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Alcohol use effects on adolescent 
brain development revealed 
by simultaneously removing 
confounding factors, identifying 
morphometric patterns, and 
classifying individuals
Sang Hyun Park1, Yong Zhang2, Dongjin Kwon   3,4, Qingyu Zhao3, Natalie M. Zahr3,4, Adolf 
Pfefferbaum3,4, Edith V. Sullivan3 & Kilian M. Pohl4

Group analysis of brain magnetic resonance imaging (MRI) metrics frequently employs generalized 
additive models (GAM) to remove contributions of confounding factors before identifying cohort specific 
characteristics. For example, the National Consortium on Alcohol and NeuroDevelopment in Adolescence 
(NCANDA) used such an approach to identify effects of alcohol misuse on the developing brain. Here, we 
hypothesized that considering confounding factors before group analysis removes information relevant 
for distinguishing adolescents with drinking history from those without. To test this hypothesis, we 
introduce a machine-learning model that identifies cohort-specific, neuromorphometric patterns by 
simultaneously training a GAM and generic classifier on macrostructural MRI and microstructural diffusion 
tensor imaging (DTI) metrics and compare it to more traditional group analysis and machine-learning 
approaches. Using a baseline NCANDA MR dataset (N = 705), the proposed machine learning approach 
identified a pattern of eight brain regions unique to adolescents who misuse alcohol. Classifying high-
drinking adolescents was more accurate with that pattern than using regions identified with alternative 
approaches. The findings of the joint model approach thus were (1) impartial to confounding factors; (2) 
relevant to drinking behaviors; and (3) in concurrence with the alcohol literature.

After birth, the human brain undergoes profound change that continues throughout adolescence and into young 
adulthood1. A consensus of cross-sectional and longitudinal magnetic resonance imaging (MRI) studies suggests 
that cortical gray matter volume declines and the cortical mantle thins2,3, but white matter volume, microstructural 
organization, and myelination of fiber tracts increase4,5, during healthy adolescent development. In this develop-
mentally critical second decade of life, young people commonly engage in risky behaviors, including consumption 
of alcohol. A recent U.S. survey estimates that 66% of 18-year-olds have drunk alcohol and about 25% report getting 
drunk6. A rising incidence of binge drinking may put developing youth at particularly high risk for deviations from 
the normal trajectory of brain development7. Longitudinal studies of heavy relative to minimal drinking during ado-
lescence report acceleration of gray matter volume shrinkage, attenuation of white matter growth8, and decreased 
fiber integrity9. Similar but subtler developmental changes have been detected in youth who drink regularly, if not 
heavily10. Despite such reports of quantifiable effects of drinking on normal neurodevelopmental trajectories, weak 
effects may be difficult to extricate using traditional, hypothesis-driven methods11 and may be enhanced by the use 
of machine-learning approaches to determine group separating characteristics12.
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In neuroimaging studies, identifying group differences using classification approaches can be straight forward 
if the groups are of equal sample size and matched with respect to demographic factors such as age, sex, and eth-
nicity13–15. However, a challenge of many neuroimaging studies is statistical power, particularly given the number 
of potentially confounding factors16. For example, the National Consortium on Alcohol and Neurodevelopment 
in Adolescence (NCANDA)17, a landmark longitudinal study supported by the National Institute on Alcohol 
Abuse and Alcoholism and the National Institutes of Health Big Data to Knowledge initiative, has been collecting 
MRI and neuropsychological data in adolescents and young adults to (1) expand knowledge about normal brain 
maturation; (2) document changes following initiation of moderate-to-heavy alcohol consumption; and (3) iden-
tify imaging markers that predict early-onset alcohol use disorder (AUD). The number of youth with a notable 
history of alcohol consumption at baseline was small17. To power this investigation adequately, however, the study 
also recruited youth with minimal alcohol exposure at baseline that had a high risk for transitioning to the AUD 
phenotype during the course of the 10-year study.

One popular approach for analyzing unbalanced data sets is to include only subsets of the collected sample 
matched with respect to basic demographic variables. For example (in support of the first aim of the NCANDA 
study), age-matched samples selected from another large cohort study, the ‘Pediatric Imaging, Neurocognition, 
and Genetics’ data set confirmed the longitudinal brain developmental patterns identified in the minimal drink-
ing adolescents of the NCANDA cohort3. Specific to the NCANDA cohort and its second aim, the study also 
reported smaller and thinner frontal and temporal cortices for the group initiating moderate-to-heavy alco-
hol consumption relative to the minimally-drinking group. Matching cohorts, however, is not always success-
ful in revealing significant group differences. For example, analyses of diffusion tensor image (DTI) data from 
demographically-matched subsets of the NCANDA study did not reveal effects of moderate-to-high drinking on 
DTI metrics (i.e., regional fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity)4. This 
was surprising given evidence that excessive alcohol consumption in adults disrupts white matter microstructure 
of select fiber systems18–21.

An alternative approach to analyzing unbalanced data is to include the entire sample, but to remove the effects 
of confounding variables before performing group analysis12,22–27. Regression approaches, such as the ‘ordinary’ 
generalized additive model (GAM), remove the effects of confounding factors by first modeling the relationship 
between the dependent variable (e.g., volume of the corpus callosum) and confounding factors (e.g., age) on a 
subset of the sample (e.g., minimal alcohol-consuming healthy controls)3, then using that model to remove the 
effect of confounding factors from each dependent variable so that residuals of the raw metric are used in group 
analyses. However, GAM often suffers from sensitivity to noise, as demonstrated, for example, by the variance in 
age associated with peak white matter microstructural maturation4. Robust regression claims to address the sen-
sitivity issue by separately modeling the effects of confound and noise in MRI metrics28. While robust regression 
has often been used in large neuroimaging studies29, the noise model requires a-priori specification, which can 
reduce the power of the analysis. For example, a cautious threshold for accounting for noise generally results in a 
robust GAM but the effects of confounding variables are then estimated on a notably reduced sample size. A small 
sample generally fails to capture comprehensive effects of confounding factors and the resulting GAM is thus 
likely inaccurate. We hypothesized that typical sequential use of the GAM to isolate the effects of confounding 
variables on MR metrics would minimize information relevant for distinguishing groups (e.g., adolescents with a 
drinking history relative to those without a significant drinking history).

To test the hypothesis, we apply a machine learning approach to the baseline NCANDA neuroimaging data set. 
Our proposed approach, referred to as Joi-GAM-Class (for joint GAM classification) simultaneously determines 
optimal parameters (1) of a GAM (for removing the influence of confounding factors) and (2) a logistic classifier 
(for cohort classification). The classifier identifies a subset of variables (i.e., residual scores of imaging metrics) that is 
most informative for differentiating minimal from regular drinking youth. We refer to this subset of brain measure-
ments as pattern. To identify a pattern, the classifier’s search for informative brain metrics is constrained to subsets 
of a certain size, enforced by embedding ‘sparsity constraints’ into the classification model12. To help with an initial 
understanding of the method used herein, Fig. 1 presents the output of three approaches analyzing a synthetic data 
set. Figure 1(a) plots an arbitrary image metric (y-axis) relative to age (x-axis). The green dots represent the imaging 
metrics of the minimal drinkers and the black ones of the regular drinkers. For both cohorts, the metric is clearly 
effected by age, a confounding factor also in the NCANDA data. The effects of age outweigh the effects of group 
when the classifier is applied directly to raw imaging metrics (i.e., not residuals) as the two cohorts are not sepa-
rated accurately (Fig. 1(b)). Figure 1(c) shows a few samples that are mislabeled by classification based on residual 
scores of raw imaging metrics, i.e., after the confounding effects of age are removed via robust GAM. The GAM was 
parameterized based on the imaging metrics of the control group, i.e., the minimal drinkers. As is true with real 
data, however, the noise associated with raw imaging metrics made it highly unlikely to recover the ‘true’ age effect. 
Instead the data allow for a variety of plausible solutions shown schematically in the gray region outlined in Fig. 1(a). 
Within this set of possible solutions, the robust regression chose the solution that best fits a-priori assumptions. 
The assumptions were defined through specific settings of the underlying optimization algorithm, which were not 
specific to the classification task. By contrast, our joint optimization approach selected the GAM model so that the 
classifier perfectly separated the two cohorts (Fig. 1(d)).

To complete hypothesis testing, we cross-validate our joint algorithm approach (i.e., Joi-GAM-Class) against 
alternative implementations using the baseline NCANDA imaging data set. The data set consists of structural MRI 
and microstructural DTI metrics collected in 705 adolescents: 671 that are minimal (no-to-low) drinking and 34 
that are regular drinkers. The GAM is defined with respect to age and socioeconomic status, because these two var-
iables are not matched across the two cohorts (and are therefore confounding variables). To apply cross-validation, 
a popular method to measure accuracy of machine learning approaches, the total data set is divided into subsets 
(i.e., folds) in which the cohorts in each subset are matched with respect to demographic factors other than age and 
socioeconomic status. Each implementation uses one subset for training. The accuracy of patterns identified during 
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training is then evaluated on the second subset to ensure that solutions are not specific to the first subset. This pro-
cess is repeated with the second subset used for training and first for testing. The test accuracy of classifiers is sum-
marized with accuracy scores, which include measures for testing the resistance of implementations to confounding 
factors. Furthermore, we compute p-values representing the statistical significance of accuracy scores and patterns 
identified by each implementation. Here, we are the first to report progress on the third aim of NCANDA (i.e., iden-
tify imaging markers that predict early-onset AUD) by presenting patterns of neuromaturation that are impartial to 
confounding effects (such as age) and correctly classify adolescents who drink regularly.

In a conference paper30, we first discussed the idea of jointly parameterizing GAM and classification to ana-
lyze two independently collected structural MRI data sets of participants ranging in age from 60 to 72 years 
(N = 74). The first data set contained participants infected with the Human Immunodeficiency Virus (HIV) and 
effected by HIV-Associated Neurocognitive Disorder as well as demographically matched controls. The second 
data set, which was matched to the first one, contained individuals diagnosed with Mild Cognitive Impairment 
and a control cohort. In the conference submission, the GAM was used to remove the effect of acquisition differ-
ences between the two data sets and the classifier to identify differences between HIV-Associated Neurocognitive 
Disorder and Mild Cognitive Impairment. The experiment revealed that our joint approach is more accurate than 
sequential methods in identifying group differences based on data not ideally constructed for classification. Here, 
we confirm this finding on the NCANDA data set.

Results
Comparison of Sequential and Joint Approaches.  Our experiments on the NCANDA data set revealed 
that our joint approach Joi-GAM-Class (based on MRI and DTI metrics) was indifferent to confounding factors 
(i.e., age and socioeconomic status) and more accurate than alternative implementations, listed here:

•	 No-GAM-Class: performed sparsity constrained classification on raw image scores (i.e., omitting GAM); the 
benchmark for analysis without removing the effects of confounding factors.

•	 Seq-GAM-Class: popular sequential approach first parameterized an ordinary GAM and then performed 
sparsity-constrained classification.

•	 Seq-GAMRob-Class: sequentially executed robust regression and sparse classification; the alternative to Seq-
GAM-Class that accounted for image noise.

•	 JoiSTR-GAM-Class: the proposed joint model confined to the structural (STR) MRI metrics; the only other 
implementation indifferent to the confounding factors.

•	 JoiDTI-GAM-Class: the proposed joint model confined to microstructural DTI metrics; as with JoiSTR-GAM-
Class, this method provided a benchmark for single-image modality analysis.

•	 JoiOPT-GAM-Class: a simplified version of our proposed joint model suitable for optimizing group separa-
tion, but not indifferent to the effects of confounding factors.

Note, Table S2 of the supplement lists these and all other acronyms used throughout the article.
We measured the accuracy of each implementation using two-fold cross-validation. After training each imple-

mentation on the training data to classify minimal and regular drinkers, we measured their accuracies on the test-
ing data by reporting sensitivity, specificity, Area Under the receiver operating characteristic Curve (AUC), and 
‘normalized-accuracy’. ‘Normalized-accuracy’ computed the accuracy of an implementation in correctly labeling 
samples while accounting for differences in sample size between the two cohorts. To ensure the indifference of 
an implementation to the effects of confounding variables, we also reported ‘matched-accuracy’. To compute 
‘matched-accuracy’, we first defined a subset of the test data in which the cohorts were matched with respect to 

Figure 1.  Synthetic example. (a) Raw image scores of minimal drinkers (green) and regular drinkers (black). 
Each group consisted of 30 samples with ages randomly chosen between 17 and 21 years. The gray region 
indicates the solution space for the optimal regression line defining the GAM mode. (b) Classification based on 
raw scores did not accurately distinguish the two groups (red line). (c) Removing age-effects from the raw scores 
via GAM clearly separated both groups with only a few mislabeled sample points, and (d) classification using 
the joint method resulted in perfect group separation.
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all known demographic scores including age, socioeconomic status, and cohort size and then re-computed the 
normalized-accuracy with respect to this subset. We set a threshold for labeling an accuracy score as significant 
at p ≤ 0.002 based on a two-tailed Fisher’s exact test31 (i.e., the probability of a classifier’s output to be generated 
by randomly assigning samples to cohorts) or the DeLong’s test32 i.e., (the probability of the output of one imple-
mentation to be generated by another implementation). This significant threshold was considered conservative as 
the number of implementations compared herein was small4. Unless otherwise stated, significant findings refer 
to the outcome of the Fisher’s exact test.

Desirable implementations were those with significant normalized-accuracy and significant matched-accuracy. 
For each implementation, indifference to the effects of the confounding variable ‘age’ was calculated using the 
two-tailed Fisher’s exact test to measure the ability of the relevant classifier to cleanly separate minimal (no-to-low) 
alcohol-exposed adolescents into an older (i.e., above the age of 15.4; N = 335) and younger cohort (i.e., below the 
age of 15.5; N = 336). The two cohorts were matched with respect to all demographic factors (i.e., socioeconomic 
status, supratentorial volume, sex, ethnicity, scanner) except age. Implementations with p > 0.01 passed the age-test 
as the effect of age was non-existent or magnitudes weaker than the effects of regular drinking. Thus, desirable 
implementations that also passed the age-test were considered informative with respect to distinguishing regular 
drinkers from minimal alcohol exposed adolescents. Critically, all implementations passed the socioeconomic status 
test, i.e., a replication of the age-test applied to this variable. We thus omit discussion of this test.

Table 1 summarizes results. The classifier without data harmonization (No-GAM-Class) was the only imple-
mentation, whose ‘normalized-accuracy’ score was significantly lower than chance. The sequential implementa-
tions (Seq-GAM-Class and Seq-GAMRob-Class) had significant ‘normalized-accuracy’ scores but non-significant 
‘matched-accuracy’ scores. Compared to those implementations, the joint methods reported higher AUC, 
normalized-accuracy, and matched accuracy scores. Although specificity was higher than sensitivity for all imple-
mentations, the difference between these was substantially smaller for the joint approaches. The smallest difference 
was observed for JoiSTR-GAM-Class (sensitivity: 70.6%; specificity: 76.9%). JoiSTR-GAM-Class was also informative 
as it passed the age-test and had significant normalized-accuracy and matched-accuracy scores. Among the joint 
approaches, the accuracy score was diminished when only DTI metrics were used (i.e., JoiDTI-GAM-Class): this 
implementation also failed the age-test and did not have a significant matched-accuracy score. JoiOpt-GAM-Class 
failed the age-test and had the largest difference between normalized-accuracy and matched-accuracy scores 
(dropped by 12.6%), but it achieved the highest accuracy score (80.8%). Joi-GAM-Class passed the age-test, had 
a high accuracy score, and the smallest difference between normalized-accuracy (75.9%) and matched-accuracy 
(77.1%) scores. These accuracy scores were higher than those of the only other informative implementation 
(i.e., JoiSTR-GAM-Class). Joi-GAM-Class was also the only implementation that was significantly better than 
No-GAM-Class and Seq-GAM-Class. On a trend level (p < 0.0003), it was also better than Seq-GAMRob-Class.

Pattern Analysis.  As part of cross-validating an implementation, training consisted of parameter explo-
ration, i.e., recording the identified pattern and corresponding accuracy for different parameter settings of the 
implementation. A pattern consists of a small number of MR-derived metrics that the implementation deemed 
informative for distinguishing the two cohorts. Figure 2 plots the normalized frequency of unique patterns iden-
tified by each implementation across all training runs. The following lists each implementation by the number 
of unique regions identified: JoiSTR-GAM-Class (53 patterns), No-GAM-Class (72 patterns), Seq-GAM-Class 
(72 patterns), JoiOPT-GAM-Class (72 patterns), JoiDTI-GAM-Class (225 patterns), Joi-GAM-Class (381 patterns), 
and Seq-GAMRob-Class (853 patterns). Interestingly, Joi-GAM-Class recorded four informative (and dominant) 
patterns each appearing in at least 50% of the training runs.

The four informative patterns of Joi-GAM-Class consist of the MR metrics listed in Table 2. The most fre-
quently selected pattern (97.8%) consisted of the volumes of lateral ventricles and mid posterior corpus callosum. 
The second pattern (80.5%) included the first two MR metrics and two additional structural MRI metrics (i.e., 
volumes of centrum semiovale and central corpus callosum). The third pattern (54.7%) added DTI metrics frac-
tional anisotropy of anterior corona radiata and posterior thalamic radiation) and the fourth (52.9%) included 

Method
Sensitivity 
(%)

Specificity 
(%)

AUC 
(%)

Normalized-
Accuracy

Matched-
Accuracy

Age-Test 
p-value

No-GAM-Class 20.6 94.6 74.7 57.4* 57.4* 0.0001

Seq-GAM-Class 32.4 94.0 71.8 62.9* 58.8* 0.0005

Seq-GAMRob-Class 32.4 94.0 78.1 63.2+ 60.3+ 0.0002

JoiSTR-GAM-Class 70.6 76.9 81.3 73.7 72.1 0.0222

JoiDTI-GAM-Class 61.8 83.2 78.8 72.5 67.7 <0.0001

JoiOPT-GAM-Class 70.6 91.1 83.8 80.8 66.2 <0.0001

Joi-GAM-Class 67.6 84.2 83.2 75.9 76.5 0.2057

Table 1.  Sensitivity, specificity, Area Under the receiver operating characteristic Curve (AUC), normalized-
accuracy, matched-accuracy, and age-test (testing for the effect of age) of each implementation. Marked in 
bold were favorable accuracy scores (significant ones with p ≤ 0.002) and age-tests (p-values > 0.01). Of all 
implementations, only the joint methods JoiSTR-GAM-Class and Joi-GAM-Class were indifferent to age. Of 
those two, Joi-GAM-Class reported the higher accuracy scores. It was also the only method, whose matched-
accuracy score was higher than the normalized one. ‘*’marks significantly worse scores (p ≤ 0.002) and  
‘+’ marks scores trending to being significantly worse (p < 0.003) than Joi-GAM-Class.
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Figure 2.  Normalized frequency of patterns selected by each implementation (across all training runs). 
Unique patterns identified by each approach (x-axis), sorted in descending order according to their normalized 
frequency (y-axis). A pattern is a set of regional metrics that our method deemed informative for distinguishing 
regular drinking adolescents from minimal ones. Patterns were labeled as ‘dominant’ if their frequency was 
above a ‘red dashed line’ threshold (i.e., they appeared in more than 50% of suitable runs). While the curve 
defined by the normalized frequency across all patterns quickly dropped off for all implementations, Joi-GAM-
Class had the highest number of dominant patterns. These results indicate that Joi-GAM-Class identified 
informative patterns across runs more consistently than any other implementation.
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also axial diffusivity of fornix and volume of cingulate gyrus (Fig. 3). Thus, this implementation provided consist-
ency in the identified patterns.

Alternative implementations also frequently selected the previously mentioned regions. The only MRI metrics 
not used by Joi-GAM-Class were the mean diffusivity of the corticospinal tract selected by Seq-GAM-Class, and 
the axial diffusivity of the medial lemniscus selected by Seq-GAMRob-Class.

Table 2 also lists the normalized- and matched-accuracy scores for the logistic classifier confined to the resid-
ual scores of the four patterns selected by Joi-GAM-Class. The fourth pattern, which included the MRI metrics 
of the other three patterns, had equivalent normalized-accuracy and matched-accuracy scores (79.4%). The clas-
sifier based solely on a single MRI metric achieved accuracy scores below 70% for most regions. The classifier 
based on the fractional anisotropy of the anterior corona radiata (normalized-accuracy: 80%) and the posterior 
thalamic radiation (normalized-accuracy: 75.4%) were exceptions, but their matched-accuracy scores were below 
70%.

Regarding group differences (see Figs 4 and 5), the volume of the mid posterior corpus callosum was signifi-
cantly smaller ( = .p 0 0002) in regular drinkers relative to minimal alcohol-drinking adolescents. The axial diffu-
sivity of the fornix ( = .p 0 0005) and the fractional anisotropy of the anterior corona radiata ( < .p 0 0001) and 
posterior thalamic radiation ( < .p 0 0001) were significantly higher in the regular drinking adolescents relative to 
those with minimal alcohol-exposure.

Discussion
JoiSTR-GAM-Class and Joi-GAM-Class were the only successful approaches for identifying regular drinking on a 
subject level. This finding supports our central hypothesis that typical sequential use of the GAM to isolate the effects 
of confounding variables on MR metrics would minimize information relevant for distinguishing groups (e.g., ado-
lescents with a drinking history relative to those without a significant drinking history). Joi-GAM-Class (i.e., the 
more accurate of these methods) selected patterns that included structural MRI volumes of the lateral ventricles, 
centrum semiovale, corpus callosum, and cingulate gyrus and microstructural DTI measures of the fornix, corona 

Regions Measurement Type

Patterns Frequency 
(%)

Normalized-
Accuracy

Matched-
Accuracy1 2 3 4

Lateral ventricle Volume X X X X 99.0 60.1 66.2

Mid posterior corpus 
callosum Volume X X X X 97.9 63.0 63.2

Centrum semiovale Volume X X X 99.2 61.1 55.9

Central corpus callosum Volume X X X 79.3 64.0 64.7

Anterior corona radiata Fractional anisotropy X X 96.3 80.0 67.6

Posterior thalamic radiation Fractional anisotropy X X 58.0 75.4 66.2

Fornix Axial diffusivity X 90.0 67.1 66.2

Cingulate gyrus Volume X 61.4 53.0 51.5

Frequency (%) 97.8 80.4 54.7 52.9

Normalized-Accuracy 65.0 64.8 74.6 79.4

Matched-Accuracy 69.1 66.2 70.6 79.4

Table 2.  Informative patterns of Joi-GAM-Class and corresponding selected regions. Accuracy scores in bold 
were significantly different from chance (p ≤ 0.002).

Figure 3.  3D models of the eight brain regions selected by the four most frequent appearing patterns of Joi-
GAM-Class. The boundaries of the lateral ventricle, mid posterior corpus callosum, and central corpus callosum 
were defined according to the SRI24 atlas and the centrum semiovale according to the Desikan-Killiany atlas. 
The regions of the diffusion-weighted measures (i.e., the anterior corona radiate, posterior thalamic radiation, 
and fornix) were defined according to the Johns Hopkins University atlas. Both Desikan-Killiany atlas and Johns 
Hopkins University were non-rigidly aligned to the SRI24 atlas to generate these 3D models of the select regions 
via 3D Slicer.



www.nature.com/scientificreports/

7SCIEnTIfIC RePorts |  (2018) 8:8297  | DOI:10.1038/s41598-018-26627-7

radiata, and thalamic radiations. The integrity of each of these regions has been reported to be affected by alcohol 
misuse in studies using more traditional, hypothesis-driven, morphometric group analysis. When this type of analy-
sis was applied to those eight MRI metrics, only four of them showed significant group differences on the NCANDA 
data set. We thus conclude that the outcome of machine learning models, such as the one proposed here, requires 
analyzing MRI metrics as a whole to gain knowledge about the effect of alcohol on individuals.

Strong agreement existed among the regions included in the four informative patterns identified by 
Joi-GAM-Class. While inter-dependencies between the repeated training runs with varying parameter settings 
of Joi-GAM-Class could account for this finding, this explanation fails to explain the consistency between the 
informative patterns identified by Joi-GAM-Class and alternative implementations. A more likely explanation for 
this consistency is the significant impact of regular drinking on the regions identified by Joi-GAM-Class.

Figure 4.  Box plots of the residual scores of the brain regions selected by the informative patterns of Joi-
GAM-Class. The central line in the box is the median, the two edges are the 25th and 75th percentiles, the 
whiskers extend to one-and-a-half times the interquartile range, and red pluses are the outliers. Regional scores 
marked in bold were significantly different between the regular drinking and minimal alcohol exposed group 
(p ≤ 0.002).

Figure 5.  Age-related plots of the residual imaging scores that were significantly different between regular 
drinkers and minimal alcohol exposed adolescents. The gray regression lines are inferred from the residual 
imaging scores of the minimal alcohol exposed cohort whereas the blue regression line is that of the regular 
drinkers age 18 or older. Omitted from the regression are regular drinkers below the age of 18 due to their 
sparse age-related distribution. Relative to the minimal alcohol exposed cohort, the older regular drinkers show 
an age-related increase in three diffusion based imaging scores and a slight decrease in the volume of the mid 
posterior corpus callosum over age.
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The brain regions identified by Joi-GAM-Class are relevant with respect to the Alcohol Use Disorder 
(AUD) literature. For example, the centrum semiovale, the most frequently appearing region across all 
patterns, was modestly smaller in the regular than in the minimal drinking group. This finding is consist-
ent with in vivo neuroimaging26 and postmortem studies33 reporting smaller centrum semiovale volume in 
heavy alcohol drinking relative to healthy control adults. Smaller than normal white matter volumes could 
indicate a disruption in adolescent brain development given that white matter continues to grow throughout 
early adulthood34–36.

A number of studies report that the corpus callosum is sensitive to alcohol use disorder26,37,38. The corpus 
callosum integrates information and mediates complex behaviors39 and is larger and thicker in adolescents 
with higher intelligence40,41 and better problem solving abilities42. The cingulate cortex has been associated with 
selective attention43, conflict monitoring and decision making in controls44 and alcoholics45,46. The lateral ventri-
cles are generally enlarged in heavy alcohol consuming adults and serve as a sensitive marker of alcoholic-level 
drinking13,47,48.

Joi-GAM-Class also identified regions with altered DTI metrics in the regular drinkers relative to the minimal 
drinking adolescents. Although low fractional anisotropy and high mean radial diffusivity are often reported in 
heavy drinking youth15, the current study reports that axial diffusivity of the fornix, fractional anisotropy of the 
anterior corona radiata and posterior thalamic radiation were high in the regular drinking group. These findings 
were also reported previously4, albeit at a statistically insignificant level. A recent longitudinal study of detoxified 
alcohol-dependent male adolescents found evidence of low white matter integrity in the body of the anterior 
corona radiata15. Microstructural compromise of the fornix, a major fiber bundle connecting limbic structures, 
has been reported in adult alcoholics49.

We complete the review of our morphological findings by noting that the importance of single-region metrics 
(i.e., its frequency of appearance in the training runs as specified in Table 2) was unrelated to its significance in 
discriminating the two cohorts, i.e., only half the scores were significantly different between groups. The impor-
tance of a single-region metric was also unrelated to its accuracy in classification, i.e., all single-regional metrics 
reported low matched-accuracies. These observations were further supported by repeating two-fold 
cross-validation of the sequential procedure with the classifier (without sparsity constraints) being trained on the 
29 regional measurements. These 29 MRI metrics were identified by applying a two-tailed t-test to residual scores 
of the training dataset and retaining those with ≤ .p 0 01 (i.e., the significance threshold that led to the highest 
classification accuracy). The resulting normalized-accuracy of the classifier based on these 29 metrics at 67.3% 
was significantly lower than that of Joi-GAM-Class. Thus, the type of machine learning applied here analyzed all 
potentially informative metrics as a whole12 to determine those regions impacted by regular alcohol use on the 
developing adolescent brain. In support of this statement, Joi-GAM-Class received lower accuracy scores than 
those listed in Table 2 for ‘Pattern 4’, the informative pattern of Joi-GAM-Class consisting of all eight regional 
scores. This pattern is the first known imaging marker with respect to the NCANDA cohort that predicts (i.e., 
classified with significant accuracy) individuals with regular drinking habits at baseline.

For readers interested in the technical aspects of our proposed machine learning approach, the remainder of 
the discussion focuses on differences in the implementations and their impact on accuracy scores. We first note, 
that No-GAM-Class, i.e., performing classification without the GAM model, failed the age-test and resulted in 
low accuracy scores, thereby supporting the need for properly modeling the effects of confounding factors. One 
way of modeling the effect is to perform the analysis on a subset of the data with the cohorts being carefully 
matched with respect to confounding factors. However, the sample size of a matched data set is often much 
smaller than the original dataset, thereby reducing statistical power. Alternatively, the effects of confounding 
factors can be removed via GAM.

When parameterizing a GAM independently from classification (i.e., sequential approaches), the resid-
ual effects of confounding factors can significantly effect the final classification, as observed here, since the 
sequential approaches (Seq-GAM-Class and Seq-GAMRob-Class) failed the age-test. That the joint imple-
mentations JoiDTI-GAM-Class and JoiOPT-GAM-Class also failed the age test is a caution to check the output 
of regression-based approaches for the effects of confounding factors. The series of stringent statistical tests 
performed post hoc in this study identified those outputs that were not selected because of contributions of 
confounding factors. Based on those tests, the only informative patterns were determined by the joint implemen-
tations JoiSTR-GAM-Class and Joi-GAM-Class.

When confining the joint analysis to just one modality, classification achieved higher accuracy when based 
on structural metrics (i.e., JoiSTR-GAM-Class) than when based on DTI metrics (i.e., JoiDTI-GAM-Class). The 
higher accuracy scores of Joi-GAM-Class over the single-modality implementations (i.e., JoiSTR-GAM-Class and 
JoiDTI-GAM-Class) further highlight the importance of analyzing multiple modalities together.

In conclusion, only the joint approaches JoiSTR-GAM-Class and Joi-GAM-Class passed the age-test, 
showed significant normalized- and matched-accuracy scores, and succeeded in identifying informative 
patterns on a data set not ideally constructed for classification. Thus, our experiments support the hypoth-
esis of this study.

Methods
Participants.  At baseline4, NCANDA recruited 831 adolescents, of whom 28 were excluded for the current 
analysis due to brain abnormalities or missing MRI data. Of the remaining 803 youth, 671 (333 male and 338 female 
adolescents, ages 12 to 21 years) met the criteria for minimal (no-to-low) alcohol consumption17 and comprised the 
control group. The remaining 132 adolescents reported initiating moderate-to-heavy alcohol consumption: female 
participants consumed four or more drinks (beer, wine, or hard liquor) and male participants consumed five or more 
drinks (beer, wine, or hard liquor) on at least one occasion in their lifetime. Of these, 34 subjects met criteria for reg-
ular drinking (i.e., they drank a minimum of two alcoholic drinks at least once per week). The total data set on 705 
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youth (671 minimal and 34 regular drinkers) used in this study included demographic information and MRI scans 
acquired across the five NCANDA collection sites17, two of which used Siemens 3 T Tim Trio scanners (Siemens) 
and three of which used General Electric 3 T Discovery MR750 scanners (GE). Each participant was described by 
age, sex, self-reported ethnicity, socio-economic status (based on the highest education achieved by either parent)50, 
MRI scanner type (GE or Siemens), and supratentorial volume (determined from MR images) (see Table 3).

The two cohorts were matched (p > 0.1) on ethnicity (multinomial Chi-Square test51), and sex, and MRI scan-
ner type (binomial Chi-Square test52). Age, socio-economic status, and supratentorial volume (i.e., the only other 
confounding factors3) were compared using unpaired, two-tailed t-tests53. The two cohorts matched with respect 
to supratentorial volume but not age and socio-economic status. Most of the regular drinkers were older (18 or 
older) and had higher socio-economic status than the control group.

Brain imaging metrics used for each individual included 32 MRI derived structural volume scores extracted 
from the T1- and T2-weighted MRIs3, and 112 DTI derived microstructural scores4. All scores were provided 
as data releases (Demographic Score Release: NCANDA DATA 00010 V5, Structural Score Release: NCANDA 
DATA 00011, DTI Score Release: NCANDA DATA 00012 V2) by the software platform Scalable Informatics for 
Biomedical Imaging Studies (SIBIS; sibis.sri.com)54. The Section ‘Data Pre-processing’ of the supplement summa-
rizes the pre-processing steps performed on these data as described by3,4.

Implementations.  All implementations used here were based on the sparse-logistic classification model12. 
This method is trained to accurately classify samples by minimizing an energy function that encodes the under-
lying classification task as finding informative patterns (of MRI metrics) of a certain size. No-GAM-Class directly 
trained the classifier on the 144 raw imaging metrics of each subject. Training of the sequential approaches 
Seq-GAM-Class and Seq-GAMRob-Class consisted of first parameterizing a GAM for regressing out the effects of 
confounding factors (i.e., age and socio-economic status) before optimizing the classifier on the residual scores. 
The GAM used a linear model for capturing the relationship between the image metrics and socio-economic sta-
tus and a quadratic model for capturing the relationship between the image metrics and age3,4. Seq-GAM-Class 
used the least square estimation and Seq-GAMRob-Class used the robust regression (i.e., bisquare estimation, 
the default of ‘robustfit’ in Matlab2013b)28 to determine the optimal setting of GAM on the minimal drink-
ers of the training data set. The joint approaches (JoiSTR-GAM-Class, JoiDTI-GAM-Class, JoiOPT-GAM-Class, 
and Joi-GAM-Class) removed the effects of confounding factors while concurrently optimizing classification 
accuracy by embedding the GAM model into the energy function of the classifier. While JoiOPT-GAM-Class 
reported the result with respect to minimizing the energy function, JoiSTR-GAM-Class, JoiDTI-GAM-Class, and 
Joi-GAM-Class went one step further and extended the energy function so that it accounted for accuracy of the 
GAM in removing the effects of the confounding factors. Joi-GAM-Class (as well as JoiOPT-GAM-Class) consid-
ered all 144 imaging metrics, while JoiSTR-GAM-Class was confined to the 32 macro-structural MRI metrics and 
JoiDTI-GAM-Class to the 112 micro-structural DTI metrics. The accuracy of each implementation was measured 
via 2-fold cross-validation described in further detail in the supplemental section on ‘Cross-Validation’.

For the technically inclined reader, the following subsections describe in detail the optimization algorithms 
used for training the sequential and joint implementations.

Minimal Regular

p-valueN = 671 N = 34

Age
mean 15.7 19.5

<0.0001
standard deviation 2.4 1.7

Socioeconomic Status
mean 16.7 18

0.0039
standard deviation 2.5 2.3

Supratentorial Volume
mean 1248.7 1236.4

0.5737
standard deviation 127.2 126.4

Sex
Male 333 16

0.7701
Female 338 18

Ethnicity N

0.7398

      Caucasian 492 25

      African-American 86 6

      Asian 54 3

      Pacific-Islander 4 0

      Native-American 3 0

      Mixed 32 0

Scanner N

0.4032      GE 447 25

      Siemens 224 9

Table 3.  Demographics of the NCANDA Samples (N = 705) and corresponding p-values between the regular 
drinkers and minimal alcohol exposed cohort. The two cohorts happen to be properly matched (p >  0.1) with 
respect to all demographic factors but age (in years) and socioeconomic status, whose p-values are marked in 
bold. The statistic of the supratentorial volume is listed in cm3.
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Training of the Sequential Approaches.  The training of a sequential approach consisted of two steps: 
(1) determine the optimal setting of the GAM with respect to the ‘control group’ (i.e., minimal drinking cohort) 
and (2) identify the pattern, i.e., the subset of residual imaging scores most informative for group separation. The 
pattern was identified by computing the ‘weights’ of a sparse, logistic regression classifier12 that resulted in the 
highest normalized-accuracy based on the training data.

To determine the optimal setting α α α= …: ( , , )i i i,0 ,3  of the GAM with respect to each image measurement 
type ‘i’, let ‘ages’ be that age and ‘sess’ the socio-economic status of subject ‘s’. Then the GAM defined the relation-
ship of the confounding factors to the corresponding image score is as

α α α α+ ⋅ + ⋅ + ⋅ .~i age age sess i i s i s i s,0 ,1 ,2
2

,3

Assuming that the image scores were Gaussian distributed, then determining the optimal αi was equivalent to 
maximizing a likelihood function parameterized by the mean of a Gaussian distribution. To define the likelihood 
function, we now introduce the mathematical notation summarized in Table S1 of the supplement. Specifically, 
the training data (i.e., one of the folds) consisted of two cohorts totaling N = 352 subjects with  representing the 
set of indices of the minimal drinkers. Each subject ‘s’ was described by the factor vector = age age sesd [1, , , ]s s s s

2  
(consisting of ND = 3 subject specific demographic values) and up to =N 144F  image scores is. Training the GAM 
with respect to the data of the non-drinking cohort was then equivalent to fitting a matrix Φ so that the factor 
vector of each control subject was a predictor of the corresponding image scores i.e., Φ ⋅ Τ~i ds s . Assuming that 

σΦ ⋅ Τ~i d( , )s s s
2ND  was normally distributed with σ ∈s

2  and referring to ⋅ 2 as the l2-norm, the optimal 
fitted matrix Φ̂ was obtained by solving the following maximum likelihood problem







∏

∏

∑
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2
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2

ND
s
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where D is the set of factor vectors and I is the corresponding set of image scores across all samples.
Interpreting σ1/ s

2 as the ‘weight’ of each sample, the above minimization problem defined a robust regression 
of Φ that was solved via bi-square estimation. With respect to the ordinary GAM, σ σ=s  was assumed to be uni-
form across all subjects so that computing Φ̂ simplified to the least-square solution. Regardless of the specific 
computation of Φ̂, the corresponding residual (desensitized) scores of all N subjects were determined via

= ... Φ = − Φ ⋅ .Τˆ ˆR r r r r i d: [ , , , ] with ( ) : (2)N s s s1 2

Training of the sparse, logistic regression classifier consisted of minimizing a log probability with respect to 
the weights selecting the subset of informative residual image scores best separating both cohorts. In order to 
define the log probability, the association of each subjects ‘s’ to a cohort was encoded by label zs. If the subject was 
a regular drinker then =z 1s , and = −z 1s  if it was a minimal exposed individual. = ...Z z z z: [ , , , ]N1 2  was the 
vector of label assignments of all subjects in the training fold. The logistic function was defined as 
θ = + −a a( ) : log(1 exp( )), the weight vector ‘ω’ encoded the importance of each residual score of rs in distin-
guishing the two cohorts, and ∈v  was the ‘label offset’. Assuming that all samples were independently and 
identically distributed according to the binomial distribution

ν ω ν ω| Φ =
+

=
+

= |
ω ν ω ν− ⋅ ⋅ Φ + − ⋅ ⋅ −Φ⋅ +Τ

ˆ ˆ
ˆ ˆP z

e e
P z Ur i d( ( ), , ) : 1

1

1

1
( , , , , ),

(3)
s s z z s s sr i d( ( ) ) ( ( ) )s

T
s s

T
s s

determining the optimal parameters was equivalent to minimizing the following logistic cost function

∏ ∑ν ω ν ω θ ω νΦ = −





| Φ





= ⋅ ⋅ Φ +
= =

Τˆ ˆ ˆL P z zr r( , , ) : log ( ( ), , ) ( ( ( ) ))
(4)s

N

s s
s

N

s s
1 1

with respect to a sparse search space defined according to the l0-‘norm’ ⋅ 0 and a predefined number NK < NF of 
non-zero elements, i.e., the sparsity constraint

 ω ω= ≤ .N: { : } (5)N K0K

In other words, parameterizing the sparse, logistic classifier summarizes to determining the optimal parame-
ters ν̂ and ω̂ for the following minimization problem

R S
ν ω ν ω= Φ .

ν ω∈ ∈
ˆ ˆ ˆL( , ) : arg min ( , , )

(6), NK

We determined its solution via penalty decomposition12. The image scores associated with non-zero entries in 
ω̂ then defined the group separating pattern.
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Training of Joint Methods.  Alternative to the sequential approach, the training of the joint approach consisted 
of simultaneously determining the optimal values for the variables Φ̂ of the GAM and ν ωˆ ˆ( , ) of the sparse, logistic 
regression. Specifically, the joint approaches were parameterized by maximizing the following joint probability

∏ ∏ω ω σ ω σ|Φ = | Φ = | Φ ⋅ | Φ .
= =

P Z I v D P z v P z v Pi d i , d i d( , , , , ) : ( , , , , , ) ( , , , ) ( , , )
(7)s

N

s s s
s

N

s s s s s
1 1

ν ω| ΦP z i d( , , , , )s s s  was defined according to Eq. (3) and σ| ΦP i d( , , )s s  according to the normal distribution 
of Eq. (1). Computing the log of that joint probability resulted in

∑ ∑ν ω θ ω ν
σ

|Φ = − ⋅ ⋅ − Φ ⋅ + − || − Φ ⋅ || .
= =

P Z I D z i d i dlog ( , , , , ) ( ( ( ) )) 1
2 (8)s

N

s
T

s s
T

s

N

s s
T

1
2

1
2
2

The previous section parameterized the GAM with respect to the minimal drinkers (controls) so that any 
significant deviation in the image scores of the second cohort could be directly related to the existing clinical lit-
erature. To comply with that model, we confined the second sum of Eq. (8) to the controls and model the ‘input’ 
of the regular drinkers in parameterizing the GAM through the uninformative, uniform distribution represented 
by the constant ∈c . Thus, the log of the joint probability is redefined as


∑ ∑ν ω θ ω ν

σ
|Φ = − ⋅ ⋅ − Φ ⋅ + − || − Φ ⋅ || +

= ∈
P Z I D z ci d i dlog ( , , , , ) ( ( ( ) )) 1

2
,

(9)s

N

s
T

s s
T

s
s s

T

1
2 2

2

and its minimization as





ν ω ν ω

γ ν ω γ

Φ = − |Φ

= − ⋅ Φ + ⋅ Φ
ν ω

ν ω

Φ ∈

Φ ∈

ˆ ˆ ˆ P Z I D

L G

( , , ) : arg min log ( , , , , )

arg min (1 ) ( , , ) ( ),
(10)

, , ,

, , ,

NK

NK

where γ =
σ +

: 1
2 12  weighted the importance between the logistic cost function and the GAM, σ was fixed before-

hand via parameter exploration, L(·) was defined according to Eq. (4), and G(·) according to Eq. (1). Note, if γ = 0 
then the above equation simplifies to JoiOPT-GAM-Class, the commonly used logistic regressor with the training 
of the GAM solely driven by group separation.

Given that finding the optimal solution of Eq. (10) was prone to a local minimum due to the non-convex 
energy function, the parameters Φ′ were initialized by the output of the GAM of Eq. (1). The local minimum for 
Equation (10) was then determined through an algorithm inspired by penalty decomposition12. Specifically, we 
introduced S Rψ ∈ =ˆ NF, the non-sparse approximation of the weights ω̂. Eq. (10) was then equivalent to

ˆ ˆ ˆ ˆ
 

L G( , , , ) arg min (1 ) ( , , ) ( ) s t 0
(11), , , NK

ν ψ ω γ ν ψ γ ω ψΦ = − ⋅ Φ + ⋅ Φ . . − = .
ν ψ ωΦ ∈ ∈

Introducing the weighting parameter ρ > 0, the solution of Eq. (11) was iteratively estimated by

 ν ψ ω γ ν ψ γ ρ ω ψΦ = − ⋅ Φ + ⋅ Φ + ⋅ − .ρ ρ ρ ρ
ν ψ ωΦ ∈ ∈ 

L G( , , , ) : arg min (1 ) ( , , ) ( )
(12), , , ,

2
2

NK

Algorithm 1.  Jointly Parameterizing GAM and Classification.
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As pointed out in Algorithm 1, the parameters of the logistic regression model were initialized as ω = 0, 
ψ = 0, ν = 012 and then, together with Φ, updated via block coordinate descent. If the parameters converged, ρ 
was increased and the procedures was repeated until the maximum of the absolute difference between the ele-
ments of the sparse weights ωρ and the non-sparse weights ψρ was below a fixed threshold εP

12, i.e., let ⋅ max 
denote the maximum element of a vector or matrix then

(13)Pmax
ω ψ ε− < .ρ ρ

At each of these iterations, block coordinate descent improved the current estimate Φ′, ν′, ω′, and ψ′ of (Φρ, νρ, 
ωρ, ψρ) by minimizing Eq. (12) fixing all variables but one and repeating this process until all variables converged. 
Keeping ν′, ω′, and ψ′ fixed, then the minimization problem of Eq. (12) simplified to

γ ν ψ γΦ′ = − ⋅ Φ ′ ′ + ⋅ Φ .
Φ

L Garg min (1 ) ( , , ) ( ) (14)

Since the penalty function was smooth and convex, Eq. (14) was solved via gradient descent. Interpreting 
the above minimization problem as desensitizing the image scores from the influence of demographic factors, 
Φ parameterized the GAM specified by G(Φ) and was regularized by L (·, ν′, ψ′) to account for the noise in the 
image measurements is.

Next, block coordinate descent updated ν′ and ψ′ by keeping Φ′ and ω′ fixed so that Eq. (12) simplified to

L( , ) arg min (1 ) ( , , )
(15), ,

2
2

 ν ψ γ ν ψ ρ ω ψ′ ′ = − ⋅ Φ′ + ⋅ ′ − .
ν ψ ∈

Again, gradient descent was employed to determine the minimum of that equation as the penalty function 
was smooth and convex. Finally, ω′ was updated by solving Eq. (12) with fixed Φ′, ν′, and ψ′, i.e., using the closed 
form solution to determine


ω ω ψ′ = − ′ .

ω∈
 : arg min

(16)2
2

NK

Following the suggestion of Zhang et al.12, block coordinate descent was repeated (i.e., Equations (14–16) until 
the relative changes of Φ′, ν′, ω′, and ψ′, between iterations were smaller than a fixed threshold εB, i.e.

max { ( ), ( ), ( ), ( )} (17)Bν ω ψ ε∆ Φ ∆ ∆ ∆ < .

with ∆ = ′ − ″
′

a( ) a a
amax { ,1}

max

max
. Once converged, Φρ, νρ, ωρ, and ψρ were updated according to Φ′, ν′, ω′, and ψ′, ρ 

was increased, and another block coordinate descent was initiated until ωρ and ψρ converged according to Eq. (13), 
which was the case in all of our experiments. Additional comments about the joint optimization are provided by the 
supplement.

Data availability.  In compliance with NIH policy, the data release NCANDA DATA 00010 V5, NCANDA 
DATA 00011, and NCANDA DATA 00012 V2 that supports the finding of this study is released to the public accord-
ing to the NCANDA Data Distribution agreement (see https://www.niaaa.nih.gov/research/major-initiatives/ 
national-consortium-alcohol-and-neurodevelopment-adolescence for more detail).

Code availability.  Our Matlab implementation of the proposed algorithm (GAM-Sparsity Constraint 
Logistic Regression V1) is available via https://www.nitrc.org/projects/gam_sparityreg.

Informed Consent.  All procedures performed in this study were in accordance with the Declaration of 
Helsinki. All participants underwent informed consent processes at the visit with a research associate trained 
in human subject research protocols. Adult participants or the parents of minor participants provided written 
informed consent before participation in the study. Minor participants provided assent before participation. The 
Institutional Review Boards of each NCANDA site approved this study, and each site followed this procedure to 
obtain voluntary informed consent or assent, depending on the age of the participant.
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