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Amorphous topological superconductivity in a
Shiba glass

Kim PSyhdnen!, Isac Sahlberg!, Alex Weststrom' & Teemu Ojanen’

Topological states of matter support quantised nondissipative responses and exotic quantum
particles that cannot be accessed in common materials. The exceptional properties and
application potential of topological materials have triggered a large-scale search for new
realisations. Breaking away from the popular trend focusing almost exclusively on crystalline
symmetries, we introduce the Shiba glass as a platform for amorphous topological quantum
matter. This system consists of an ensemble of randomly distributed magnetic atoms on a
superconducting surface. We show that subgap Yu-Shiba-Rusinov states on the magnetic
moments form a topological superconducting phase at critical density despite a complete
absence of spatial order. Experimental signatures of the amorphous topological state can be
obtained by scanning tunnelling microscopy measurements probing the topological edge
mode. Our discovery demonstrates the physical feasibility of amorphous topological quantum
matter, presenting a concrete route to fabricating new topological systems from non-
topological materials with random dopants.
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invariants® 2 that remain robust in the presence of

imperfections. While topological properties can be studied
independently of local order, spatial symmetries play a central
role in virtually all material realisations. This is emphasised by the
fact that the theoretical search for new topological materials
extensively employs band structures and reciprocal space. While
topological states are generically robust to disorder which breaks
spatial symmetries, this is typically established by treating the
disorder as an additional feature in a well defined clean system.
Even topologlcal Anderson insulators® 4, where moderate dis-
order actually gives rise to nontrivial topological properties, rely
crucially on a specific band structure of the clean system. The
concept of disorder, almost by definition, implies the existence of
an underlying ordered reference state.

The role of spatial symmetries in topological materials raises
the question of how much spatial order is necessary for topolo-
gical states to persist. In addition to the fundamental interest,
possible realisations have far-reaching practical implications. The
search for topological states has already moved beyond the ele-
ments found in nature to artificial man-made structures such as
Majorana wires®~’. The wires have the advantage of potentially
allowing topological computation, but to carry out this function
they must be almost defect free, which illustrates a generic
complication in top-down fabrication strategies. On the other
hand, fabrication of topological matter with randomly distributed
constituents, if possible, would avoid that obstacle and offer new
opportumtles A recent discovery of a mechanical gyroscopic
metamaterial®, albeit a purely classical system, suggests that also
amorphous topologlcal quantum matter could be achievable. By
studying the propertles of long-range hopping toy models,
Agarwala and Shenoy® pointed out the mathematical possibility
of topological states with randomly localised states.

In this work, we propose the Shiba glass, depicted in Fig. 1, as a
concrete physical realisation of amorphous topological quantum
matter. Remarkably, we discover that (i) for a finite out-of-plane
polarisation, the system supports topological superconductivity
above a critical density, and despite complete absence of spatial
order, (ii) the topological phase is extremely robust and protected
by a mobility gap and (iii) the topological phase supports edge

Topologlcal states are characterised by integer-valued

Fig. 1 Structure of the Shiba glass. Magnetic moments (represented by a
red arrow) on a superconductor bind a subgap Yu-Shiba-Rusinov state
(represented by a yellow disc) centred on the moments. A Shiba glass
results from a hybridisation of individual bound states in a random spatial
distribution of moments. The collective amorphous state supports
topological superconductivity above a critical moment density at finite out-
of-plane polarisation. Inset: a finite sample is enclosed by a topological edge
mode of chiral Majorana states. Rare fluctuations give rise to antipuddles
that exhibit localised low-energy excitations within a mobility gap
protecting the topological phase
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modes, whose signatures can be observed in standard scanning
tunnelling microscopy (STM) experiments. The Shiba glass is
fundamentally different from disordered topological materials
which rely on band structures and thus on the spatial order of
clean systems.

Results

Theoretical description. The studied amorphous topological
superconductor is comprised of randomly distributed magnetic
moments on a superconducting surface with a Rashba spin-orbit
coupling. The moments can arise from magnetic atoms, mole-
cules or nanoparticles. Regular 1D structures of this type have
been predicted to host Majorana states'®"!® with supporting
experimental evidence!*2!, More recently, ferromagnetic 2D
lattices have emer%ed as a promising platform for chiral
superconductivity?> 2* with a rich topological phase diagram?42°,
Classical magnetic moments embedded in a gapped s-wave
superconductor give rise to Yu-Shiba-Rusinov (YSR) subgap
states?®, localised subgap states which decay algebraically for
distances smaller than the superconducting coherence length. In
2D superconductors, such as layered systems, thin films and
surfaces, the decay of the wavefunctions from the deep-lying
impurity has a functional form e~"/%/ \/_7 where & and kg are
the superconducting coherence length and the Fermi wave vector
of the underlying bulk. The Shiba glass results from a hybridi-
sation of randomly distributed YSR states. To model the system,
we consider deep-lying YSR states with energies &, located in the
vicinity of the gap centre ¢;/A < 1, where A is the pairing gap in
the bulk. The energy of a single YSR state is given by &, = A1=% +g2,
where o = /SN is a dimensionless impurity strength, J is the
magnetic coupling, S is the magnitude of the magnetic moment
and N is the spin-averaged density of states at the Fermi level.
The deep-impurity assumption translates to |1 — a| < 1 and the
energy of an impurity state is given by ¢, = A(1 — «). As outlined
in the Methods section, the low-energy properties of the coupled
impurity moments are modelled by a tight-binding Bogoliubov-
de Gennes Hamiltonian?*

H = hmn Amn 1
e (Anm)* _htnn ’ ( )

which describes a long-range hopping between YSR states centred
at random positions r,.. The entries h,,,, A,,, for arbitrary con-
figuration of magnetic moments is lengthy and given in Supple-
mentary Note 1. Physical intuition can be obtained by
considering the special case of fully out-of-plane ferromagnetic
spins, where the model reduces to

€
hm_{“ﬂ ) + T ()]
0 m=n
B = {— [ ()

— I;(rmn)] % m#n.

In the above expression r,,, = |r,, —r,|, and x,,, and y,,, are
components of r,, — ¥, = (Xp> Ymn)- The hopping elements are
expressed in terms of the functions

I (r) = % R, (ki r +ir/8) + H_, (ki r + ir /)],

3
= (r) = X Ry (ki v+ ir/8) + iH, (ki 7+ ir/8)], ®)

where J,, and H,, are Bessel and Struve functions of order n. The
Rashba spin-orbit coupling induces two helical Fermi surfaces

with density of states N, =N (1 FA/NV1I+ /\2) and Fermi
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wavenumber ki =k (\/ 1+ A F A) , where A = agp/(hvg) is the

dimensionless Rashba coupling and kg,vg the Fermi wavenumber
and velocity in the absence of spin-orbit coupling. The Rashba
coupling also slightly modifies the superconducting coherence

length & = (Avi/A)V/1+4 A% For ferromagnetic textures, the
pairing term A;; vanishes with vanishing Rashba coupling ar = 0.
The low-energy Hamiltonian (1) describes an odd-parity pairing
Ay = —Ay, which is a long-range hopping variant of a p, +ip,
superconductivity. In Eq. (1) the hopping and pairing functions

€
rl

decay as f(r) 7; and display oscillations at wave vectors kj .

Physical properties of the Shiba glass. The spectrum and the
topological phase diagram of a finite system can be calculated by
diagonalising the effective Hamiltonian (1) for spatially uncor-
related random positions of magnetic moments. After deriving
the finite-size properties, we discuss the extrapolation to the
thermodynamic limit. For 2D time-reversal breaking topological
superconductors, the relevant topological index classifying the
state is the Chern number. We will evaluate Chern numbers by
employing the real-space approach of Eq. (5).

By evaluating the Chern number, we uncover the topological
phase diagram of finite Shiba glass systems which can be seen in
Fig. 2a. For sufficiently high densities, a ferromagnetically ordered
system is generally in a topological phase with Chern number

v

1

|C| = 1. For the employed parameters, the critical density p.
corresponds to the characteristic length scale 7. = p_ /2 = k; .
For lower densities (? > ki 1), the system is in general
topologically trivial and gapless; rare configurations can manage
to enter a topological phase but do not survive disorder averaging.
The pattern persists even when the directions of the local spins
deviate from the perfect ferromagnetic configuration; in Fig. 2b
we plot the phase diagram for spin configurations drawn from a
thermal distribution where the angles 6; between the moments
and the surface normal are determined by the Boltzmann weights
e PEzcos%  This situation corresponds to an ensemble of
decoupled spins at Zeeman field E; polarising the moments
perpendicular to the plane and disordered by thermal fluctuations
at inverse temperature f3. Alternatively, the situation can be
regarded as a magnetic disorder where the disorder is
parametrised by the thermal distribution and SE; instead of
some other random distribution. For SE; = 10, as indicated by
Fig. 2b, the phase diagram remains qualitatively unchanged when
compared to that for the completely polarised case. The
robustness to moment disorder is not an artefact of the thermal
distribution, and we discover qualitatively similar results for other
disorder averages exhibiting comparable polarisation.

The physical consequences of the topological nature of the
Shiba glass are illustrated in Fig. 2¢, d. The first one shows that
the local density of states (LDOS) is concentrated on the sample
edges. This is a consequence of a topological edge mode enclosing

b

0.3

Fig. 2 Topological superconductivity in the Shiba glass. a Topological phase diagram for a ferromagnetic Shiba glass as a function of the single-moment
bound-state energy g and the characteristic length between the moments r = p’%, where p is the moment density per unit area. The colour bar indicates
the value of the Chern number. The adatom number is held fixed at 600, with k& = 4—5” and 1 =0.2. The displayed diagram is an average over 10
configurations. Inset: Line along £ = 0.1, averaged over 500 configurations. b Same as in a, but for magnetic moment directions drawn from the Boltzmann
distribution with fE; =10 and averaged over 30 configurations, and with the number of moments fixed at 900. The deviation from the quantised values
and the width of the transition region diminish as the system size is increased. ¢ Local density of states (LDOS) for a 12.5¢ x 12.5¢ square Shiba glass
system comprising 2500 randomly distributed sites, integrated over subgap energies |E|<0.1A. Parameters used same as in a, with onsite energy o = 0.
The areas of the orange discs correspond to the magnitude of the LDOS; each site is additionally represented by a grey point which is visible when the
LDOS is negligible. d The thermal conductance (in units of ”g‘Z;T) along the line £ = O for the same system parameters as in the previous figures, but with
2500 adatoms. The vertical width of the conduction plateau (yellow) corresponds to the mobility gap of the system, and can be seen to close as the system
approaches the transition to the trivial gapless phase
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a finite system and is directly observable as discussed below. In
Fig. 2d we have plotted the thermal conductance of finite systems
coupled to external leads, as detailed in Supplementary Note 2. In
the topological phase, the system exhibits a quantised thermal
conductance which is a direct consequence of the nontrivial
topology. The quantised conductance is effected by the edge
modes despite the system being highly irregular in real space. In
finite-size systems, for parameters close to the phase boundary,
the quantised conductance plateau is destroyed and the
conductance assumes continuous values. The non-quantised
conductance in the trivial phase indicates that the low-energy
states there extend over the sample.

The behaviour and exact phase transition point depends on the
system parameters, though the overall trend of a topological
phase at high densities remains. In Fig. 2 we have used
parameters with high Rashba splitting A and low value of kr as
appropriate for a proximity-superconducting 2D semiconductor;
a phase diagram for parameters more appropriate for metals are
presented in Supplementary Fig. 2b, also indicating a transition to
a topological phase at sufficiently high densities.

Now we turn to discuss the features seen when increasing the
system size. First of all, in the thermodynamic limit the Shiba
glass phase is gapless. While this is a generic feature of a
superconductor with magnetic impurities>>, a qualitatively new
mechanism for low-energy excitations arises in the topological
phase. These emerge from rare fluctuations that leave a
substantial area where magnetic moments are sparse. As depicted
in Fig. 1, these empty antipuddles give rise to low-energy modes
which are reminiscent of the gapless edge states circulating
around a hole punched in a gapped topological phase. While the
probability of formation of antipuddles is exponentially sup-
pressed as a function of their size and their effect is relatively
unimportant in finite systems with high density, in infinite
systems antipuddles give rise to a tail down to zero energy in the
DOS. The antipuddle mechanism provides a simple physical
argument why the energy gap must scale to zero in the
thermodynamic limit. The second important notion is that, in
the thermodynamic limit, the system has well-defined topological
nature despite being gapless. The low-energy modes, as we have
argued above, are localised perturbations and the states with non-
localised wavefunctions have a finite energy threshold. Thus,
instead of an energy gap, the system exhibits a mobility gap
protecting the topological state. This behaviour is analogous to
the integer quantum Hall effect where the extended states
carrying Chern numbers are separated by localised states in the
Landau level gap?’. In Supplementary Fig. 2b we have calculated
the thermal conductance for an antipuddle configuration, which
shows that for isolated antipuddles, the system has a vanishing
energy gap but a finite well-defined mobility gap within which the
heat conductance is quantised. In the topological phase the
antipuddles are rare and effectively decoupled, thus they cannot
destroy the conductance quantisation.

Discussion

In our work, we have not addressed the question of the magnetic
ordering, but rather show that a finite polarisation perpendicular
to the plane gives rise to a topological phase. The nature of the
ordering would likely depend sensitively on the specific physical
realisation; however, there exist a number of mechanisms driving
the system to a polarised state. For example, ignoring the mod-
ifications arising from superconductivity at large distances®3, the
RKKY coupling leads to an effective interaction H=

Z#j ](‘ri - erSi - §; between the moments, where the sign of J
(r) oscillates as a function of the position as cos(2kgpr). While for
distances 2kpr > 1 this leads to complicated frustrated
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behaviour, in sufficiently dense systems /4 <kpr<3m/4 the
interaction is effectively ferromagnetic. Therefore, in the large
part of the topological region k.7 < 1, this mechanism favours a
ferromagnetic ordering polarising the system. In addition, an
anisotropic crystal field splitting DS? and an external Zeeman
field BS; would drive the system towards an out-of-plane
polarisation.

The studied Shiba glass system could be realised by decorating an
effective 2D or a layered 3D superconductor with magnetic atoms
or molecules. Considering the requirement k;7 < 1, dilute electron
systems such as proximity-superconducting 2d semiconductors
with Rashba spin-orbit coupling are promising candidate systems.
Another candidate sgstem is the layered superconductor NbSe,
where 2d YSR states’® and their coupling have been observed*’
recently. The most direct experimental probe is provided by STM
measurement of the LDOS. As shown above, in the topological
phase the Shiba glass system exhibits a significant concentration of
the subgap LDOS at the sample boundaries, which can be directly
observed by STM. This signal is clearly detectable at temperatures
below the mobility gap scale which can be of the order of kT =
0.1A — 0.3A as shown in Fig. 2d.

In summary, we introduced the Shiba glass as a platform for
amorphous topological superconductivity and elucidated the
general properties of such systems. Our results illustrate the
physical feasibility of amorphous topological quantum matterials
and provide a concrete prescription to experimentally realise and
observe them. Our discovery motivates expanding the search for
topological materials beyond crystalline systems and paves the
way for fabricating topological matter from nontopological
materials with random dopants.

Methods
Real-space evaluation of the topological invariant. To find the topological phase
diagram, we need to evaluate topological invariants in real space. The relevant
topological index for 2D systems with broken time-reversal symmetry is the Chern
number. This is generally obtained in k-space, but there are various methods of
computing it in real space as well>"> 32, A comparison shows that these methods are
generally of similar computational efficiency and yield the same values for the
topological invariant.
The real-space Chern number method of ref. 3 proceeds by defining the

coupling matrices C,, ; 1, with elements

Colt = ("l Ry, @
where R is the position operator, q, = 71(8,1 + 042, On2 + 043) for a =0, ..., 3, and
where ™" are the eigenfunctions of the system with periodic boundary conditions.
By use of these matrices, the Chern number is then obtained through the equation

1
C=2-> arglk,), (5)

m

with A,, being the complex eigenvalues of the matrix Cy;C;2Cy3Cso.

Data availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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