-off tip for 10 minutes at room temperature. Cell suspension was filtered through a 500-um
nylon mesh into three 50-ml tubes (20 ml per tube), and an equal amount of PB with 0.2% BSA was added to
each tube. Cells were left to settle for 15-30 min, supernatant was removed and replaced with 40 ml of PB without
collagenase. 200 pl of 10 mM CaCl, was added to each tube, cells were gently mixed by inverting tubes upside
down several times, and left for 8 min. Another 200 pl aliquote of 10 mM CaCl, was added, mixed, and cells were
allowed to settle for 20 min. The next steps of incremental calcium addition, seeding, and incubation were the
same as described above for mouse VCM.

Isolation of pig VCM.  Adult Yorkshire cross domestic pigs weighing 55-60 kg were used for an approved animal
protocol unrelated to this study, with an add-on protocol for myocardial tissue collection. Animals were sedated
with an oral dose of 6 mg/kg diazepam, followed by an i.v. dose of 20 mg/kg ketamine and 0.5 mg/kg midazolam.
The animal was intubated with #5-8 endotracheal tube and anesthesia was sustained with 2-3.5% isoflurane.

VCM isolation procedures followed protocols of Skuse® with modifications. Sternum was cut open, and the
heart was removed, cannulated, and perfused with 21 of ice cold cardioplegia buffer. Next the heart was perfused
with 37 °C wash buffer, the apex of the heart was removed and cut in several pieces. Each piece was placed in a
6-well plate filled with PB, rinsed for 10-15s in each well, and minced in the last well. Tissue pieces were trans-
ferred into several 50-ml tubes with 40 ml of 37 °C PB supplemented with 250 U/mL collagenase type II. The
tubes were placed on an orbital shaker (200 rpm) and kept at 37 °C. In 15-30 min, a protease inhibitor cocktail of
10 uM Leupeptin (Santa Cruz Biotechnology, Dallas TX), 1 mM Pepstatin, and 1 mM Benzamidine (both from
Sigma-Aldrich, St. Louis, MO) was added to spare collagenase activity but block most other proteases which are
typically present in commercial collagenase supplies. Tubes were returned to shaker for 30-40 minutes; then
approximately 20 ml of the solution with tissue pieces were transferred into a 100-mm Petri dish. Tissue was
pulled apart with forceps, and triturated for up to 10 min with a plastic transfer pipette with the tip cut. Cell
suspension was filtered through a 500 um mesh and 20 ml of PB supplemented with 0.2% BSA was added. Cells
were allowed to settle for 20 min, and the supernatant was replaced with 20 ml of the PB with 0.1% BSA. In 8 min,
100 pl of 10 mM CacCl, was added to each tube, and cells were gently mixed. In 8 min, the same aliquot was added
again, mixed, and cells were left to settle down for 20 min. The next steps of incremental calcium addition, seed-
ing, and incubation were the same as described above for mouse VCM.

Stimulation and electroporation by electric pulses. Field stimulation and electroporation of individ-
ual selected cells on a microscope stage were described in detail previously*®. A pair of tungsten rod electrodes
(100 pm diameter, 170- to 300-um gap) was connected to either a MOSFET-based generator to deliver nsPEF
stimuli, or to a Grass S88 stimulator (Grass Instrument, Quincy, MA). Using an MPC-255 robotic manipulator
(Sutter, Novato, CA), the electrodes were positioned within the microscope field of vision so that the selected cell
was centered between the tips of the electrodes (either perpendicular or parallel to the electric field); then the
electrodes were lifted to precisely 50 um above the coverslip surface (Fig. 1).

To produce nanosecond pulses of a predetermined duration (down to 200 ns) and amplitude, a capacitor of a
custom-made nsPEF generator was fully charged to a desired voltage from a high-voltage DC power supply. The
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Figure 1. A diagram of the single cell stimulation set-up (A,B) and numerical simulation of the electric field
distribution (C). Tungsten electrodes, 100 pm in diameter, were positioned precisely at 50 pm above the glass
coverslip with seeded cells (not shown). The angle to the coverslip was about 30°. A and B are the front and side
views of the electrode position. The gap d between the electrodes varied in different sets of experiments from
170 to 300 um, and the electric field between the electrodes was re-calculated for each gap distance. In panel C,
the electric field values are calculated for 100 V applied to the electrodes with a gap of 170 pm. The position of
electrode tips is denoted by white ovals. Electric field values reported in this paper are the average values for a
40 x 90 um region in the middle of the gap between electrode tips (white dotted line rectangle), at 10 um above
the coverslip surface.

capacitor was turned on and off by a power MOSFET switch (IXYS, IXFB38N100Q2) for a given period of time,
controlled with a digital delay generator (model 577-8 C, Berkeley Nucleonics Corporation, San Rafael, CA). In
turn, the delay generator was triggered and synchronized with image acquisitions by a TTL pulse protocol using
Digidata 1440 A board and Clampex v. 10.2 software (Molecular Devices, Sunnyvale, CA). To produce micro- and
millisecond range pulses, TTL trigger was sent to the Grass stimulator instead. The pulse shapes and amplitudes
were monitored with a TDS 3052 oscilloscope (Tektronix, Beaverton, OR).

The electric field applied was determined as described previously by 3D numerical simulations using a com-
mercial finite element solver COMSOL Multiphysics, Release 5.0 (COMSOL Inc., Stockholm, Sweden). Briefly,
in the model, two parallel rod electrodes (1 mm long, 100 pm diameter, 170- to 300-pm gap, stainless steel)
were inclined at 35°, positioned 50 um above the glass cover slip (100 pm thick, conductivity 0 S/m, relative
permittivity 3.78), and immersed in physiological solution (1 mm deep, conductivity 1.4 S/m, relative permit-
tivity 76). The model was enclosed in a sphere of air with radius of 3 mm. The whole domain of simulation was
meshed resulting in a total of 1,577,538 tetrahedral elements, with a minimum size of 1.2 um and maximum size
of 210 um. Quadratic elements were used throughout the solution domain, giving 2 x 10° degrees of freedom.
The Electric Currents interface was used to solve Maxwell’s equations under the assumption of steady-state con-
ditions. Electric field values reported below are the average values for a region of 40 x 90 um in the middle of
the gap between electrode tips, at 10 um above the coverslip surface (Fig. 1C). For the electrodes with a 170- or
300-pm gap, the coefficient of variation, calculated as ratio of the standard deviation over the mean value of the
electric field, was 5.7% and 3.9%, respectively. Although cardiomyocytes are large cells and their portions could
extend beyond this area of practically uniform electric field and experience lower field intensities, the excitation
thresholds and the electroporative damage were both determined by the highest electric field imposed on cells,
i.e., by the field in the 40 x 90 um central region.

Uniformly for all types of experiments, we tested two pulse durations from nanosecond range (200 and
800 ns), one or two pulse durations from microsecond range (usually 200 us; sometimes supplemented with 10
or 50 s, see below) and one pulse duration from ms range (2 or 4ms). In experiments with VCM permeabiliza-
tion by trains of 20 pulses, we could not use any data for pulse duration in excess of 10 us due to intense bubble
formation at the stimulating electrode. For fast measurements which did not require long observation (shapes of
Ca?" transients) we added extra datapoints at intermediate pulse durations of 400 ns, 2 and 5 ps. The amplitude of
pulses was set either at the stimulation threshold or at 5x the threshold, as indicated in text below.

The maximal theoretically possible (adiabatic) heating caused by pulses of different duration was calculated
from the absorbed dose, as described previously®"¢2. Out of all nsPEF treatments tested in these study, the largest
adiabatic heating (for a train of 20, 200-ns, 12.2kV/cm pulses) equaled only 2 °C, and in reality it was even less
due to heat dissipation. Thermal effects from single stimuli at any tested pulse durations and intensities did not
exceed 0.1°C.

Optical Detection of Ca?* transients and Pr uptake. Cytosolic Ca** was monitored by fluorescence
imaging with Fluo-4 (Invitrogen, Carlsbad, CA). Cells were loaded with the dye by incubation for 15 min in
Tyrode solution (Table 1) containing 5 .M of Fluo-4/AM and 0.02% of Pluronic F-127 (Life Technologies, Grand
Island, NY), in the dark at room temperature. The coverslips were rinsed twice and then left for 15 min in the
physiological solution before being transferred into a glass-bottomed chamber (Warner Instruments, Hamden,
CT) mounted on an Olympus IX81 inverted microscope equipped with an FV1000 confocal laser scanning sys-
tem (Olympus America, Center Valley, PA). The chamber was filled with Tyrode buffer supplemented with 10
or 20 uM blebbistatin to prevent cell movement artifacts, and with 5 or 10 ug/ml of an established membrane
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Figure 2. Recording of Ca®* transients in isolated ventricular cardiomyocytes from mouse (A,B,E,F),

rabbit (C,G), and pig (D,H). In VCM images (A-D), dark areas in the diagonal corners show the location of
stimulating electrodes (the inter-electrode distance could vary from 170 to 300 pm). In A, the line along the axis
of the cell is the region for line scan of Fluo-4 fluorescence (E, top). The fluorescence intensity plotted versus
time (E, bottom) reveals Ca®" transients elicited, in this example, by 5, 200-ps stimuli applied with 1-s intervals
(red arrows). Panels F, G, and H show typical Ca®" transients recorded from mouse, rabbit, and pig VCM,
respectively. Pulse duration is indicated next to the traces.

permeability marker dye, Pr iodide. This dye is essentially non-fluorescent when in the chamber solution, but
once Pr cation enters the cell, the emission increases profoundly upon its binding to intracellular nucleic acids.

All experiments were performed at room temperature. Images were taken with a 40X, NA 0.95 dry objective.
Fluo-4 fluorescence was detected in a line scan mode (usually, 2 ms/scan), with the line drawn approximately
through the center of the cell parallel to is long axis (Fig. 2A). Fluo-4 was excited with a blue laser (488 nm)
and the emission of the dye was detected between 505 and 605 nm. Image acquisition was synchronized with
nsPEF delivery by a TTL pulse protocol from pClamp software via a Digidata 1322 A output (Molecular Devices,
Sunnyvale, CA). The acquisition typically continued for 6 s and 5 stimuli were applied with 1-s intervals.

In some sets of experiments, a low-affinity Ca?* indicator Fluo-5N (Thermo Fisher Scientific, Waltham, MA)
was used instead, to enable a more faithful recording of the shape of Ca?* transients®®. The dye was loaded into
cells according to supplier’s recommendations. Within limits of this study, we have not observed any consistent
difference from Fluo-4 data, and results were analyzed together.

PI emission was excited with a 543 nm laser and detected in the wavelength range 560-660 nm or 655-755nm.
Cell images were taken once in 10s for 5 min, with the first 3 images acquired before nsPEF delivery, which was
done at 27 s from the start of recording.

The sensitivity of fluorescence detector was kept constant within each series of experiments, but could be
adjusted for different series, in order to maximize the dynamic range of the detector while avoiding its saturation.
Therefore, the arbitrary units (a.u.) of fluorescence shown in different figures are not necessarily comparable.

Images were processed and quantified using MetaMorph Advanced v.7.7.0.0 (Molecular Devices). Data are
presented as mean = s.e. Statistical analyses were performed using a two-tailed ¢-test where p < 0.05 was consid-
ered statistically significant.

Data availability. The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Results and Discussion

Nanosecond pulses can evoke Ca?* transients similarly to conventional stimuli.  Once the cov-
erslip with VCM attached was placed on the microscope stage, the stage was moved to search for a single (not
obscured by other cells), rod-shaped VCM without any apparent lesions. Once a suitable VCM was located,
stimulation electrodes were moved into the work position, so that the VCM was in the middle of the gap between
the electrodes, with its long axis approximately parallel to the electrodes and perpendicular to the electric field
(within 4+/—20-30° angle, Fig. 2A-D). Applying single or repetitive stimuli caused characteristic patterns of line
scan detection of Fluo-4 dye fluorescence, with the intensity peaks corresponding to Ca** transients (Fig. 2E).
Preliminary experiments established that sub-microsecond pulses can evoke Ca*" transients in VCM of all three
tested species, and the shape of the transients appeared to depend on the animal species (shorter transients in
VCM from the species with a faster heartbeat) rather than on the stimulus duration (Fig. 2F-H).

A detailed analysis of the time course of Ca?* transients evoked by different stimuli was performed in mouse
VCM (Fig. 3). Transients evoked by stimuli of 7 different durations, in a minimum of 5 cells for each stimulus
duration, were averaged and plotted together (Fig. 3A), and also were quantified in individual cells for statistical
comparison (Fig. 3B). Any transients with “distorted” shape (see below) were not considered for this analysis.

SCIENTIFICREPORTS | (2018) 8:8233 | DOI:10.1038/s41598-018-26521-2 5



www.nature.com/scientificreports/

e
_
|

|

rise time, s
14
o
w
[ BT

o

S

e

S
|

e
w
|

e
N
|

e
=
1

decay time constant,

o
L

02 04 08 2 5 50 200

pulse duration, us

Figure 3. Stimulus duration has no effect on the shape of Ca?* transients. (A) overlapped traces of transients as
averaged from at least 5 mouse VCM. The cells were stimulated at the excitation threshold, by pulses ranging in
duration from 200 ns to 200 ps (color-coded). (B) The analysis of the average rise time and decay time constant
of Ca*" transients in individual stimulated cells (mean +/— s.e.) shows no statistically significant impact of
pulse duration.

Measured variables were the rise time and the decay time constant (by fitting with a single-exponential function)
of each individual transient; Fig. 3B does not show any statistically significant differences between Ca?* transients
evoked by stimuli of different durations.

Extension of strength-duration curves into nanosecond range.  Stimulation thresholds for pulses
from 200 ns to 2 ms duration were established in several independent series of experiments, performed over
a time period of about a year. In a typical experiment, we applied trains of 5 stimuli with 1-s interval (like in
Fig. 2E). Voltage delivered to the stimulating electrodes was raised in 10-15% increments, starting from pre-
sumed sub-threshold levels, and until a Ca** response was observed. The corresponding electric field value was
noted as a stimulation threshold for the specific cell. The threshold data for over 200 individual cells positioned
perpendicular to the electric field are summarized in Fig. 4A; the thresholds for parallel and perpendicular orien-
tations with respect to the electric field are compared in Fig. 4B. The response thresholds expectedly increased as
the pulse duration decreased, similarly for VCM from mouse, rabbit, and pig. The data showed excellent repro-
ducibility from one set of experiments to another, and less than 2-fold difference between the species. Of note,
the data for 2-ms pulses should be taken with caution, because of bubble formation at the cathode and possible
reduction of the electric field reaching the cell.

Orienting the VCM along the electric field lines lowered the threshold for “long” 50- and 200-ps pulses 1.5-1.7
times, which is close to a 2-fold reduction reported by other authors for a different stimulation set-up®. However,
cell orientation did not affect the threshold for 200- or 800-ns pulses (Fig. 4B). Indeed, the potential induced
on cell membrane by an external electric field increases linearly with increasing the cell dimension along the
electric field lines (Maxwell-Wagner polarization), so orienting the cell’s long axis along the field lines induces
the threshold transmembrane potential at a lower external electric field. The lack of such dependence for nsPEF
stimuli indicates that the membrane did not get fully charged within the duration of the stimulus, so the cell
dimension along the electric field lines had little or no impact. The independence of the stimulation threshold
from cell orientation may translate in a more uniform excitation of heart tissue in vivo, which would be beneficial
for defibrillation.

Interestingly, nsPEF stimulation also required lower energy to excite VCM, for all tested species and for both
VCM orientations (Fig. 4C,D). Since damaging effects of defibrillation correlate with the energy of the shock,
lowering the energy by reducing the pulse duration may also reduce the undesired side effects of defibrillation.

Repetitive nsPEF stimuli evoke distorted Ca?* transients. The data presented above in Figs 2 and 3
suggest that nsPEF induce Ca*" transients similarly to conventional stimuli, by engaging the same well-known
physiological mechanisms. Thus far, these data provided no indication of differences in the opening of VG chan-
nels, Ca*" mobilization from the ER, or its clearance from the cytosol after nsPEF versus conventional stimuli.
The strength-duration curves in the nanosecond range continued the same pattern as with longer pulses (Fig. 4),
which serves as an additional indication of the similarity of excitation mechanisms?.

Therefore it came out as a surprise that nsPEF performed poorly for repetitive stimulation. In most individ-
ual cells which responded reproducibly to conventional stimuli, repetitive nsPEF caused abnormal responses
(Fig. 5). Cells either failed to generate one or several transients; or their shape was distorted; or cytosolic Ca®* did
not return to its base level. Even when the decay phase of nsPEF-induced transients was precisely the same as of
conventional stimuli-induced transients (i.e., Ca?* pumps were fully functional), Ca>" clearance often got halted
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Figure 4. Effect of stimulus duration (A,C) and cell orientation in the electric field (B,D) on Ca?* activation
thresholds in adult VCM from different species. The thresholds are expressed as the electric field (A,B) or

the respective dose (C,D). For experiments in panels A and C, all cells were oriented perpendicular to the
electric field. Each datapoint is the mean +/— s. e. for 6 to 15 cells; each cell was probed with only one stimulus
duration. Three groups of murine VCM (A,B) are from different sets of experiments separated by several
months; they are shown separately to better illustrate the reproducibility of measurements. *Significant effect of
cell orientation (B,D), p < 0.01, 2-tailed t-test.

before its complete recovery to the resting level. The underlying mechanism of this phenomenon and its potential
significance for defibrillation are not immediately clear, and will be explored in our future work. Of note, abnor-
mal Ca?" responses were not unique to nsPEF; they were observed with long stimuli as well, but less frequently.

nsPEF cause less electroporative damage than conventional stimuli. A membrane-impermeable
dye Priodide has been most frequently used to detect and quantify electroporation in cardiac myocytes®>®-* and
many other cell types?”¢*%8°_ Binding of propidium cation to nucleic acids inside the cell is detected by bright red
fluorescence, with good resistance to bleaching. While some other dyes such as Yo-Pro-1 and cations (T1", Ca*")
are more sensitive for electropore detection (especially for nanopores), they are also prone to false positives due to
possible entry through endogenous ion channels!'®?2?”5+7°, The larger, Pr-permeable electropores are also thought
to be more injurious to the cell, resulting in lower cell survival®.

Experiments testing different shock durations were mixed in a random fashion, and only one duration was
tested in any VCM. Once the excitation threshold for a given shock duration was identified, the voltage to be
delivered to electrodes was increased 5-fold. Figure 6 shows examples of Pr uptake in pig VCM after a single 2-ms,
200-ps, or 800-ns shock, all delivered at 5x the excitation threshold for the respective pulse duration in each cell.
Micro- and millisecond shocks consistently caused detectable Pr uptake, and, for most tested conditions, it was
significantly more than with 200-ns or 800-ns pulses (Fig. 7). Of note, 2-ms pulses caused profound formation of
bubbles on the surface of the cathode electrode (Fig. 6, top row), which has likely reduced the electric field “seen”
by cells during the pulse, and therefore reduced the Pr uptake. Despite this reduction, 2-ms pulses at 5x threshold
always caused significantly more Pr uptake than 800- or 200-ns shocks at 5x the respective thresholds.
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Figure 5. Abnormal Ca®* transients in mouse VCM in response to repetitive nsPEF stimulation. Each panel is a
different cell. The healthy condition of each cell was verified by its ability to respond repeatedly to conventional
stimuli. A train of 5, 0.2 ms pulses at 1-s intervals (arrows) was delivered at increasing voltages until a response
was detected (traces shown by a blue dotted line). This train could be applied several times, to confirm stable
responses (not shown). The same procedures were repeated using 800-ns stimuli (top panels, brown solid line)
or 200-ns stimuli (bottom panels, red solid line). The threshold electric field values for conventional and nsPEF
stimuli are shown next to the traces.

Figure 6. Shock duration-dependent propidium uptake in pig VCM. Shown are representative time-lapse
images of 3 cells. For each cell, top row: differential interference contrast (DIC) illumination; bottom row:
propidium fluorescence. The images were taken at 0, 1, 2, 3, and 4 min into experiment; a single 2-ms, 200-ps,

or 800-ns shock was delivered at 27 s. The voltage of the shock was set at 5x the respective threshold for Ca?*
activation in each cell. Note more intense propidium uptake with longer duration shocks, and formation of large
bubbles by the 2-ms stimulus.

The correlation of Pr uptake with the pulse duration was preserved with multiple electroporating pulses
(Figs 8 and 9). A train of 20 shocks (200 ns, 800 ns, 10 ps, or 200 us duration), applied at 2Hz and at 5x stimulation
threshold, caused stable and irreversible VCM contracture, accompanied in some cells with blebbing (Fig. 8).
Pr uptake was visibly similar after 200-ps shocks (Fig. 8) and 10-us shocks (not shown); however, due to intense
bubble formation on the cathode during the delivery of the pulse train (Fig. 9, inset), the 200-us experiments
were discontinued and excluded from statistics. Figure 9 shows that 200-ns shocks caused about 1.7 times less Pr
uptake than 800-ns shocks (p < 0.05), and almost 4-fold less Pr uptake than 10-ps shocks (p < 0.01).
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Figure 7. Nanosecond shocks cause less propidium uptake than longer shocks in mouse (A,B), pig (C), and
rabbit (D) cardiomyocytes. In all experiments, cells were subjected to a single shock of indicated duration at
27s into the experiment (red dashed line). The shock amplitude was set at 5x the threshold for Ca*" activation
in each individual cell; the respective average electric field values for each group are indicated next to the plots,
along with the number of experiments in that group. Cells were oriented perpendicular to the electric field
(A-D) or parallel to it (B). For clarity, standard error bars are shown in one direction only. *p < 0.05, **p < 0.01
with two-tailed Student’s t-test. Note that the effect of 2-ms shocks was likely reduced by bubble formation, see
text for more details.

Figure 8. Trains of 20, 1-Hz shocks at 5x calcium activation threshold cause propidium uptake, irreversible
contracture, and blebbing in mouse VCM. Trains started at 27 s into the experiment and continued for 10s.
Small blebs can be seen in DIC images at 3 and 4 min after 10-us shocks (arrows). See Fig. 5 and text for further
details.

Conclusions

This study evaluated the applicability of nanosecond electric shocks for stimulation of primary VCM from differ-
ent mammalian species, and compared cell damage by shocks of different duration when the applied voltage was
raised 5 times above the stimulation threshold. We found that nsPEF shocks are indeed suitable for VCM stimu-
lation, and established the thresholds for initiation of Ca*" transients in VCM from pig, mouse, and rabbit. VCM
excitation is considered critical to stop propagation of fibrillation fronts, and our in vitro data are consistent with
recent demonstration of successful nsPEF defibrillation in Langendorff-perfused rabbit hearts'?. The reduced
dependence of excitation on VCM orientation (along or across the electric field lines) will likely be beneficial
in defibrillation, by enabling more uniform excitation by electric fields. At the same time, poor performance of
nsPEF for repetitive stimulation of VCM indicates some additional and unknown impact, with unpredictable
implications for defibrillation. As a first approximation, such effects may be related to mild nanoelectroporation
of the sarcolemma and/or of the ER'*!*?2%4, or to inhibition of voltage-gated ion channels”’2 In the next studies,
we plan to analyze the action potentials elicited by nsPEF in VCM, in order to separate nsPEF impact on cell
excitation and on downstream Ca?" handling.
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Figure 9. Trains of 20, 1-Hz shocks at 200 and 800 ns duration cause less Pr uptake than 10-ps shocks. Vertical
dashed lines show the time interval when the shocks were applied. The shock amplitude was set at 5x calcium
activation threshold for each individual cell. The inset shows the formation of gas bubbles on the cathode after
a train of 20 pulses of 200-ps duration, which were therefore excluded from the analysis. See Fig. 7 and text for
more details.

Exceeding the stimulation threshold 5-fold (a situation which will likely take place in at least some areas
of the heart during defibrillation) caused electroporative damage, which was unambiguously manifested and
quantified by Pr uptake. The extent of the damage was reduced with nsPEFE, supporting earlier observations in
diverse cultured cells and in embryonic VCM>*"7>. The freshly isolated adult VCM differ profoundly from other
cell types both in cell shape and physiology, so the agreement of findings proves that the reduced formation of
Pr-permeable electropores, for comparable exposure conditions, is a fundamental property of nsPEE. Although
we have not evaluated here the formation of smaller, Pr-impermeable “nanoelectropores”?***7* (because it is
difficult to separate them from endogenous ion channels without using channel inhibitors), the smaller pores
are likely less significant for disruption of cell functions. In contrast, the presence of even a small population of
larger-size pores could be a major reason for cell death®. Overall our findings support the idea that nsPEF shocks
are a promising modality for electrostimulation and defibrillation, and set the goals for more in-depth analyses of
nsPEF excitation and damage mechanisms.
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