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Effective and efficient generation of human neural stem cells and subsequently
functional neural populations from pluripotent stem cells has facilitated
advancements in the study of human development and disease modelling.
This review will discuss the established protocols for the generation of defined
neural populations including regionalized neurons and astrocytes, oligoden-
drocytes and microglia. Early protocols were established in embryonic stem
cells (ESC) but the discovery of induced pluripotent stem cells (iPSC) in
2006 provided a new platform for modelling human disorders of the central
nervous system (CNS). The ability to produce patient- and disease-specific
iPSC lines has created a new age of disease modelling. Human iPSC may be
derived from adult somatic cells and subsequently patterned into numerous
distinct cell types. The ability to derive defined and regionalized neural popu-
lations from iPSC provides a powerful in vitro model of CNS disorders.

This article is part of the theme issue ‘Designer human tissue: coming to
a lab near you'.

1. Introduction

Effective and efficient modelling has been a major focus of disease research since
the birth of pathology and although countless breakthroughs have been made
over the years it is still arguably the limiting factor for translating therapies
from ‘bench-to-bedside’. Approaches to central nervous system (CNS) research
have used immortalized cell lines, e.g. HEK293 and SH5Y5Y, but these immorta-
lized cell lines have intrinsic flaws as they are often derived from cancers and
may not be from the tissue affected by the disease of interest [1]. Additionally,
cell lines are by definition highly proliferative and therefore do not provide ade-
quate models for slowly proliferating cells such as neurons and microglia [2].
Primary cultures of neurons, astrocytes and microglia isolated from rodents
have also been used but these primary cells have issues of their own, as they
are often difficult to maintain and expand in culture, particularly when isolated
from an aged animal. The problems associated with these approaches highlight
a need for human cells, which can be grown in vitro while behaving as they do
in vivo. An alternative route to disease modelling has used model organisms.
Rodents are the traditional model organism of choice for CNS research, where
the animals are genetically modified in order to induce the disease of interest;
for example, the APP/PS1 mouse model of Alzheimer’s disease (AD) over
expresses amyloid precursor protein, resulting in the characteristic amyloid path-
ology and cognitive impairment associated with AD [3]. The mouse is the most
prevalent animal model used in research today, despite the fact that there are
many differences between mice and humans both genetically and phenotypically,
e.g. heart size and resting heart rate [1]. In terms of evolution the rat is 4—5 million
years closer to humans compared to mice [4] and is commonly used as the main
model organism in Parkinson’s disease (PD) research. Although these model
organisms have contributed to elucidating key pathological mechanisms, the
use of non-human models of a human disease is inherently flawed given that
rodents do not naturally develop many disorders of the CNS [5]. This has resulted
in difficulties translating therapies developed in rodent models into feasible thera-
pies as therapeutics viable in one species may be detrimental in the other [6,7].
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Ahuman model in theory would create a more realistic represen-
tation of human disease. Human pluripotent stem cells (PSC)
present a means by which a human model can be created. Neur-
onal and astrocyte cultures may be differentiated from human
PSC to provide a ‘disease in a dish” model of CNS disorders.

Study of neural disorders has previously been hindered by
the lack of live human neural cells, and while cell lines and
model organisms have their uses and have contributed to
much of what we know about neurodegeneration to date,
there is a need for a human model in order to more effectively
and efficiently translate this from ‘bench-to-bedside’. Therefore,
research turned towards generating a human model of human
disease with initial studies using embryonic stem cells (ESC).
Further to this, the development of PSC technology has allowed
researchers to generate defined neural populations in vitro, and
has subsequently resulted in a number of breakthroughs in
studying neural development and neurological diseases, e.g.
elucidating the role of bone morphogenic protein (BMP), Wnt,
retinoic acid (RA) and sonic hedgehog (SHH) in embryonic
rostro-caudal dorso-ventral patterning [8], as well as the ability
to produce patient-specific lines for disease modelling. Induced
pluripotent stem cell (iPSC) generation was first demonstrated
in mouse dermal fibroblasts in the laboratory of Shinya Yama-
naka [9] and subsequently in human dermal fibroblasts
[10,11]. The ability to produce regionally specified neural cells
allows research to focus on the cell populations most vulnerable
in the disease of interest, e.g. basal forebrain cholinergic neurons
in AD, and therefore cater therapies to a specific cell type. These
defined neural phenotypes include: (i) basal forebrain cholin-
ergic neurons—relevant to AD research, (ii) cortical projection
neurons—relevant to AD research, (iii) cerebellar neurons—
affected in multiple sclerosis (MS) and hereditary ataxia [12],
(iv) midbrain dopaminergic neurons in order to study PD,
and (v) motor neurons are useful for research into motor dis-
eases such as amyotrophic lateral sclerosis (ALS) [13].

PSC have the potential to differentiate into any cell type in the
body. These cells have the ability to expand indefinitely and
may be prompted with the appropriate factors to differentiate
into a cell type of interest. Currently there are two sources of
human PSC, firstly human ESC derived from the blastocyst
and secondly, human iPSC derived from adult somatic cells
that are genetically manipulated into a pluripotent state.

ESC are derived from the inner cell mass of the blastocyst.
They have many uses in research including investigation of dis-
ease mechanisms, drug screening and regenerative medicine.
However, obtaining human embryonic tissue is difficult, and
there are many ethical controversies surrounding the use of
human ESC as they require destruction of viable embryos;
additionally generation of disease- or patient-specific ESC is
limited. The introduction of iPSC has provided an alternative
approach that bypasses some of the limitations of ESC
[14,15]. iPSC have much of the same characteristics and differ-
entiating abilities of ESC without the ethical issues associated
with the use of human embryos; furthermore, autologous
cells have a reduced risk of rejection by the host following
implantation [16,17]. Early protocols used mouse and human
ESC to establish differentiating techniques (for review see
[8]); however, iPSC are more commonly used today, and as
such this review will focus on neural patterning of human iPSC.

Human iPSC are adult somatic cells that have been repro-
grammed into a primordial state much like ESC, and thus in
theory can give rise to any cell type of the body. They were
first derived in 2006 in the laboratory of Shinya Yamanaka
from mouse skin cells [9] and the first human iPSC were derived
in 2007 [10,11]. This pioneering research has revolutionized dis-
ease modelling and is considered such a breakthrough that
Shinya Yamanaka was awarded the Nobel Prize in Medicine
in 2012. The real beauty of these cells is that they may be derived
from any willing donor and a corresponding iPSC line contain-
ing the donor’s genetic fingerprint can be produced and
subsequently differentiated into the desired cell type, therefore
disease- and patient-specific cell lines may be produced to
model diseases arising from a genetic mutation. Human iPSC
derived from tissue collected from AD patients will naturally
contain any mutations that led to the development of AD in
that individual, and thus bypass the need for transgenically
inducing the disease.

Takahashi and colleagues showed that iPSC generated from
mouse resembled ESC with regards to morphology, gene
expression, proliferation and formation of teratomas—and can
give rise to adult chimeras capable of germline transmission
when transplanted into blastocysts [10]. With appropriate
stimulation iPSC can give rise to multiple cell types such as
neurons, astrocytes, cardiomyocytes, pancreatic cells and liver
cells [18,19], making them extremely versatile in terms of mod-
elling disease. As iPSC are derived from tissues from consenting
adults this bypasses the ethical limitations of ESC associated
with the destruction of embryos and allows for the generation
of disease- and patient-specific cell lines. However, genetic
manipulation of human tissue is closely regulated and ethical
approval for harvesting of human tissue is stringent—particu-
larly gaining informed consent from dementia patients
[20,21]. iPSC technology has shown many applications in the
fields of drug development, disease modelling, organ synthesis
and tissue repair. These cells have the advantages of a normal
karyotype and continuous self-renewal, which allows them to
survive in culture indefinitely. Therefore, the introduction of
iPSC technology has helped overcome many limitations associ-
ated with the use of animal models and ESC, and in so doing is
helping to bridge the ‘gap’ that exists between the laboratory
and the clinic.

A number of steps are involved in the generation of iPSC
prior to differentiation, namely sample collection, parent cell
isolation and expansion, transfection, culture, expansion and
characterization. iPSC may be derived from a number of
sources including skin fibroblasts, mesenchymal stem cells
from bone marrow, hair follicles, mononuclear cells from per-
ipheral blood, or even exfoliated renal epithelial cells from
urinary sediments. Skin fibroblasts are the traditional source
of iPSC, as the method of isolation is minimally invasive [22].
Skin fibroblasts are isolated by taking a dermal punch from
the forearm of the participant; this skin section is then cultured
to encourage growth of fibroblasts. Early protocols forced
somatic cells into a pluripotent state by means of retroviral
transduction, whereby embryonic transcription factors (OCT3/
4, c-MYC, SOX2 and KLF4) are introduced into the adult cells.
Changes to the Yamanaka group’s original protocol have intro-
duced the use of different vectors and reprogramming genes.
The latest protocols use non-integrating episomal plasmid
vectors to introduce the embryonic gene cocktail and the



non-transforming form of c-MYC, L-MYC [23]; L-MYC is now
used routinely, thereby reducing the concern that these cells
may form teratomas or become cancerous if implanted. Once
transfected, the cells are cultured until iPSC colonies begin to
appear in culture; these colonies are then isolated and expanded
to produce a pure iPSC culture, free from fibroblast contami-
nation. iPSC then undergo a series of characterization tests to
prove pluripotency. Pluripotency characterization tests include
the following:

(1) Morphology and gene expression are examined and com-
pared to ESC

(2) Silencing of the retroviral transgenes (if used) should
occur after approximately four passages

(3) iPSC form embryoid bodies with markers for all three germ
layers demonstrated by immunostaining and RT-PCR

(4) Injection of undifferentiated iPSC colonies into immuno-
deficient mice results in the formation of teratomas [24]

4. Neural differentiation

Over the past decade, the introduction of technologies capable
of reprogramming human somatic cells into human iPSC has
provided a novel approach to studying neurodegenerative
diseases in vitro, and resulted in a greater understanding
of the pathophysiology of numerous neurological diseases.
Since the protocol was first published, many new protocols
have been established and it is now possible to generate
a variety of defined neuronal phenotypes from these
iPSC, for example dopaminergic and cortical neurons and
astrocyte populations [5].

PSC can be differentiated into defined neural subtypes by
modulating exogenous levels of signalling molecules present
in the brain at significant developmental time points such as
BMP, Wnt, sonic hedgehog SHH and fibroblast growth factor
(FGF) [8]. By mimicking cues that guide neural development
in the embryo, it is possible to generate regional specific
neural progenitors that can then be matured into neurons
and glial cells in order to model human development and dis-
orders of the CNS in a way that was unattainable previously.
Human PSC can be differentiated using a number of protocols,
e.g. monolayer, on plastic and in defined chemical conditions.
There is some debate within the community as to which proto-
col is more effective and reproducible, with both neurosphere
and adherent monolayer cultures widely used [25]. While neu-
rospheres recapitulate the environment within the embryo, i.e.
a 3D bundle of cells [26,27], monolayers can often be easier to
differentiate and result in a more homogeneous population [5].
Producing defined neuronal populations allows the focus to be
placed on the neuronal subtypes affected in neurological dis-
orders, e.g. cholinergic and cortical neurons may be used in
AD-focused studies [27,28], while midbrain dopaminergic
neuronal populations are useful when studying PD [29] and
spinal cord neurons and astrocytes are required to study
spinal cord injury [30,31].

5. Differentiation of neuronal subtypes

(a) Basal forebrain cholinergic neurons

The basal forebrain is considered the major source of acetyl-
choline within the CNS and the main source of cholinergic
input to the cortex [32]. Basal forebrain cholinergic neurons

(BFCN) are the earliest population of neurons to be affected [ 3 |

by tau pathology in AD, resulting in loss of cholinergic input
to the cortex and subsequently cognitive decline [28,32]. Cogni-
tive impairment in AD has been linked to a loss of nicotinic
acetylcholine receptors (nAChR) [26], and as such dysfunction
of the cholinergic system. Therefore, these neuronal subtypes
provide an extremely useful model to analyse the efficacy of
drugs designed to combat neuronal loss in AD. iPSC derived
from AD patients may be differentiated into BFCN and used
to elucidate why this cell population is so vulnerable to AD.

Factors present in the forebrain that result in BECN devel-
opment include retinoic acid (RA), SHH, FGF8 and BMP9.
These factors must be present in the right combination, at the
right time and at the right concentrations in order to differen-
tiate BFCN. The Kessler lab elucidated a mechanism of
BFCN differentiation in 2011, whereby patterning factors
(RA, SHH, FGF8, BMP9) result in the transcription of the
genes Lhx8 and Gbx1, subsequently leading to the production
of a population of cells positive for the basal forebrain markers
ChAT and p75 (table 1). Removal of BMP9, or addition at incor-
rect time points and knockdown of Lhx8 or Gbx1 resulted in
the generation of a neuronal population positive for the neur-
onal marker MAP2 but none of the BFCN-specific markers
[32]. Functional cholinergic neurons will provide a source
for the screening of drugs targeting the cholinergic system,
or a useful model for disease involving dysfunction of the
cholinergic system.

(b) Cortical

The primate cortex is different from that of the rodent in the
following ways: it is significantly larger relative to the rest of
the CNS, it is more complex and has a more diverse neuronal
cell population [33]. Therefore, iPSC have the potential to
overcome the challenges linked to the production of animal
models of disease of the cortex, including AD and schizo-
phrenia. Some studies have found that cortical neuron fate
is determined in vitro prior to implantation [41], while other
studies have found that implanted cortical neurons develop
dendritic and axonal connections applicable to the transplant
site indicating that their fate is influenced by the environment
[42]. Dual-SMAD inhibition has successfully been used to
derive cortical neurons from human iPSC [43] (table 1).

(c) Midbrain dopaminergic neurons

Dopamine neurons of the substantia nigra pars compacta
are the most vulnerable cells in PD. Significant loss of dopa-
mine neurons results in the characteristic motor symptoms
of PD due to a loss of dopamine in the striatum [44]. Given
that idiopathic and genetic PD result from multiple genetic
mutations, iPSC are proving a powerful model following
derivation of midbrain dopaminergic neurons to study
the intricacies of this debilitating disorder (see table 1 for
derivation protocols).

(d) Spinal motoneurons

Spinal motoneurons are the key effector cells of motor function,
relaying signals generated in the motor cortices of the brain to
the muscles. The loss of motor neurons has been associated
with a number of movement disorders, including ALS [39].
The generation of protocols to derive motoneurons from
human iPSC has not only provided a model for disease
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Table 2. (Continued.)

time required for mature

astrocytes/yield

astrogliogenic

patterning

references

markers

=
=
=}
g
=
=
5
E
=]
N
o
=
(=]
=
=}
v
£

initial differentiation

(571

GFAP

>60 d

hESC-derived neurospheres plated as a monolayer.

hESC

FGF2

BMP4
LIF

n/a

51008
AQP4

95.7 + 3.1% GFAP™
79.4 + 1.0% AQP4™

Expanded in FGF2 and EGF; 2 months. Cells treated with

BMP2, BMP4 and LIF for terminal differentiation.

EGF

90.1 + 2.0% S100

neurosphere

EAAT

B+
89.5 + 3.2% EAATTT

Cells treéted with FGFS, RA or SHH‘ for rosette formaﬁon.

(58]

GFAP

>90 d

hPSC

EGF

FGF8
RA

n/a

$1008

(D44

>90% S100B ™
>90% GFAP™

Rosettes patterned with EGF, FGF2. Matured with CNTF.

FGF2

SHH

Nkx2.1

affecting this cell population but also allowed further probing [ 8 |

of development of the CNS.

6. Astrocytes

Astrocytes are the most abundant cell type in the mammalian
brain, and their main function is to maintain a homeostatic
environment that is optimal for neuronal health and function.
They do this by maintaining the blood—brain barrier (BBB), ion
balance, neurotransmitter turnover and releasing growth fac-
tors that aid synapse formation. Given that neurons only
represent 10% of cells in the adult brain [45] protocols for the
differentiation of astrocytes, which represent up to 40% of
brain cells [5], from PSC have been developed in an attempt
to give a more representative disease model. There is a growing
body of literature to support a detrimental role for astrocytes in
neurodegeneration [30,46-48], with a recent study by Lidde-
low and colleagues attempting to characterize activated
astrocytes [46] much like previous characterization of activated
macrophages and microglia [49]. It has been established that
reactive astrocytes have a role to play in many CNS diseases
(for astrocyte review see [5,50], for glial cell review see [51]);
as such it is vital that this cell type be included when studying
neurodegenerative diseases and other brain disorders in order
to give a more rounded and accurate representation of the
in vivo environment.

Astrocytes are most commonly grown from rodent brain
samples and cultures are typically contaminated with other
cell types, e.g. microglia, therefore deriving astrocytes from
iPSC is a convenient method of obtaining disease-specific
astrocyte cultures of high purity. Astrocytes are a hetero-
geneous cell population, and much like neurons have
different subtypes related to location, morphology, etc. The
ability to generate specific defined astroglial populations
from iPSC allows for research to focus on the brain regions
and specific cell types affected in neurological diseases. Due
to regional differences it is important to characterize these
astrocyte populations and use the appropriate region when
modelling disease. Table 2 summarizes available protocols
for the generation of astrocytes from iPSC.

7. Oligodendrocytes

Oligodendrocytes are the myelinating cells of the CNS and
while their dysfunction has been implicated in many diseases
including the demyelinating disorders MS and ALS, their
development and maturation in humans have yet to be fully
determined [59]. Like astrocytes, oligodendrocytes may be
regenerative or deleterious in disease states, and as such
iPSC-derived oligodendrocytes are providing a means by
which their developmental process can be elucidated and
their response to disease subsequently examined. According
to Mertens and colleagues, sufficient myelination is only
achieved following implantation of oligodendrocytes [60],
therefore improvements to current differentiation protocols
will prove useful for research on demyelinating disorders
such as MS, ALS and Krabbes disease. While oligodendrocytes
have been successfully generated from iPSC in numerous lab-
oratories following a variety of protocols (table 3), there is
still a need for regional specificity in order to more selectively
produce in vitro models of oligodendrocyte dysfunction in
disease.
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Table 3. (Continued.)

trophic factors/

terminal

time required for
mature glia/yield

patterning

references

markers

[
=
-
-
-
<
s
E
=
Y
(=]
=
(=]
=
-
v
£

initial differentiation

differentiation factors

[65]

0LG2

>90 d

RA and SHH pattern the NE to a ventral spinal fate and FGF2 is then

hESC

FGF2

RA
SHH
T3

n/a

Nkx2.2
Sox10

~80% PDGFRar ™+

added to produce pre-OPC. Then matured to OPC with T3, NT3,

PDGF, cAMP, IGF-1, biotin.

PDGFRay
NG2
04

NT3

PDGF

cAMP
IGF-1

MBP

biotin

8. Microglia

Microglia are the resident immune cells of the CNS, dubbed the
brain-resident macrophages, with important homeostatic func-
tions including developmental synaptic pruning and clearance
of necrotic and apoptotic cells and their debris. Increasing evi-
dence supports a role of microglia in CNS disorders, notably
neurodegenerative diseases such as AD and PD. Many genes
that have been linked to these disorders are expressed by micro-
glia [2] and as such they may be predisposed to induce an
inflammatory environment or their capacity to defend brain
tissue could be compromised. Due to the immune function
associated with microglia it follows that they develop from a
different lineage from that of other neural cells, which has
resulted in difficulties deriving microglia from iPSC. Only
recently has microglia ontogeny been more clearly elucidated
and microglia derivation protocols are slowly emerging in the
literature. It has been established that microglia derive from
the myeloid lineage, they develop from the yolk sac at embryo-
nic day 17 (E17) [66], migrate to the CNS from E31 onwards
[67]—prior to BBB formation—and subsequently develop into
specialized immune cells within the CNS environment.

Previously microglia-like cell lines have been used,
although by nature such cell lines are highly proliferative and
don’t fully recapitulate microglia as they behave in vivo [2].
Primary microglia may be isolated from rodent brain and cul-
tured in vitro although they tend to lose their unique identity
once removed from the brain environment. In addition, pri-
mary human microglia are in limited supply and do not
proliferate in vitro. Therefore, microglia generated from iPSC
lines will prove extremely useful for further investigating the
role of microglia in neurodegeneration. Early attempts to pro-
duce human microglia using peripheral blood monocytes
were trialled by adding factors such as macrophage colony-sti-
mulating factor (M-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), nerve growth factor (NGF) and
chemokine ligand 2 (CCL2) [68]. This type of approach has
allowed further protocols for the generation of microglia
from iPSC to begin to emerge. Unlike protocols for the
derivation of neurons and astrocytes, these iPSC-derived
microglia lack regionality, something that we hope will be
rectified in the future. The currently available microglia
derivation protocols are summarized in table 4.

9. Conclusion and future perspectives

The scarcity of human CNS cells and the difficulty in isolating
them have long hindered research into neural development
and disease, and the polygenic nature of neurological diseases
has created difficulties producing transgenic models for
research. The ability to produce neural cells from human PSC
and subsequently iPSC was a major breakthrough for the
field of neuroscience research. Although iPSC are not without
their limitations, with high variability present across cell lines
and individual clones, it is clear that human PSC provide
great advantages and opportunities for research into neural
disorders and development of novel therapies to treat such
disorders. Given that iPSC-derived neural cells can be trans-
planted and successfully integrate in vivo [73], these cells
have created new avenues for regenerative medicine that may
prove successful in the future to help combat neurodegenera-
tion. iPSC have the added benefit that they can be derived
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from numerous types of adult somatic cells, and the resulting
cell line will have the same genetic makeup as the donor. In
this way, iPSC lines recapitulating the genome of patients of
CNS disorders, e.g. APOE in AD, LRRK?2 in PD, etc. may be
generated and provide a much more realistic and accurate
model of the human condition. The ability to generate region
specific neural populations carrying a disease phenotype is a
significant step forward in disease modelling, understanding
disease mechanisms and screening potential therapeutics.
However, it is noteworthy that a significant number of chal-
lenges need to be overcome before these cells realize their
true potential. It is clear that at present the ability to differen-
tiate regional glial populations lags behind that of neuronal
counterparts. In addition, the issue of ageing the neurons in
vitro is not trivial; many protocols need 100 plus days to gener-
ate neurons that are akin to their fetal brain counterparts [74].
This is particularly important when modelling neurodegenera-
tive disease where the biggest risk factor is ageing, which
becomes significant beyond middle age [25]. Variability
between iPSC clones also remains a major challenge (reviewed

in [75]). Furthermore, time taken to optimize culture conditions n

can be costly and lengthy and things that may sound simple,
e.g. plastic ware, brands of reagents used, can have a profound
effect on cellular differentiation. Laboratory to laboratory
variability of neural cultures may have an effect down the
line when trying to translate potential drug candidates into
the clinic. This variability is something that needs to be
addressed and more tightly regulated in the drug discovery
industry, and especially for cell replacement therapy. This
necessity is slowly being realized in the industry with the
introduction of “clinical-grade” ESC and iPSC [76-78].

In summary, despite these limitations, iPSC will continue
to make a valuable contribution to our efforts in finding
novel treatments for neurodegenerative diseases; their true
potential is only beginning to emerge.

This article has no additional data.
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