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Bone has many functions. It is responsible for protecting the underlying soft

organs, it allows locomotion, houses the bone marrow and stores minerals

such as calcium and phosphate. Upon damage, bone tissue can efficiently

repair itself. However, healing is hampered if the defect exceeds a critical

size and/or is in compromised conditions. The isolation or generation of

bone-forming progenitors has applicability to skeletal repair and may be

used in tissue engineering approaches. Traditionally, bone engineering

uses osteochondrogenic stem cells, which are combined with scaffold

materials and growth factors. Despite promising preclinical data, limited

translation towards the clinic has been observed to date. There may be

several reasons for this including the lack of robust cell populations with

favourable proliferative and differentiation capacities. However, perhaps

the most pertinent reason is the failure to produce an implant that can repli-

cate the developmental programme that is observed during skeletal repair.

Pluripotent stem cells (PSCs) can potentially offer a solution for bone

tissue engineering by providing unlimited cell sources at various stages of

differentiation. In this review, we summarize key embryonic signalling path-

ways in bone formation coupled with PSC differentiation strategies for the

derivation of bone-forming progenitors.

This article is part of the theme issue ‘Designer human tissue: coming to

a lab near you’.
1. Introduction
The skeleton is predominantly composed of bone tissue, which is a highly

specialized form of connective tissue that helps regulate systemic levels of

calcium and phosphorus ions. Furthermore, it provides mechanical support

during joint movement, protects the inner organs and accommodates

haematopoiesis.

Despite the structural integrity of bone, millions of patients suffer yearly

from bone fractures. This number is likely to increase owing to an ageing popu-

lation and high prevalence of low bone mass disorders (i.e. osteoporosis).

Fortunately, bone has a remarkable intrinsic capacity to heal; however, fracture

healing can be impaired if mechanical or biological environments are not per-

missive of repair. It is estimated that a total of 10% of annual tibial fractures

either heal poorly (delayed-union) or do not heal at all (non-union) [1]. As a

result, many strategies have been proposed and developed to enhance bone

healing. One such example is tissue engineering, which is defined as an inter-

disciplinary field that combines the principles of engineering and life sciences

towards the development of biological substitutes to restore, maintain or

improve bone tissue development and regeneration [2]. Classically, bone

tissue engineering combines skeletogenic cells with biocompatible materials

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0218&domain=pdf&date_stamp=2018-05-21
http://dx.doi.org/10.1098/rstb/373/1750
http://dx.doi.org/10.1098/rstb/373/1750
mailto:scott.roberts@ucb.com
http://orcid.org/
http://orcid.org/0000-0003-3974-8895


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170218

2
and growth factors to create tissue intermediates that

upon implantation will form bone tissue [3,4]. However,

these strategies are hampered by the lack of robust and

reproducible cell populations which display favourable

proliferative and differentiation properties for advanced

cell-based therapies.

Most tissue engineering efforts have focused on the use of

adult stem cells with the major cell type of choice being the

bone marrow mesenchymal stem cell (MSC). However,

despite apparent in vitro osteogenic differentiation [5],

in vivo bone formation has been limited in most cases. It is

believed that genetic variations, limited proliferative ability,

senescence and poor engraftment may all lead to a poor clini-

cal outcome [6]. Indeed, it has been reported that proliferative

capacity is significantly decreased as a function of donor age

[7], and in conjunction with this, in vitro expanded MSCs

have also been shown to lose their differentiation and prolif-

erative ability [8]. As an in vitro cell expansion step appears to

be of importance in tissue engineering strategies, these

limiting factors currently hinder the clinical use of adult

stem cells for bone augmentation.

Pluripotent stem cells (PSCs) have the potential to differ-

entiate into any adult cell type and can proliferate indefinitely

[9,10]. As a result, these stem cells can be used as an alterna-

tive source for target cell isolation. However, despite these

more favourable characteristics, controlled differentiation

and subsequent full maturation of the derived cell types

remains an important bottleneck [11]. Complete differen-

tiation of PSCs into terminal cell types relies on the precise

recapitulation of embryonic signalling pathways and devel-

opmental events [12]. In this review, we provide a

summary of embryonic bone formation pathways and an

overview of different PSC-based strategies for the derivation

of bone-forming progenitor cells.
2. Embryonic bone formation; a blueprint for
PSC differentiation

(a) Intramembranous bone formation
Most of the flat bones are formed through a process called

intramembranous ossification (direct bone formation).

Shortly after gastrulation, the ectoderm and mesoderm give

rise to migratory mesenchymal cell populations. Once these

cells are committed towards the osteogenic lineage, they sub-

sequently activate key osteogenic transcription factors such as

Runt-related transcription factor 2 (Runx2/Cbfa1) and

Osterix (Osx/Sp7) that regulate the expression of down-

stream proteins, including collagen type 1 (Col1) and

osteocalcin, and aid differentiation into active osteoblasts

[13–15]. These cells are responsible for the synthesis of

osteoid, the organic component of the bone matrix. Osteoid

predominantly consists of Col1 that upon its deposition

quickly mineralizes through association of calcium phosphate

(hydroxyapatite)-rich matrix vesicles [16]. Col1 is necessary

for the elastic properties of the bone matrix, while the associ-

ation of Col1 with hydroxyapatite allows bone to increase

compressive strength and durability.

The continuous matrix deposition and calcification separate

osteoblasts and these cells become either apoptotic, bone

lining cells or are entrapped in the bone matrix. Entrapped

osteoblasts mature into osteocytes and branch cytoplasmatic
extensions (processes) to neighbouring cells, allowing cell–

cell signalling. Osteocytes are mechanosensitive cells that

allow adaption of the bone mass to the biomechanical

needs through secretion of bone synthesis/resorption regulat-

ory signals (e.g. sclerostin and RANKL) [17]. Furthermore,

osteocytes regulate systemic levels of phosphorus, through

interactions with the kidney, and thus display endocrine

functions [18].

A subset of undifferentiated mesenchymal cells remain at

the bone periphery and form the periosteum, a fine mem-

brane that covers the bone tissue. This membrane is

enriched in skeletal progenitors and is crucial for appositional

bone growth and fracture repair. For additional information

on periosteal skeletal progenitors, we refer to our recently

published review [19].

(b) Endochondral ossification
The appendicular skeleton is formed through the process of

endochondral ossification, during which a transient cartilage

template precedes bone formation. During chondrogenesis,

committed mesenchymal cells condense into compact

nodules and differentiate into sex-determining region

Y-box9 (Sox9)-positive chondrocytes (cartilage cells) [20].

Chondrocytes secrete an extracellular matrix that is rich in

collagen type II (Col2) and proteoglycans such as aggrecan

(Acan). As development progresses, these cells proliferate

rapidly leading to the growth of the cartilage anlage (carti-

lage model). Proliferative chondrocytes organize into

columnar stacks and start to enlarge and mature into

Col22Col10þ hypertrophic chondrocytes. These cells secrete

matrix vesicles, which act as nucleation centres that allow

the cartilage template to calcify. As calcification continues,

diffusion of nutrients through the calcified matrix decreases,

leading to secretion of pro-angiogenic and osteogenic growth

factors into the extracellular matrix. The ingrowth of blood

vessels together with cartilage resorbing chondroclasts

(modified osteoclasts) and perichondrial/periosteal osteopro-

genitors ultimately leads to the replacement of cartilage by

bone tissue [21,22].

The remaining chondrocytic cell population within the

cartilage anlage organizes into the ‘growth plate’, a functional

cellular unit containing resting, proliferative, prehypertrophic

and hypertrophic chondrocytes [23]. The growth plate func-

tions as the main driver for regulating longitudinal bone

growth and length through continuous supply of hyper-

trophic chondrocytes until skeletal maturity. An overview

of osteogenic and chondrogenic differentiation is detailed

in figure 1.

(c) Transcriptional and molecular control of
skeletogenesis

Skeletogenesis is tightly regulated by cell- and site-specific

transcription factors and morphogens. Numerous signalling

pathways, including bone morphogenetic proteins (BMPs),

parathyroid hormone related protein (PTHrP), Indian hedge-

hog (Ihh), transforming growth factors (TGFs), vascular

endothelial growth factor (VEGF) and fibroblast growth fac-

tors (FGFs) interact with each other to regulate diverse

processes in skeletogenesis including mesenchymal conden-

sation, chondro- and osteogenic differentiation [23–25]. In

contrast to endochondral (indirect) bone formation, which
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Figure 1. Signalling pathways implicated in skeletal cell specification. Mesenchymal progenitor cells are specified to bipotent osteochondroprogenitor cells prior to
chondrogenic or osteogenic differentiation. BMP, TGF-b, Wnt and TH signalling pathways regulate specific processes during skeletal cell specification. This figure was
created using Servier Medical ART (SMART) Servier Medical ART (SMART) licensed under a Creative Commons Attribution 3.0 unported licence (https://creativecom-
mons.org/licenses/by/3.0/). (Online version in colour.)
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involves these aforementioned processes, intramembranous

ossification (direct bone formation) does not rely on chondro-

cyte signalling and is regulated by the cells of the osteoblast/

osteocyte lineage alone. The molecular mechanisms under-

lying endochondral and intramembranous ossification are

discussed below.

(d) Mesenchymal commitment towards chondrogenesis
Chondrogenesis is an essential process during embryonic

development and is of crucial importance for the formation

of ‘stable’ and ‘transient’ cartilage. Whereas stable cartilage

remains cartilage throughout life and constitutes the cartilagi-

nous skeleton (e.g. the nasal cartilage and the articular

cartilage of synovial joints), transient cartilage is used as the

template for the formation of embryonic bone and during

postnatal fracture repair. Chondrogenesis initiates when

limb pair-related homeobox-1 (PRX1)þ mesenchymal pro-

genitor cells become committed to the chondrogenic lineage

[20]. Members of the TGF/BMP family are responsible for

the expression of several cell adhesion molecules including

N-cadherin and N-cam, which are of crucial importance for

the initial mesenchymal condensation resulting in chondro-

genesis [26]. Following condensation, the mesenchymal

progenitors begin expressing the master chondrogenic tran-

scription factor Sox9. The role of Sox9 in chondrogenic

differentiation was originally identified in a human genetic

disease called campomelic dysplasia in which skeletal

elements are malformed [27]. Studies have shown that the

expression of Sox9 is activated upon TGF/BMP stimulation

[28,29]. Importantly, Sox9 is indispensable for cartilage for-

mation. Indeed, chimeric experiments in which Sox92/2

embryonic stem cells were injected in wild-type blastocysts

have shown that mutant cells were unable to participate in

precartilaginous condensations and subsequent differen-

tiation despite being intermingled with wild-type cells

within the cartilage differentiation sites [30]. Furthermore,

molecular studies have shown that Sox9 can directly activate

the expression of several cartilage extracellular matrix

proteins including Col2 [31]. The transition of PRX1þ Sox92

limb precursor cells towards Sox9þ phenotype marks

the onset of skeletal commitment of these cells into

chondroblasts/prechondrocytes.
(e) Transitioning towards chondroblasts and
chondrocytes

The transition of committed Sox9þ precursor cells into early

matrix synthesizing chondroblasts requires the expression of

Sox5 and Sox6. Lineage tracing studies using the Sox9 pro-

moter have demonstrated that Sox9þ cells contribute to

limb bone, tendon and synovium [20]. However, the co-

expression of Sox9, Sox5 and Sox6 (commonly referred to

as the Sox trio) was only detected in the developing cartilage

anlage cells [32–34]. Indeed, despite the lack of DNA transac-

tivating domains in Sox5 and Sox6, these three proteins were

found to be necessary for the enhanced expression of cartila-

ginous genes and thus subsequent synthesis of the

extracellular matrix proteins by skeletal precursor cells.

Genome-wide molecular analyses further strengthened this

hypothesis and revealed the close interaction of the Sox trio

proteins in chondrocyte specification. The Sox trio was

shown to interact predominantly with super-enhancers,

genomic sites with multiple enhancers that can be collectively

bound by (master) transcription factors to determine cell fate

and identity. This interaction regulates the expression of

cartilage-specific genes, such as extracellular matrix proteins

(e.g. Col2 and Acan), the Sox trio and proteins that regulate

their activity. The close interaction of Sox5, Sox6 and Sox9

results in the formation of a chondrocyte-specific enhanceo-

some that regulates the onset of cartilage synthesis [35,36].

These results demonstrate that the transition of Sox9þ skeletal

precursor cells into early chondroblasts requires the timely

activation of Sox5 and Sox6.
( f ) Maturation of chondrocytes into hypertrophic
chondrocytes

The longitudinal growth of developing bones is mediated by

the transition of randomly located proliferative chondroblasts

into organized columnar stacks within the growth plate. This

organization is, in part, regulated by a PTHrP/Ihh negative

feedback loop. During early skeletal development, the

expression of PTHrP is dependent on Ihh and is confined

to periarticular chondrocytes and perichondrial precursors.

PTHrP negatively regulates the transition of proliferative
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chondrocytes into growth-arrested hypertrophic chondro-

cytes. However, upon growth and elongation of the

cartilage anlage, PTHrP gradients gradually decrease along

the growth plate axis leading to progressive maturation of

proliferative chondrocytes towards hypertrophy. These cells

gradually become Sox9 negative and start to express Runx2

that stimulates the secretion of Ihh. The tight feedback loop

between Ihh and PTHrP is crucial for the formation of the

growth plate and subsequent bone elongation [23].

In addition to PTHrP/Ihh, many other signalling path-

ways have been implicated in the regulation of chondrocyte

hypertrophy and growth plate development. These include

members of the FGF, BMP, Wnt and thyroid hormone

(TH) families. The role of FGF in growth plate development

was previously identified through gain-of-function mutations

in the FGF receptor type 3 (FGFR3) gene. These muta-

tions cause many human skeletal dysplasias including

achondroplasia (dwarfism) that result from accelerated chon-

drocyte maturation [37]. Furthermore, genetic studies in

which the activities of BMPs [38–40], Wnts [41,42] or TH

[43,44] were reduced led to a decrease in chondrocyte hyper-

trophy. These results demonstrate that the chondrocyte

maturation programme is dependent on a pleiotropic set of

autocrine, paracrine and endocrine signalling molecules.

Runx2 is a key driver of the chondrocyte maturation pro-

gramme [45]. Despite the mutual inhibitory activities between

Sox9 and Runx2, the gradual loss in PTHrP-mediated phos-

phorylation of Sox9 across the growth plate layers is sufficient

to allow the transcriptional activity of Runx2 to occur. Molecu-

lar studies have demonstrated that Runx2 is able to directly bind

to the promoter regions of Col10A1, Ihh and VEGF [45–47]. All

of these are commonly used as markers for hypertrophic chon-

drocytes. However, despite the role of Runx2 in mediating

chondrocyte hypertrophy, some skeletal elements are still able

to undergo hypertrophy in Runx2 knockout mice [48,49]. This

prompted a search for additional transcription factors regulat-

ing chondrocyte maturation. Novel single-cell sequencing

experiments have demonstrated that the regulation of chondro-

cyte hypertrophy is a far more complex process than previously

thought. Indeed Li et al. have shown that FosB, Fos, Nr4a1,

ATF3, Sox11, KLF13 in addition to members of the FoxA and

distal homeobox proteins (Dlx) were able to directly activate

the expression of Col10A1 in chondrogenic precursor cells

[50–52]. The transition of proliferative chondroblasts into term-

inally differentiated hypertrophic chondrocytes is therefore

marked by a loss of Sox9 and Col2 expression and by a

subsequent increase in Runx2 and Col10.

(g) Transdifferentiation of chondrocytes into
osteoprogenitors

It was previously hypothesized that all chondrocytes under-

going hypertrophic differentiation also underwent apoptosis

to allow void spaces to be formed for subsequent vasculariza-

tion and bone formation. However, recent lineage tracing

studies have demonstrated that a portion of these cells trans-

differentiate into osterix (Osx/Sp7)þ osteoprogenitors [53,54].

These cells contribute to both endosteal and trabecular bone

formation within the primary spongiosa. Flow cytometry

assisted cell sorting (FACS) further confirmed the metabolic

activity and bone formation capacities of these cells, indicat-

ing that hypertrophic chondrocytes actively contribute to

bone formation. Indeed, up to 60% of the total mature
osteoblasts found in endochondral bones of one-month-old

mice appear to originate from ‘terminally’ differentiated

hypertrophic chondrocytes [53]. The molecular programme

of how hypertrophic chondrocytes transdifferentiate into

active osteoblasts is not yet fully understood and remains to

be elucidated.

(h) Formation of embryonic bone by osteoprogenitors
The last step of endochondral ossification requires the gradual

replacement of the cartilaginous matrix into bone tissue. Differ-

entiation of perichondrial–periosteal osteoprogenitors to

active osteoblasts requires BMP- and Wnt-mediated activation

of both Runx2 and Osx [55,56]. These transcription factors

allow the subsequent expression of osteogenic genes such as

Col1 and osteocalcin (OCN) [56,57]. Once primed, osteopro-

genitor cells migrate along with invading blood vessels into

the cartilaginous template for bone formation [58]. Gradual

cartilage tissue replacement with subsequent ingrowth of

blood vessels and osteoprogenitors marks the onset of func-

tional bone formation within the cartilage anlage. The

process of endochondral ossification is completed once the

cartilaginous matrix template has been replaced by bone.
3. Derivation of bone-forming progenitor cells
from PSCs

As detailed above, many cell types have the capacity to form

bone in both embryonic and postnatal settings. In the follow-

ing section, we present an overview of different PSC-based

strategies, based on elements of embryonic development and

postnatal bone formation, for the derivation of progenitor

cell types that are either capable of forming bone (osteochon-

droprogenitors and osteoblast-like cell types) or recruiting

bone-forming progenitors (hypertrophic chondrocytes).

(a) Derivation of osteochondroprogenitors from PSCs
The discovery of bone marrow-derived fibroblast colonies

with in vitro and in vivo bone-forming potential in the early

to mid-1970s (later defined as bone marrow mesenchymal

stem/stromal cells (MSCs)) promoted the development of

the bone tissue engineering strategy [59–62]. Since their dis-

covery in bone marrow, cells with MSC properties have been

identified in various adult tissues including the periosteum,

where they appear to exist as skeletal reparative cells [19].

Interestingly, the term ‘bone marrow-derived MSCs’ has

recently been challenged. It has now been proposed that

‘skeletal stem cell (SSC)’ is a more appropriate terminology

as the aforementioned population of MSCs in the bone

marrow contains stem cells for the skeletal tissues only.

While (in vitro) multipotency has been demonstrated in mul-

tiple ‘MSC’ cell populations (e.g. muscle, placenta and

adipose tissues), in vivo skeletal tissue formation capacity

can only be detected with bone marrow- and periosteum-

derived cell populations. Other ‘MSCs’ do not contribute to

embryonic and postnatal bone formation and furthermore

require the addition of exogenous growth factors, such as

BMPs, to induce in vivo bone formation [63,64]. With the

ambiguity over terminology in mind, and for ease of com-

parison within this review and with the existing literature,

we have used the term MSCs to describe SSCs and cells

referred to within the literature as MSCs/stromal cells.
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Despite the ability to isolate MSCs from postnatal human

tissues, long-term in vitro culture is generally associated with

a progressive decline in stem cell characteristics [65–67].

MSCs are defined by their rapid adherence to plastic, fibro-

blast-like morphology and the expression of specific cell

surface markers such as CD73, CD90 and CD105. MSCs are

multipotent stem cells and can differentiate into adipocytes,

osteoblasts and chondrocytes [68]. While many biological

activities including immunomodulatory properties have

been associated with MSCs, the isolation and expansion of

these cells is an intensive, invasive and expensive procedure.

Combined with the phenotypic and genetic changes in MSCs

following ageing and long-term in vitro culture, this makes

the possibility of producing MSCs from PSCs an attractive

approach that could potentially represent an unlimited

MSC source.

Initial efforts for deriving MSCs from human PSCs

(hPSCs) used embryoid bodies (EBs) to trigger differentiation

and primitive streak (PS) formation [69–71]. By culturing the

outgrowing cells in MSC maintenance media (basal media

supplemented with fetal bovine serum), these cells quickly

adopted a fibroblastic morphology. Subsequent flow

cytometry and in vitro differentiation analysis revealed the

expression of specific cell surface markers (CD29, CD44,

CD49e, CD73, CD90, CD105 and CD166) and bone-forming

potential of these cells. Surprisingly, the chondrogenic differ-

entiation capacity of these MSC-like cells was limited [72].

Despite the relative ease of using EBs for cell isolation,

these methodologies often result in downstream contami-

nation with other cell types due to heterogeneous

differentiation. Coupled with the PSC supportive character-

istics of MSCs and teratoma-forming potential of residual

PSCs, an extensive MSC purification step would be necessary

if this approach were considered for use in clinical therapy

[73]. Nevertheless, MSCs isolated through EBs contributed

to de novo bone formation in a murine calvaria defect

model [74].

In an attempt to robustly control PSC differentiation, co-

culture with feeder cell lines has been proposed for germ

layer specification [75–77]. The murine bone marrow stromal

cell line OP9 has traditionally been used for the derivation of

haematopoietic, vascular and cardiac cells. Co-culture of OP9

cells with hPSCs led to the rapid induction of PS and lateral

mesoderm markers such as brachyury, MIXL1, EOMES,

FoxF1 and Hand1. When the differentiated cells were sub-

sequently dispersed and grown into semisolid media, the

cells gave rise to compact mesenchymal (MS) colonies or

blast (BS) colonies. Phenotypic analysis of the MS colonies

revealed uniform expression of cell surface markers such as

CD140a, CD90, CD56, CD166 and CD146, which are all com-

monly associated with MSCs. However, the expression of

CD73 and CD105 was either not detected or expressed at

low levels. When the resulting MS colonies were grown in

MSC maintenance media, rapid expansion and outgrowth

of fibroblast-like cells was detected. The resulting cell lines

appeared to be multipotent and acquired the expression of

CD73 and CD105, reminiscent of the typical adult bone

marrow MSC phenotype. Interestingly, when MS colonies

were isolated and maintained on a Matrigel substrate, these

cells differentiated into endothelial cells and formed exten-

sive tubular structures. The authors concluded that MS

colonies contained progenitors for both endothelial and

mesenchymal progenitor cells and labelled these as
‘mesenchymoangioblasts’. Of note, the BS colonies contained

progenitors for haematopoietic cells [77]. The co-induction of

both BS and MS colonies in PSCs further established the inti-

mate relationship between haematopoietic and mesenchymal

progenitor cells. Indeed, MSCs are also known to contribute

to the supportive stromal cells for haematopoietic precursors,

as observed within the bone marrow [78,79].

Increased understanding in the origin of MSCs and

embryonic specification pathways has led to further refine-

ment of differentiation protocols. During embryonic

development, the paraxial mesoderm is known to give rise

to the somites, a transient embryonic tissue that develops

into the axial and limb muscles, axial skeleton, endothelial

cells and fat tissue. Shortly after the formation of the three

germ layers (gastrulation), the early mesoderm is subdivided

into different regions. Depending on the location, the down-

stream differentiation potential of the cells contained within

each region is restricted. The paraxial mesoderm, which lies

next to the developing neural tube, gives rise to the somites.

Wnt, FGF and Notch signalling are known to regulate

somitogenesis [80,81]. Once thresholds have been reached,

the paraxial mesoderm specifies into somites that rapidly

differentiate into the dermomyotome and sclerotome. The

dermomyotome gives rise to muscles and axial dermis,

while the sclerotome differentiates into the axial skeleton.

Considering these developmental events, it is not surprising

that PSC differentiation strategies have been shifting towards

a paraxial mesoderm induction approach. Upon culture of

murine (mPSCs) and hPSCs in GSK3-b (Wnt-signalling)

and BMP-modulator containing media, PSCs rapidly upregu-

late the paraxial-somitic mesoderm markers TBX6, Meox1

and Myf5. Subsequently, when these cells were stimulated

with osteogenic supplements an increase in osteogenic gene

expression and extracellular matrix mineralization was

detected. Interestingly, the obtained sclerotomic cells could

also differentiate into chondrocytes. Although no detailed

characterization of these cells has been carried out, we can

assume that these progenitors could be reminiscent of

MSC-like cell populations [82]. This hypothesis is further

strengthened by the discovery of paraxial mesoderm-derived

MSCs (Mesp1þ-lineage tracing) in the bone marrow [83].

Despite the paraxial mesoderm induction protocols, gen-

eral mesoderm-based MSC derivation approaches have also

been used. Culture of hPSCs in endothelial media induced

the formation of a mesodermal epithelium (BMP4þ, Runx1þ,

GATA4þ) that upon passaging, underwent epithelial–

mesenchymal transition (EMT). The resulting fibroblastic

cells appeared to be multipotent and expressed typical

markers that are associated with MSCs [84].

When considering osteochondroprogenitors in other skel-

etal sites, a subset of bone marrow-derived MSCs (Sox1/P0-

lineage tracing) originate from a migratory cell population

derived from the ectoderm called the neural crest (NC)

during craniofacial skeleton development [85,86]. The NC

develops at the intersection of both neural and non-neural

ectoderm and contains a migratory multipotent progenitor

cell population that gives rise to most of the cranial bones,

smooth muscles and pigmented cells within the craniofacial

region, in addition to neurons and glial cells of the peripheral

nervous system. By culturing hPSCs in media containing

inhibitors for activin and GSK3-b, rapid differentiation into

neural crest cells (NCCs) (p75þ, TFAP2Aþ, Sox10þ, Twistþ)

has been reported. Subsequent maintenance of these cells in
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MSC media led to the acquisition of a MSC phenotype with

osteogenic differentiation capacities [87].

It is currently unclear whether PSCs can be differentiated

directly into committed osteochondroprogenitor cells without

going through an MSC-like state. Indeed, current MSC cul-

tures are heterogeneous cell populations and contain

committed progenitor cells that preferentially differentiate

into skeletal tissues [88,89]. The differentiation of PSCs into

committed osteochondroprogenitor cells might ultimately

alleviate the need for an MSC step.

In summary, multiple approaches have been taken to iso-

late MSC-like cell populations from PSCs. While initial

attempts focused on spontaneous differentiation, later proto-

cols were more specific leading to increased cell derivation

efficiencies. Nevertheless, these approaches clearly show the

potential of PSCs for MSC isolation.

(b) Derivation of osteoblast-like cells from PSCs
The derivation of osteoblasts from PSCs has been investigated

by culturing these stem cells with osteogenic supplements.

Ascorbic acid, b-glycerolphosphate and dexamethasone are

common osteogenic supplements that are used for growing

and differentiating osteoprogenitors and MSCs. When

mPSCs and hPSCs are differentiated in EBs and subsequently

grown in osteogenic media, a rapid induction of osteogenic

genes, such as Runx2, OCN, alkaline phosphatase and osteo-

pontin, could be detected [90–92]. In vitro bone nodule

formation with matrix mineralization was observed after

21–28 days. Interestingly, when the hPSC-derived cell

populations were seeded onto scaffolds and subsequently

implanted in immunocompromised mice, mineralized tissue

formation could be observed after 35 days [93]. However,

despite the induction of osteogenic genes, recent reports have

indicated that in vivo bone formation associated with this

methodology appears to be limited. Moreover, teratoma-like

tissues have been detected despite the loss of pluripotency

genes and long-term in vitro culture [94]. Nevertheless,

these studies indicate that currently used osteogenic sup-

plements could potentially be used for the induction of

osteoblastic cell populations from PSCs.

Co-culture of hPSCs with primary bone-derived cell types

has also been used for the induction of osteogenic differen-

tiation [95]. This approach appears to be more efficient and

rapid compared with the above-described strategy. These

observations can be partly attributed to the expression of

BMPs by the primary cells. Indeed, Ahn et al. reported that pri-

mary osteoblasts were secreting BMP2 and BMP4 which are

known to induce the expression of Runx2 in MSCs [56,95,96].

All these approaches use media containing serum to

induce osteogenic differentiation. Recently, Kanke et al.
described a stepwise differentiation protocol that allows the

induction of osteoblasts from both mPSCs and hPSCs.

Through the use of small molecules, Kanke could steer the

differentiation of PSCs to mesodermal progenitors that

upon activation of hedgehog and BMP signalling underwent

osteogenic differentiation. However, no in vivo tissue

formation analysis was performed [97].

In conclusion, these reports are supportive for the

osteogenic capacity of PSCs. Nevertheless, further refinement

of induction protocols will be necessary to increase the

differentiation efficiency and subsequent in vivo tissue

formation capacity.
(c) Derivation of transient chondrocytes from PSCs
Scaffolds containing MSCs or osteoblasts have a limited

capacity to induce intramembranous bone formation. This

can be partly explained by the quick and fibrotic encapsula-

tion of these scaffolds following implantation, leading to

inhibition of host vasculature ingrowth and subsequent

donor cell necrosis [98,99]. While different strategies have

been investigated to increase cell survival [100–102], recent

efforts have been shifting towards the induction of a provi-

sional cartilage template that upon implantation would be

replaced by bone tissue. This approach, which largely

mimics postnatal fracture repair and embryonic endochon-

dral bone formation, has recently been put forward by our

laboratory as a novel tissue engineering strategy known as

‘developmental engineering’ [103–105].

The induction of a provisional cartilage template for bone

augmentation has numerous advantages when compared

with traditional strategies: (1) while bone tissue is highly vas-

cularised, cartilage is avascular and chondrocytes can survive

in hypoxic conditions. Furthermore, these cells are able to

secrete (2) osteogenic and (3) angiogenic growth factors to

recruit progenitor cells from the local environment for bone

formation. While a number of studies have delivered proof

of principle for this approach using adult progenitor

cells [106–108], PSCs can also be differentiated towards

chondrocyte hypertrophy.

Indeed, Jukes et al. developed an endochondral bone

induction protocol using mPSCs. By culturing these stem

cells in serum-free media containing TGF-b, chondrogenic

differentiation could be detected through the expression of

Col2. Interestingly, when these cartilaginous aggregates

were implanted in immunocompromised mice, endochondral

bone formation with cartilage remodelling was observed

after three weeks. However, in addition to the induction of

bone formation, teratoma formation was also reported. More-

over, when the authors attempted to translate this protocol to

human settings, no chondrogenic or endochondral bone for-

mation could be detected. Nevertheless, this study is

among the first to demonstrate that PSCs could be used for

the induction of in vivo endochondral bone formation [109].

A series of studies have used mPSCs and hPSCs for the

induction of chondrocytic cell populations for articular carti-

lage repair, which are likely to inform on endochondral

differentiation strategies due to similar pathways governing

the initial stages of specification. Through the use of Wnt ago-

nists (GSK3-b inhibitors) and BMP inhibitors (noggin,

dorsomorphin), researchers have successfully guided the

differentiation of PSCs towards paraxial mesodermal pro-

genitors that upon culture in chondrogenic media

differentiated into Sox9þCol2þ chondrocytes [110–113]. Sur-

prisingly, endochondral bone formation was observed

following implantation, while limited hypertrophic differen-

tiation was detected. Despite the differential in vivo
behaviour of stable and transient chondrocytes, the genetic

networks governing both cell states are still a matter of

debate. Craft et al. recently developed a protocol in which

the differentiation of hPSCs could be specifically steered to

either stable or transient chondrocytes. By culturing paraxial

mesoderm progenitors in media containing TGF-b, stable

chondrocytes expressing Sox9 and Col2 could be obtained.

Furthermore, activation of BMP signalling through exposure

to exogenous BMP4 induced the formation of transient
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chondrocytes expressing Runx2 and Col10A1, which initiated

the endochondral ossification process in vivo [113].

Similarly, transient chondrocytes have also been derived

from ectomesenchymal progenitor cells. By culturing hPSCs

in media containing TGF-b inhibitors, Umeda et al. could

differentiate these cells into Sox9þ-chondroprogenitor cells.

Upon chondrogenic differentiation, in vitro cartilage formation

and in vivo endochondral bone remodelling was observed.

Interestingly, human-specific mitochondria labelling has

shown that the implanted chondrocytes could transdifferenti-

ate into Col1þ-osteoblasts and contributed to de novo bone

formation [72]. An overview of paraxial mesoderm and NC

differentiation of PSCs can be found in figure 2.

Transient chondrocytes have also been created through

direct cell reprogramming, using Sox9, cMYC and KLF4.

Indeed, we have recently reported that upon hypertrophic

maturation of induced chondrogenic cell populations,

in vivo endochondral bone formation was observed. In con-

trast to the reports above, the derived bone cells appeared

to be host-derived, while no donor cell contribution was

detected. This could potentially be attributed to the pro-

longed expression of Sox9. Indeed, induced chondrocytes

with constitutive expression of Sox9 failed to form bone,

while cells carrying doxycycline inducible expression vectors

could trigger endochondral bone formation [114].

The aforementioned approaches indicate that PSCs can

be used for the derivation of transient chondrocyte-like

cell populations that upon implantation will give rise to

endochondral bone formation.
4. Conclusion and future perspectives
Stem cell therapy offers great potential for bone tissue engin-

eering. From the reports above, it is clear that PSCs can be

used for the derivation of bone-forming progenitors. However,

it also sets the stage for future research and clinical translation.

We believe that while substantial achievements have been
made, a continued intense effort will be necessary to translate

ongoing research to the clinical setting. Indeed, several key

aspects require addressing. Importantly, the purity of PSC-

derived cell populations must be systematically assessed to

avoid residual stem cell contamination which can lead to tera-

toma formation. While some cell surface markers have been

identified and used for routine cell purification, we believe

that additional PSC elimination strategies will be necessary.

Recently, selective PSC toxicity agents, such as PluriSin and

D-3, have been used for removing PSCs from differentiating

cultures. The use of these strategies may result in an increase

in PSC-associated cell therapies [115,116].

Additionally, while a number of osteochondrogenic cell

types have been successfully derived from PSCs, it remains

to be investigated which of these cell populations are most

relevant to specific stages of in vivo bone formation. Indeed,

currently used in vitro chondrogenic and osteogenic differen-

tiation markers appear insufficient to evaluate the in vivo
bone tissue formation and cell behaviour. We believe that

more in-depth molecular screening techniques, such as tran-

scriptome and secretome analysis, will offer increased

sensitivity compared with currently used assays. Ideally,

one may develop ‘bone tissue formation scorecards’ that

can be used for predicting in vivo behaviour. Similar score-

cards have already been developed in which the

differentiation capacity of PSCs can be assessed [117]. This

approach will ultimately increase the robustness of bone

tissue engineering strategies.

Finally, current differentiation and cell isolation studies

generally aim at the induction of paraxial mesoderm from

which the vertebral column develops. Despite the relative

homogeneity and in vivo skeletogenic differentiation capacity

of these cells, it remains to be elucidated to what extent these

cells could contribute to appendicular skeletal repair. Ideally,

differentiation strategies that aim at deriving skeletal progeni-

tors from the embryonic limb may replicate long-bone

differentiation programmes and tissue formation more accu-

rately. By using specific cell reporters such as PRX1 and
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TBX5 [118], we hope that novel skeletal progenitors can be

identified for disease modelling and cellular therapies. Ulti-

mately, it is the authors’ belief that PSCs offer great

potential in skeletal tissue engineering and we look forward

to further exciting research and developments in this field.
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