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Effective and efficient generation of human neural stem cells and subsequently

functional neural populations from pluripotent stem cells has facilitated

advancements in the study of human development and disease modelling.

This review will discuss the established protocols for the generation of defined

neural populations including regionalized neurons and astrocytes, oligoden-

drocytes and microglia. Early protocols were established in embryonic stem

cells (ESC) but the discovery of induced pluripotent stem cells (iPSC) in

2006 provided a new platform for modelling human disorders of the central

nervous system (CNS). The ability to produce patient- and disease-specific

iPSC lines has created a new age of disease modelling. Human iPSC may be

derived from adult somatic cells and subsequently patterned into numerous

distinct cell types. The ability to derive defined and regionalized neural popu-

lations from iPSC provides a powerful in vitro model of CNS disorders.

This article is part of the theme issue ‘Designer human tissue: coming to

a lab near you’.
1. Introduction
Effective and efficient modelling has been a major focus of disease research since

the birth of pathology and although countless breakthroughs have been made

over the years it is still arguably the limiting factor for translating therapies

from ‘bench-to-bedside’. Approaches to central nervous system (CNS) research

have used immortalized cell lines, e.g. HEK293 and SH5Y5Y, but these immorta-

lized cell lines have intrinsic flaws as they are often derived from cancers and

may not be from the tissue affected by the disease of interest [1]. Additionally,

cell lines are by definition highly proliferative and therefore do not provide ade-

quate models for slowly proliferating cells such as neurons and microglia [2].

Primary cultures of neurons, astrocytes and microglia isolated from rodents

have also been used but these primary cells have issues of their own, as they

are often difficult to maintain and expand in culture, particularly when isolated

from an aged animal. The problems associated with these approaches highlight

a need for human cells, which can be grown in vitro while behaving as they do

in vivo. An alternative route to disease modelling has used model organisms.

Rodents are the traditional model organism of choice for CNS research, where

the animals are genetically modified in order to induce the disease of interest;

for example, the APP/PS1 mouse model of Alzheimer’s disease (AD) over

expresses amyloid precursor protein, resulting in the characteristic amyloid path-

ology and cognitive impairment associated with AD [3]. The mouse is the most

prevalent animal model used in research today, despite the fact that there are

many differences between mice and humans both genetically and phenotypically,

e.g. heart size and resting heart rate [1]. In terms of evolution the rat is 4–5 million

years closer to humans compared to mice [4] and is commonly used as the main

model organism in Parkinson’s disease (PD) research. Although these model

organisms have contributed to elucidating key pathological mechanisms, the

use of non-human models of a human disease is inherently flawed given that

rodents do not naturally develop many disorders of the CNS [5]. This has resulted

in difficulties translating therapies developed in rodent models into feasible thera-

pies as therapeutics viable in one species may be detrimental in the other [6,7].
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A human model in theory would create a more realistic represen-

tation of human disease. Human pluripotent stem cells (PSC)

present a means by which a human model can be created. Neur-

onal and astrocyte cultures may be differentiated from human

PSC to provide a ‘disease in a dish’ model of CNS disorders.

Study of neural disorders has previously been hindered by

the lack of live human neural cells, and while cell lines and

model organisms have their uses and have contributed to

much of what we know about neurodegeneration to date,

there is a need for a human model in order to more effectively

and efficiently translate this from ‘bench-to-bedside’. Therefore,

research turned towards generating a human model of human

disease with initial studies using embryonic stem cells (ESC).

Further to this, the development of PSC technology has allowed

researchers to generate defined neural populations in vitro, and

has subsequently resulted in a number of breakthroughs in

studying neural development and neurological diseases, e.g.

elucidating the role of bone morphogenic protein (BMP), Wnt,

retinoic acid (RA) and sonic hedgehog (SHH) in embryonic

rostro-caudal dorso-ventral patterning [8], as well as the ability

to produce patient-specific lines for disease modelling. Induced

pluripotent stem cell (iPSC) generation was first demonstrated

in mouse dermal fibroblasts in the laboratory of Shinya Yama-

naka [9] and subsequently in human dermal fibroblasts

[10,11]. The ability to produce regionally specified neural cells

allows research to focus on the cell populations most vulnerable

in the disease of interest, e.g. basal forebrain cholinergic neurons

in AD, and therefore cater therapies to a specific cell type. These

defined neural phenotypes include: (i) basal forebrain cholin-

ergic neurons—relevant to AD research, (ii) cortical projection

neurons—relevant to AD research, (iii) cerebellar neurons—

affected in multiple sclerosis (MS) and hereditary ataxia [12],

(iv) midbrain dopaminergic neurons in order to study PD,

and (v) motor neurons are useful for research into motor dis-

eases such as amyotrophic lateral sclerosis (ALS) [13].
2. Pluripotent stem cells
PSC have the potential to differentiate into any cell type in the

body. These cells have the ability to expand indefinitely and

may be prompted with the appropriate factors to differentiate

into a cell type of interest. Currently there are two sources of

human PSC, firstly human ESC derived from the blastocyst

and secondly, human iPSC derived from adult somatic cells

that are genetically manipulated into a pluripotent state.

ESC are derived from the inner cell mass of the blastocyst.

They have many uses in research including investigation of dis-

ease mechanisms, drug screening and regenerative medicine.

However, obtaining human embryonic tissue is difficult, and

there are many ethical controversies surrounding the use of

human ESC as they require destruction of viable embryos;

additionally generation of disease- or patient-specific ESC is

limited. The introduction of iPSC has provided an alternative

approach that bypasses some of the limitations of ESC

[14,15]. iPSC have much of the same characteristics and differ-

entiating abilities of ESC without the ethical issues associated

with the use of human embryos; furthermore, autologous

cells have a reduced risk of rejection by the host following

implantation [16,17]. Early protocols used mouse and human

ESC to establish differentiating techniques (for review see

[8]); however, iPSC are more commonly used today, and as

such this review will focus on neural patterning of human iPSC.
3. Induced pluripotent stem cells
Human iPSC are adult somatic cells that have been repro-

grammed into a primordial state much like ESC, and thus in

theory can give rise to any cell type of the body. They were

first derived in 2006 in the laboratory of Shinya Yamanaka

from mouse skin cells [9] and the first human iPSC were derived

in 2007 [10,11]. This pioneering research has revolutionized dis-

ease modelling and is considered such a breakthrough that

Shinya Yamanaka was awarded the Nobel Prize in Medicine

in 2012. The real beauty of these cells is that they may be derived

from any willing donor and a corresponding iPSC line contain-

ing the donor’s genetic fingerprint can be produced and

subsequently differentiated into the desired cell type, therefore

disease- and patient-specific cell lines may be produced to

model diseases arising from a genetic mutation. Human iPSC

derived from tissue collected from AD patients will naturally

contain any mutations that led to the development of AD in

that individual, and thus bypass the need for transgenically

inducing the disease.

Takahashi and colleagues showed that iPSC generated from

mouse resembled ESC with regards to morphology, gene

expression, proliferation and formation of teratomas—and can

give rise to adult chimeras capable of germline transmission

when transplanted into blastocysts [10]. With appropriate

stimulation iPSC can give rise to multiple cell types such as

neurons, astrocytes, cardiomyocytes, pancreatic cells and liver

cells [18,19], making them extremely versatile in terms of mod-

elling disease. As iPSC are derived from tissues from consenting

adults this bypasses the ethical limitations of ESC associated

with the destruction of embryos and allows for the generation

of disease- and patient-specific cell lines. However, genetic

manipulation of human tissue is closely regulated and ethical

approval for harvesting of human tissue is stringent—particu-

larly gaining informed consent from dementia patients

[20,21]. iPSC technology has shown many applications in the

fields of drug development, disease modelling, organ synthesis

and tissue repair. These cells have the advantages of a normal

karyotype and continuous self-renewal, which allows them to

survive in culture indefinitely. Therefore, the introduction of

iPSC technology has helped overcome many limitations associ-

ated with the use of animal models and ESC, and in so doing is

helping to bridge the ‘gap’ that exists between the laboratory

and the clinic.

A number of steps are involved in the generation of iPSC

prior to differentiation, namely sample collection, parent cell

isolation and expansion, transfection, culture, expansion and

characterization. iPSC may be derived from a number of

sources including skin fibroblasts, mesenchymal stem cells

from bone marrow, hair follicles, mononuclear cells from per-

ipheral blood, or even exfoliated renal epithelial cells from

urinary sediments. Skin fibroblasts are the traditional source

of iPSC, as the method of isolation is minimally invasive [22].

Skin fibroblasts are isolated by taking a dermal punch from

the forearm of the participant; this skin section is then cultured

to encourage growth of fibroblasts. Early protocols forced

somatic cells into a pluripotent state by means of retroviral

transduction, whereby embryonic transcription factors (OCT3/
4, c-MYC, SOX2 and KLF4) are introduced into the adult cells.

Changes to the Yamanaka group’s original protocol have intro-

duced the use of different vectors and reprogramming genes.

The latest protocols use non-integrating episomal plasmid

vectors to introduce the embryonic gene cocktail and the
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non-transforming form of c-MYC, L-MYC [23]; L-MYC is now

used routinely, thereby reducing the concern that these cells

may form teratomas or become cancerous if implanted. Once

transfected, the cells are cultured until iPSC colonies begin to

appear in culture; these colonies are then isolated and expanded

to produce a pure iPSC culture, free from fibroblast contami-

nation. iPSC then undergo a series of characterization tests to

prove pluripotency. Pluripotency characterization tests include

the following:

(1) Morphology and gene expression are examined and com-

pared to ESC

(2) Silencing of the retroviral transgenes (if used) should

occur after approximately four passages

(3) iPSC form embryoid bodies with markers for all three germ

layers demonstrated by immunostaining and RT-PCR

(4) Injection of undifferentiated iPSC colonies into immuno-

deficient mice results in the formation of teratomas [24]

4. Neural differentiation
Over the past decade, the introduction of technologies capable

of reprogramming human somatic cells into human iPSC has

provided a novel approach to studying neurodegenerative

diseases in vitro, and resulted in a greater understanding

of the pathophysiology of numerous neurological diseases.

Since the protocol was first published, many new protocols

have been established and it is now possible to generate

a variety of defined neuronal phenotypes from these

iPSC, for example dopaminergic and cortical neurons and

astrocyte populations [5].

PSC can be differentiated into defined neural subtypes by

modulating exogenous levels of signalling molecules present

in the brain at significant developmental time points such as

BMP, Wnt, sonic hedgehog SHH and fibroblast growth factor

(FGF) [8]. By mimicking cues that guide neural development

in the embryo, it is possible to generate regional specific

neural progenitors that can then be matured into neurons

and glial cells in order to model human development and dis-

orders of the CNS in a way that was unattainable previously.

Human PSC can be differentiated using a number of protocols,

e.g. monolayer, on plastic and in defined chemical conditions.

There is some debate within the community as to which proto-

col is more effective and reproducible, with both neurosphere

and adherent monolayer cultures widely used [25]. While neu-

rospheres recapitulate the environment within the embryo, i.e.

a 3D bundle of cells [26,27], monolayers can often be easier to

differentiate and result in a more homogeneous population [5].

Producing defined neuronal populations allows the focus to be

placed on the neuronal subtypes affected in neurological dis-

orders, e.g. cholinergic and cortical neurons may be used in

AD-focused studies [27,28], while midbrain dopaminergic

neuronal populations are useful when studying PD [29] and

spinal cord neurons and astrocytes are required to study

spinal cord injury [30,31].
5. Differentiation of neuronal subtypes
(a) Basal forebrain cholinergic neurons
The basal forebrain is considered the major source of acetyl-

choline within the CNS and the main source of cholinergic

input to the cortex [32]. Basal forebrain cholinergic neurons
(BFCN) are the earliest population of neurons to be affected

by tau pathology in AD, resulting in loss of cholinergic input

to the cortex and subsequently cognitive decline [28,32]. Cogni-

tive impairment in AD has been linked to a loss of nicotinic

acetylcholine receptors (nAChR) [26], and as such dysfunction

of the cholinergic system. Therefore, these neuronal subtypes

provide an extremely useful model to analyse the efficacy of

drugs designed to combat neuronal loss in AD. iPSC derived

from AD patients may be differentiated into BFCN and used

to elucidate why this cell population is so vulnerable to AD.

Factors present in the forebrain that result in BFCN devel-

opment include retinoic acid (RA), SHH, FGF8 and BMP9.

These factors must be present in the right combination, at the

right time and at the right concentrations in order to differen-

tiate BFCN. The Kessler lab elucidated a mechanism of

BFCN differentiation in 2011, whereby patterning factors

(RA, SHH, FGF8, BMP9) result in the transcription of the

genes Lhx8 and Gbx1, subsequently leading to the production

of a population of cells positive for the basal forebrain markers

ChAT and p75 (table 1). Removal of BMP9, or addition at incor-

rect time points and knockdown of Lhx8 or Gbx1 resulted in

the generation of a neuronal population positive for the neur-

onal marker MAP2 but none of the BFCN-specific markers

[32]. Functional cholinergic neurons will provide a source

for the screening of drugs targeting the cholinergic system,

or a useful model for disease involving dysfunction of the

cholinergic system.

(b) Cortical
The primate cortex is different from that of the rodent in the

following ways: it is significantly larger relative to the rest of

the CNS, it is more complex and has a more diverse neuronal

cell population [33]. Therefore, iPSC have the potential to

overcome the challenges linked to the production of animal

models of disease of the cortex, including AD and schizo-

phrenia. Some studies have found that cortical neuron fate

is determined in vitro prior to implantation [41], while other

studies have found that implanted cortical neurons develop

dendritic and axonal connections applicable to the transplant

site indicating that their fate is influenced by the environment

[42]. Dual-SMAD inhibition has successfully been used to

derive cortical neurons from human iPSC [43] (table 1).

(c) Midbrain dopaminergic neurons
Dopamine neurons of the substantia nigra pars compacta

are the most vulnerable cells in PD. Significant loss of dopa-

mine neurons results in the characteristic motor symptoms

of PD due to a loss of dopamine in the striatum [44]. Given

that idiopathic and genetic PD result from multiple genetic

mutations, iPSC are proving a powerful model following

derivation of midbrain dopaminergic neurons to study

the intricacies of this debilitating disorder (see table 1 for

derivation protocols).

(d) Spinal motoneurons
Spinal motoneurons are the key effector cells of motor function,

relaying signals generated in the motor cortices of the brain to

the muscles. The loss of motor neurons has been associated

with a number of movement disorders, including ALS [39].

The generation of protocols to derive motoneurons from

human iPSC has not only provided a model for disease
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6. Astrocytes
Astrocytes are the most abundant cell type in the mammalian

brain, and their main function is to maintain a homeostatic

environment that is optimal for neuronal health and function.

They do this by maintaining the blood–brain barrier (BBB), ion

balance, neurotransmitter turnover and releasing growth fac-

tors that aid synapse formation. Given that neurons only

represent 10% of cells in the adult brain [45] protocols for the

differentiation of astrocytes, which represent up to 40% of

brain cells [5], from PSC have been developed in an attempt

to give a more representative disease model. There is a growing

body of literature to support a detrimental role for astrocytes in

neurodegeneration [30,46–48], with a recent study by Lidde-

low and colleagues attempting to characterize activated

astrocytes [46] much like previous characterization of activated

macrophages and microglia [49]. It has been established that

reactive astrocytes have a role to play in many CNS diseases

(for astrocyte review see [5,50], for glial cell review see [51]);

as such it is vital that this cell type be included when studying

neurodegenerative diseases and other brain disorders in order

to give a more rounded and accurate representation of the

in vivo environment.

Astrocytes are most commonly grown from rodent brain

samples and cultures are typically contaminated with other

cell types, e.g. microglia, therefore deriving astrocytes from

iPSC is a convenient method of obtaining disease-specific

astrocyte cultures of high purity. Astrocytes are a hetero-

geneous cell population, and much like neurons have

different subtypes related to location, morphology, etc. The

ability to generate specific defined astroglial populations

from iPSC allows for research to focus on the brain regions

and specific cell types affected in neurological diseases. Due

to regional differences it is important to characterize these

astrocyte populations and use the appropriate region when

modelling disease. Table 2 summarizes available protocols

for the generation of astrocytes from iPSC.
7. Oligodendrocytes
Oligodendrocytes are the myelinating cells of the CNS and

while their dysfunction has been implicated in many diseases

including the demyelinating disorders MS and ALS, their

development and maturation in humans have yet to be fully

determined [59]. Like astrocytes, oligodendrocytes may be

regenerative or deleterious in disease states, and as such

iPSC-derived oligodendrocytes are providing a means by

which their developmental process can be elucidated and

their response to disease subsequently examined. According

to Mertens and colleagues, sufficient myelination is only

achieved following implantation of oligodendrocytes [60],

therefore improvements to current differentiation protocols

will prove useful for research on demyelinating disorders

such as MS, ALS and Krabbes disease. While oligodendrocytes

have been successfully generated from iPSC in numerous lab-

oratories following a variety of protocols (table 3), there is

still a need for regional specificity in order to more selectively

produce in vitro models of oligodendrocyte dysfunction in

disease.
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8. Microglia
Microglia are the resident immune cells of the CNS, dubbed the

brain-resident macrophages, with important homeostatic func-

tions including developmental synaptic pruning and clearance

of necrotic and apoptotic cells and their debris. Increasing evi-

dence supports a role of microglia in CNS disorders, notably

neurodegenerative diseases such as AD and PD. Many genes

that have been linked to these disorders are expressed by micro-

glia [2] and as such they may be predisposed to induce an

inflammatory environment or their capacity to defend brain

tissue could be compromised. Due to the immune function

associated with microglia it follows that they develop from a

different lineage from that of other neural cells, which has

resulted in difficulties deriving microglia from iPSC. Only

recently has microglia ontogeny been more clearly elucidated

and microglia derivation protocols are slowly emerging in the

literature. It has been established that microglia derive from

the myeloid lineage, they develop from the yolk sac at embryo-

nic day 17 (E17) [66], migrate to the CNS from E31 onwards

[67]—prior to BBB formation—and subsequently develop into

specialized immune cells within the CNS environment.

Previously microglia-like cell lines have been used,

although by nature such cell lines are highly proliferative and

don’t fully recapitulate microglia as they behave in vivo [2].

Primary microglia may be isolated from rodent brain and cul-

tured in vitro although they tend to lose their unique identity

once removed from the brain environment. In addition, pri-

mary human microglia are in limited supply and do not

proliferate in vitro. Therefore, microglia generated from iPSC

lines will prove extremely useful for further investigating the

role of microglia in neurodegeneration. Early attempts to pro-

duce human microglia using peripheral blood monocytes

were trialled by adding factors such as macrophage colony-sti-

mulating factor (M-CSF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), nerve growth factor (NGF) and

chemokine ligand 2 (CCL2) [68]. This type of approach has

allowed further protocols for the generation of microglia

from iPSC to begin to emerge. Unlike protocols for the

derivation of neurons and astrocytes, these iPSC-derived

microglia lack regionality, something that we hope will be

rectified in the future. The currently available microglia

derivation protocols are summarized in table 4.
9. Conclusion and future perspectives
The scarcity of human CNS cells and the difficulty in isolating

them have long hindered research into neural development

and disease, and the polygenic nature of neurological diseases

has created difficulties producing transgenic models for

research. The ability to produce neural cells from human PSC

and subsequently iPSC was a major breakthrough for the

field of neuroscience research. Although iPSC are not without

their limitations, with high variability present across cell lines

and individual clones, it is clear that human PSC provide

great advantages and opportunities for research into neural

disorders and development of novel therapies to treat such

disorders. Given that iPSC-derived neural cells can be trans-

planted and successfully integrate in vivo [73], these cells

have created new avenues for regenerative medicine that may

prove successful in the future to help combat neurodegenera-

tion. iPSC have the added benefit that they can be derived
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from numerous types of adult somatic cells, and the resulting

cell line will have the same genetic makeup as the donor. In

this way, iPSC lines recapitulating the genome of patients of

CNS disorders, e.g. APOE in AD, LRRK2 in PD, etc. may be

generated and provide a much more realistic and accurate

model of the human condition. The ability to generate region

specific neural populations carrying a disease phenotype is a

significant step forward in disease modelling, understanding

disease mechanisms and screening potential therapeutics.

However, it is noteworthy that a significant number of chal-

lenges need to be overcome before these cells realize their

true potential. It is clear that at present the ability to differen-

tiate regional glial populations lags behind that of neuronal

counterparts. In addition, the issue of ageing the neurons in
vitro is not trivial; many protocols need 100 plus days to gener-

ate neurons that are akin to their fetal brain counterparts [74].

This is particularly important when modelling neurodegenera-

tive disease where the biggest risk factor is ageing, which

becomes significant beyond middle age [25]. Variability

between iPSC clones also remains a major challenge (reviewed
in [75]). Furthermore, time taken to optimize culture conditions

can be costly and lengthy and things that may sound simple,

e.g. plastic ware, brands of reagents used, can have a profound

effect on cellular differentiation. Laboratory to laboratory

variability of neural cultures may have an effect down the

line when trying to translate potential drug candidates into

the clinic. This variability is something that needs to be

addressed and more tightly regulated in the drug discovery

industry, and especially for cell replacement therapy. This

necessity is slowly being realized in the industry with the

introduction of ‘clinical-grade’ ESC and iPSC [76–78].

In summary, despite these limitations, iPSC will continue

to make a valuable contribution to our efforts in finding

novel treatments for neurodegenerative diseases; their true

potential is only beginning to emerge.
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