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In recent years, protocols have been established to differentiate stem and pre-

cursor cells into more mature cell types. However, progress in this field has

been hampered by difficulties to assess the differentiation status of stem cell-

derived cells in an unbiased manner. Here, we present an analysis pipeline

based on published data and methods to quantify the degree of differen-

tiation and to identify transcriptional control factors explaining differences

from the intended target cells or tissues. The pipeline requires RNA-Seq or

gene array data of the stem cell starting population, derived ‘mature’ cells

and primary target cells or tissue. It consists of a principal component analy-

sis to represent global expression changes and to identify possible problems

of the dataset that require special attention, such as: batch effects; clustering

techniques to identify gene groups with similar features; over-representation

analysis to characterize biological motifs and transcriptional control factors

of the identified gene clusters; and metagenes as well as gene regulatory

networks for quantitative cell-type assessment and identification of influen-

tial transcription factors. Possibilities and limitations of the analysis pipeline

are illustrated using the example of human embryonic stem cell and human

induced pluripotent cells to generate ‘hepatocyte-like cells’. The pipeline

quantifies the degree of incomplete differentiation as well as remaining

stemness and identifies unwanted features, such as colon- and fibroblast-

associated gene clusters that are absent in real hepatocytes but typically

induced by currently available differentiation protocols. Finally, transcrip-

tion factors responsible for incomplete and unwanted differentiation are

identified. The proposed method is widely applicable and allows an

unbiased and quantitative assessment of stem cell-derived cells.

This article is part of the theme issue ‘Designer human tissue: coming to

a lab near you’.
1. Introduction: the need to quantify stem cell differentiation
In the past two decades, much progress has been made in establishing protocols

for differentiation of stem cells into specific, mature cell types such as cardio-

myocytes [1,2], neurons [3,4] and hepatocytes [5,6]. However, further

development in stem cell research has been hampered by an overoptimistic

interpretation of the differentiation status of stem and precursor-cell-derived

types. Often, studies relied on a few selected markers as indicators of mature

cell or tissue identity. By way of example, ‘multipotent adult progenitor cells’
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methods purpose and specification

generation of
genome-wide data

— at least three independent analyses required
— usually RNA-Seq or gene array analysis

principal component
analysis (PCA)

— first representation of global expression changes
— do biological replicates cluster together?
— batch effects?
— generation of first hypotheses

clustering techniques
e.g. unsupervised,

fuzzy c-means
— identification of gene groups with self-similar features

over-representation analyses
e.g. GO groups, KEGG pathways,

over-represented transcription
factor binding sites

— characterization of the gene clusters with high self-similarity (biological motives,
and possible transcriptional regulators)

metagenes — quantitative assessment of biological processes (e.g. inflammation, proliferation)
in individual samples

gene regulatory
networks (GRNs)

— quantitative cell type assessment (tissue identity scores) of individual samples
— identification of the most influential transcription factors (network influence scores)

Figure 1. Analysis pipeline to characterize the differentiation status of stem cell-derived cells by genome-wide data. Technical descriptions of how to apply the
individual analyses are provided in the electronic supplementary material, S1.
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from bone marrow were reported to differentiate into hepato-

cyte-like cells (HLCs) with ‘functional characteristics’ of

hepatocytes [7]. With more than 800 citations, this article

strongly influenced the field of stem cell research and created

the impression that the task of generating human hepatocytes

from in vitro-expanded non-endodermal progenitor cells can

be considered as almost accomplished. Also many further

studies using different types of stem and progenitor cells

offered similar optimistic views (e.g. [8–12]). However, the

far-reaching conclusions of the aforementioned studies were

based on a set of selected hepatocyte markers and not con-

firmed by unbiased genome-wide studies. Although articles

on stem cell-derived ‘HLCs’ have been published already,

some more than 10 years ago [13–20], primary hepatocytes

isolated from liver tissue still remain the gold standard.

Some early reports warned of too-optimistic interpretations

in stem cell-derived hepatocytes [17,21]. However, it was only

upon the application of omics technologies and bioinformatics

that the degree of differentiation of these ‘HLCs’ could be objec-

tified [22,23]. These studies compared ‘HLCs’ derived from

human induced pluripotent cells (hiPSCs) and human embryo-

nic stem cells (hESCs) from multiple centres using different

differentiation protocols with freshly isolated and cultivated

primary human hepatocytes (PHHs) [22,23]. The ground-break-

ing result of these studies was that the difference between stem

cell-derived ‘HLCs’ and real hepatocytes was so large that the

term ‘hepatocyte-like’ rather represents a euphemism. On the

one hand, hundreds of genes responsible for differentiated func-

tions of hepatocytes are expressed several orders of magnitude

lower compared with primary hepatocytes isolated from

human liver or compared with liver tissue. On the other

hand, stem cell-derived ‘HLCs’ contain ‘unwanted’ features,

such as expression of colon or fibroblast genes that are not

observed in primary hepatocytes [22,23]. Importantly, this fea-

ture of unwanted differentiation seems to be a widespread

phenomenon, because it was observed for ‘HLCs’ obtained

from different centres using different protocols [22,23].
Taken together, it has become clear that in vitro differen-

tiation of stem cells does not represent the clear transition

of one defined cell state to another. Rather a continuum seems

to exist, in which incomplete differentiation towards a target

cell type, further named primary differentiation, coincides

with the development of unwanted features, termed secondary

differentiation. The advantage of genome-wide characteriz-

ation of stem cell-derived cells is that not only does it give an

unbiased and quantitative measure of primary and secondary

differentiation, but it also identifies candidate transcription

factors potentially responsible for incomplete or unwanted

differentiation. This results in a set of transcriptional regula-

tors with too low and too high activities that may serve as a

blueprint for fine-tuning of differentiation protocols. Genome-

wide characterization requires RNA-Seq or gene array analysis

of RNA isolated from the stem cell-derived cells, which have to

be compared with RNA from primary cells or tissue. In the case

of human liver, hepatocytes are commercially available from

several sources.

In the present article, we describe a bioinformatics

pipeline based on publicly available software that allows a

quantitative, unbiased assessment of the differentiation

status (figure 1). As these methods are cost-efficient and

the biostatistics require only few hours for an experienced

operator, it is strongly recommended that unbiased

genome-wide techniques are used instead of or in addition

to selected individual hepatocyte markers to come to an

objective assessment. Although the pipeline is described for

the example of HLCs, the method is applicable for all cell

types of stem or precursor cell-derived cells and tissues.
2. Analysis pipeline for genome-wide expression
data of stem cell-derived cell types

After standard processes, such as normalization, the analysis

starts with principal component analysis (PCA), identification
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of gene groups with similar features by clustering techniques,

characterization of gene clusters by over-representation

analysis, calculation of metagenes and further characteriz-

ation by gene regulatory networks (GRNs) (figure 1). Below

we describe this standardizable workflow, beginning with

definition and principles, illustration by examples and the

discussion of limitations. The examples were selected from

recently published data [23,24]. An important precondition

for application of the pipeline is the availability of high-qual-

ity genome-wide transcriptional data based on at least three

biological replicates. Our chosen examples are based on

three to five biological replicates, which significantly reduces

the risk of outlier overestimation.
 rans.R.Soc.B
373:20170221
3. Principal component analysis
(a) Definition and principles
PCA allows a first visualization of global gene expression

changes induced by a differentiation protocol; it also gives

a first impression of the similarity of stem cell-derived

cells and the intended cell type. PCA is a statistical pro-

cedure that converts a genome-wide set of several

correlated groups of genes into a set of uncorrelated vari-

ables named principal components (PCs). The number of

PCs is smaller than or theoretically equal to the number

of genes, but is, in practice, much smaller because many

genes cluster in co-behaving groups. In gene expression

analyses, it is usually sufficient to consider up to five PCs.

The variance explained by individual PCs may vary from

dataset to dataset depending on the influence of confound-

ing variables. The first PC (PC1) accounts for the highest

degree of variability, the second PC (PC2) the second

highest and so on. Individual PCs can be compared in

two-dimensional plots to graphically display their specific

influence on data point separation. While the first PCs

often provide the major part of variance, it is advisable to

consider also combinations of minor PCs, e.g. PC1 versus

PC3, PC2 versus PC3 and PC1 versus PC4, to discover over-

lays and separations of data points not visible in the major

PCs alone.

(b) Example of application
To illustrate the application of PCA, we have chosen an

example of transcriptomes of hESCs generated by three

different research centres that applied distinct differentiation

methods to produce definitive endoderm and ‘HLCs’

(figure 2a; from Godoy et al. [23]). The colours yellow,

green and blue represent data from three research centres

focusing on differentiation of stem cells to HLCs; the circles

with identical colour represent three independent exper-

iments. All three centres used hESCs as a starting

population. The centre represented by greenish colours

additionally included hiPSCs, while the centre represented

by yellowish colours additionally compared a 17- and

21-day differentiation period to obtain HLCs. The PCA illus-

trates the following key features: (i) stem cells before

initiating the differentiation process cluster closely together

in the upper right corner (figure 2a); there seems to be no

major difference between the three involved centres. Also,

no major difference seems to exist between hESCs and

hiPSCs. After the differentiation process, the generated
HLCs shift to the lower middle of the PCA plot. The samples

from each centre cluster closely together and the inter-centre

influence can be seen, illustrating that the individual proto-

cols and different conditions in the three laboratories have

some impact but do not represent the dominant factor of

influence. From the PCA presentation, one also learns that

there are no major differences between HLCs generated

from hESCs or hiPSCs. The 21-day differentiation period

leads to clustering at lower values along the PC1 axis com-

pared with the 17-day protocol. Therefore, the results after

21 days are closer to PHHs, but the difference is relatively

small. The major goal of genome-wide expression studies is

to assess the degree of similarity between HLCs and PHHs.

In the PCA plot, PHHs are represented by the purple circles

that cluster to the extreme left of PC1 (figure 2a). This illus-

trates that the stem cells shift along the PC1 in the direction

of PHHs, but do not reach their position. Moreover, they

shift inversely along PC2, but exceed the position of PHHs.

Together, this demonstrates that there are large differences

between HLCs and PHHs, despite some promising changes

represented by the shift into the inverse orientation of PC1.

It is also possible to include further cell types and tissues

into the PCA plot, such as human colon, heart, skeletal

muscle, neuronal cells, lung, as well as adult and embryonal

liver tissue, which can be obtained from public sources

(figure 2b). In this plot, human liver tissue from several

donors clusters closest to the aforementioned freshly isolated

PHHs, which is plausible (figure 2b). It is also understand-

able that human embryonic liver tissue clusters between the

isolated hepatocytes and the stem cell-derived HLCs. How-

ever, with respect to quantitative comparisons of the

positions of HLCs and the other cell types (lung and

kidney), misinterpretations should be avoided as discussed

in §3c. A further information obtained from the PCA plot

refers to the cultivated PHHs. While the freshly isolated

PHHs cluster to the extreme left (purple circles), they

time-dependently shift to the bottom right during a 14-day

incubation period, independently of whether the hepato-

cytes are cultivated in monolayer or three-dimensional

culture. Interestingly, this cultivation-associated shift

brings the PHHs closer to the HLCs. This leads to the

hypothesis that owing to the loss of the in vivo environment,

PHHs lose the same features that HLCs have not yet or only

partially adopted during their incomplete differentiation.

The example illustrates that already the explorative PCA

may generate hypotheses. Of course, these hypotheses

have to be further analysed by more specific methods (as

described below) and need to be confirmed by independent

experiments.
(c) Limitations and challenges
PCA plots are often helpful to understand the architecture of

larger expression changes. However, PCA can only dissect

uncorrelated (orthogonal) differences in gene expression.

Other dimension-reduction techniques like independent com-

ponent analysis [25] or t-distributed stochastic neighbour

embedding (t-SNE, see below) [26] can be used to visualize

high-dimensional datasets. Graphical user interface appli-

cations are available, for example in the ‘Scater’ package

(https://doi.org/10.1093/bioinformatics/btw777), that allow

the application of t-SNE without advanced programming

skills. Additionally, expression changes of a smaller number

https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
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Figure 2. Representation of global gene expression changes by PCA. (a) Visualization of stem cells (ESCs and hiPSCs), HLCs and primary human hepatocytes. The
HLCs were generated by three different research centres using different protocols, represented by yellowish (centre 1; MRC), greenish (centre 2; CEL) and bluish
(centre 3; UKK) colours. Primary human hepatocytes were analysed directly after isolation (FH) or after different periods (1 – 14 days) in monolayer or sandwich
culture. ESC, embryonic stem cells; hiPSC, human induced pluripotent cells; HLC-D17 and HLC-D21, hepatocyte-like cells obtained by a 17-day and 21-day differ-
entiation protocol; HLC-ESC/HLC-hiPSC, hepatocyte-like cells generated from human embryonic stem cells or human induced pluripotent cells, respectively; HLC-total,
analysis of the total cell population harvested from the culture dish; HLC-foci, analysis of islets of HLCs manually harvested with the help of a binocular ( from Godoy
et al. [23]). (b) Similar PCA plot to that shown in (a) with additional cell and tissue types included. All additional expression data were obtained from the CellNet
training dataset: adult liver (GEO accession: GSE41804, GSE40873, GSE38941, GSE3526, GSE26627, GSE15239, GSE14668), embryonic liver (GSE15238), colon
(GSE37364, GSE8671, GSE9452), lung (GSE14334, GSE21411, GSE31210, GSE33356, GSE37768), kidney (GSE11166, GSE21374, GSE22459), neuron (GSE13564,
GSE18696, GSE20589, GSE21935, GSE40438, GSE4757, GSE5281), heart (GSE21610, GSE29819, GSE3526) and skeletal muscle (GSE21496, GSE2328, GSE25462,
GSE35661). It should be considered that the inclusion of additional tissues into the PCA plot shifts the relative positions of the original samples (ESCs, HLCs
and PHHs) to each other.
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of genes that are only moderately up- or downregulated

would usually not lead to clear shifts in the PCA plot,

owing to the variability of the levels of genes whose
expression is not altered during differentiation. Therefore, a

lack of major shifts in the PCA plot must not be interpreted

as the absence of real effects.
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A challenge is the choice of the number of genes to be

used for generation of the PCA plot. Usually, selection of

genes is performed based on the variability of genes in the

set of analysed samples. It is advisable to check PCA plots

with the 50, 100, 500, 1000 and 5000 genes with highest varia-

bility in the set of analysed samples to learn if the observed

patterns in a PCA plot are stable. If only few genes are altered

during differentiation, it may be useful to include only small

numbers, e.g. the 50 genes with highest variability. Large

global expression changes as typically observed during

stem cell differentiation are usually captured more reliably

by including the 1000 or even 5000 genes with highest

variability.

A challenge that sometimes becomes obvious at the level

of explorative PCA is batch effects. In this case, specific exper-

imental steps are responsible for the separate clustering of

some samples. Typically, RNA isolation on different exper-

imental days or hybridization on different chips is among

the culprits. Usually, batch effects cause minor changes per

gene but affect large numbers of genes, which may result in

strong shifts in the PCA plot. Therefore, it may be helpful

to reduce the genes used for the PCA to small numbers focus-

ing on the genes with highest variability. Moreover, batch

effects can be corrected or ameliorated by specific software.

Therefore, it is usually possible to draw conclusions also

from datasets with batch effects. Nevertheless, reproduction

of the main effects in independent experiments is important.

The PCA plot shown in figure 2b illustrates one further

limitation that should be kept in mind when using this tech-

nique. It is correct to conclude from this plot that the

differentiation protocols caused a systematic shift of the

HLCs away from the stem cells. The interpretation that

there is still a large difference between HLCs and real hepato-

cytes (PHHs) is also correct (figure 2b). However,

quantitative conclusions can be misleading, e.g. that HLCs

are closer to lung or kidney than primary hepatocytes or

heart. The PCA technique is definitively not adequate for

quantitative analysis of cell-type identity, because it does

not weight genes of central importance for a specific cell or

tissue type. This challenge can be met by GRN analysis, an

approach that weights genes central to a given network

more heavily, as discussed in further sections of this

review. However, this is not the case for PCA.

The analysis of biological motifs is not routinely included

in PCA. However, studies in the field of cancer research have

visualized patient cohorts, in a way that each individual

patient is represented by a symbol in the PCA cloud [27–

29]. Interestingly, genes associated with prognosis, such as

proliferation-associated genes or genes indicating immune

cell infiltration, showed gradients in the PCA cloud that

could be visualized by colour codes. In the case of stem cell

research, it can be expected that proliferation-associated

genes should decrease during differentiation, while

expression of further genes, e.g. drug-metabolizing enzymes

in the case of HLCs, should increase. Visualizing genes

associated with proliferation or differentiated cell functions

should be easily feasible, because the individual genes defin-

ing the PCs are known. Although this can be done by

programming, a user-friendly software that integrates bio-

logical motifs into PCA plots would facilitate explorative

data analysis and hypothesis generation.

The aforementioned pipeline with PCA is very well suited

for bulk gene expression analysis. However, as discussed
below, recent developments in single-cell RNA sequencing

technologies generate data with even higher dimensionality

and intrinsic noise [30]. Hence, additional algorithms for

dimensionality reduction have been implemented for

improved data visualization. One of the most widely used

is t-distributed stochastic neighbour embedding [26]. This

method embeds high-dimensional data points into a space

of two or three dimensions. t-SNE tries to preserve local

structure of the data points, i.e. low-dimensional neighbour-

hood should be the same as original neighbourhood. Each

data point is assigned to a map point, where the mapping

is designed such that similar data points are modelled by

nearby map points and dissimilar data points are modelled

by distant map points. The resulting map can then be visual-

ized in a scatter plot. The t-SNE algorithm involves two main

stages. In the first step, a probability distribution over pairs of

the data points is constructed using a Gaussian distribution

such that similar points have a high probability of being

picked by each other, while dissimilar data points have an

extremely low probability of being picked. In the second

step, t-SNE defines a similar probability distribution using

Student’s t-distribution over the map points. The algorithm

then fits the locations of the points in the map to minimize

the Kullback–Leibler (KL) divergence between the two distri-

butions. Unlike PCA, t-SNE can only be used for data

visualization; it is not possible to directly project a new

point onto an already computed map. t-SNE has a non-

convex objective function. The objective function is

minimized using a gradient descent optimization that is

initiated randomly. As a result, it is possible that different
runs lead to different solutions.
4. Hierarchical clustering and heat map
representation

(a) Definition and principles
Like PCA, unsupervised clustering and heat map presen-

tation belong to the first steps of explorative data analysis.

Genes and samples with similar expression profiles are auto-

matically grouped together and the expression level of each

individual gene is visualized by a colour code.
(b) Example of application
The example of hierarchical clustering and heat map rep-

resentation in figure 3 includes the same samples already

analysed by PCA in the previous paragraph. The 200 genes

with highest variance over all samples (hESCs/hiPSCs,

HLCs and PHHs) were included. Of course, smaller or

larger gene numbers can also be used. In the discussed

example, hierarchical clustering correctly groups all samples

of PHHs, HLCs and ESCs/hiPSCs together (figure 3). So

far, hierarchical clustering offers no additional information

to PCA. However, a practical aspect of this representation is

that ‘favourable’ and ‘unfavourable’ gene clusters can be dif-

ferentiated: genes of the topmost cluster in figure 3 show high

expression in PHHs and low expression in the stem cells

(ESCs/hiPSCs). Unfortunately, expression in HLCs remains

similarly low in HLCs and in ESCs. Therefore, genes of

this cluster represent an unfortunate situation. The second

uppermost gene cluster also shows high expression in
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primary hepatocytes and low expression in ESCs/hiPSCs

(figure 3). Nonetheless, most of the genes increase during

the differentiation process, some even close to the levels

observed in PHHs, representing a relatively favourable

situation.

(c) Limitations and challenges
Unlike PCA, hierarchical clustering is not helpful if only few

genes are differentially expressed in a set of data. The heat

map representation after hierarchical clustering is often con-

sidered a standard that should be included in a systematic

analysis of genome-wide data. However, more complex cluster-

ing techniques as described in the next paragraph represent a

comprehensive approach for identification of gene groups

with similar features.
5. Data mining by clustering: identification of
gene groups with similar features

(a) k-means and fuzzy c-means clustering
(i) Definition and principles
Clustering serves to group a dataset, e.g. expression data of

genes, into so-called clusters with similar patterns. Among

the numerous clustering algorithms available, k-means and

fuzzy c-means are two related popular algorithms. In both

approaches, the user defines the number of clusters, and

both k-means and fuzzy c-means partition the genes into

clusters, where genes within clusters are maximally similar.

The difference between these algorithms is that fuzzy cluster-

ing allows ‘unsharp’ clustering, i.e. each gene can be

assigned to multiple clusters, and it assigns those genes

that are similar to different clusters into those clusters. In

contrast, k-means form clear clusters, where each gene is

assigned to only one cluster. In practice, clustering analysis

should be typically limited to the most variable genes
(e.g. top 1000 genes with highest variance). Clustering may

include one cluster to which all genes are assigned that

do not fit into any ‘real’ cluster. Fuzzy clustering is particu-

larly helpful when a time course of several differentiation

periods is available. However, it is also useful to analyse

stem cells and derived differentiated cells generated by

different centres in order to identify common features, as

described below.

(ii) Example of application
The cluster analysis in figure 4 uses the same data and colour

code as already introduced in figure 2a. Fuzzy c-means clus-

tering identified 20 clusters that were assigned to five cluster

groups. Only 12 of the 20 clusters are shown, because the

remaining clusters showed only very low expression differ-

ences compared with PHHs [23]. The first three symbols in

yellowish colours in figure 4 represent (i) ESCs, (ii) HLCs at

day 17 and (iii) HLCs at day 21, generated in one of the

three involved centres (centre 1). For cluster 5 (the uppermost

panel in figure 4), a scenario was obtained characterized by

low expression in ESCs and a strong increase in HLCs at

days 17 and 21. Similar results were generated by the two

other centres represented in greenish (centre 2) and bluish

(centre 3) colours. The y-axis has a log scale, where zero rep-

resents the expression level of PHHs. Therefore, cluster 5

comprises genes that are expressed by hepatocytes and

were successfully induced in ESCs during the differentiation

process but not completely to the level of PHHs. A similar

constellation was obtained for clusters 6 and 3 with the differ-

ence that initial expression levels of ESCs were higher. By

contrast, clusters 10, 16 and 17, all assigned to cluster group II,

show only weak induction of gene expression in ESCs and

remain orders of magnitude below the expression level of

PHHs (figure 4). Therefore, cluster group II represents less suc-

cessful scenarios than cluster group I. Moreover, all further

clusters show specific patterns that are similar in the ESCs/

hiPSCs and HLCs obtained from the three centres.
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(iii) Limitations and challenges
k-Means and fuzzy c-means clustering are both stochastic

algorithms that may result in different clusters every time

they are run. Therefore, repeated application is required to

ensure stable results. Often one can separate a high number

of homogeneous clusters, but to obtain an overview, it may

be useful to summarize clusters with similar features into

cluster groups. This grouping currently can only be done

manually and is part of the interpretation process that will

be described below. This process of interpreting clusters can

be facilitated by over-representation analysis, but remains a

relatively labour-intensive process.
6. Over-representation analysis
(a) Definition and principles
Over-representation or enrichment analysis compares a set of

genes annotated to a biological motif or a pathway to a set of

genes that results from differential analysis of two pheno-

types, e.g. stem cells before and after differentiation. The

methods evaluate whether genes annotated to a specific

motif are more frequently represented among the pheno-

type-associated genes than expected by chance. The simplest

way to generate sets of phenotype-associated genes is to estab-

lish differential gene lists, e.g. between stem cells before and

after a differentiation process. However, in many cases, the

use of clustering techniques is superior, because the identified

gene clusters with similar properties have a higher probability

of representing specific biological motifs than lists of differen-

tial genes without further processing. Among the most
commonly used ontologies of annotated genes are Gene

Ontology (GO) terms, which assign genes to molecular func-

tions, cellular components or biological processes [31,32].

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways

are pathway maps that represent interactions and relation

networks of metabolism, information processing, cellular

processes, responses to external stress and disease [33].

Also, commercial knowledge-based analysis platforms, e.g.

Ingenuity Pathway Analysis (IPA), have implemented annota-

tions for disease conditions. Moreover, several techniques

are available to identify over-represented transcription factor-

binding sites in a set of genes [34–36]. In addition, pathway

signature databases can be used to explore deregulated

(signalling) pathways [37].
(b) Example of application
Clusters of genes with similar features have been identified as

described in the previous sections (figures 3 and 4). With the

help of over-representation analysis, biological motifs and

transcriptional regulators have been identified for these clus-

ters. For example, the uppermost gene cluster (group 4; an

‘unfavourable’ gene cluster) in figure 3 showed a strong

over-representation of metabolism-associated GO terms. A

well-known phase II-metabolizing gene of this cluster is

UGT2B15. Also, genes from group 3, a ‘favourable’ gene clus-

ter, include metabolism-associated genes, such as SULT2A1,

another example of a phase II-metabolizing enzyme.

Therefore, already the relatively simple technique of unsuper-

vised clustering demonstrates that some genes associated

with metabolism of hepatocytes respond to the differen-

tiation protocol (group 3 genes in figure 3), while others
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remain unresponsive (group 4 genes in figure 3). Cell cycle-

associated GO groups are over-represented in cluster group

1 (figure 3). However, this cluster group illustrates one of

the limitations of the here applied unsupervised clustering

method: the same cluster (group 1) contains cell cycle-

associated genes whose expression decreases during the

differentiation process (a desired scenario), while further

cell cycle-associated genes remain highly expressed in

HLCs with levels similar to those in hESCs (representing an

undesired scenario illustrated by the uppermost genes in

group 1). Such ambiguity can be avoided by fuzzy c-means

clustering which can assign ambiguous genes to several clus-

ters, which is often more appropriate (figure 4). Here, cluster

groups I and II (figure 4) show a strong overlap of genes pre-

sented in groups 3 and 4 of the unsupervised clustering result

(figure 3), but also the proliferation-associated cluster groups

III and IV (proliferation; figure 4) now have a sufficiently

high degree of similarity. These are good conditions for an

analysis of transcription factors and over-represented tran-

scription factor-binding sites. The analysis suggests that a

lack of transcription factors CAR, FXR and PXR may play

a role for the too low levels of some metabolizing genes

in cluster group 2 (figure 4). This hypothesis could be exper-

imentally addressed by overexpression of the identified

transcription factors. Similarly, the over-representation

analysis suggests which transcription factors may be

responsible for high expression of cell cycle-associated

genes (figure 4) and the unwanted colon as well as fibro-

blast features of HLCs [23]. These hypotheses could be

experimentally validated by knockdown of the identified

transcription factors.
(c) Limitations and challenges
Estimation of TFBS over-representation is performed on a

defined sequence in promoter/enhancer regions of genes,

usually in regions spanning between 1000 and 2000 bp (e.g.

21500 to þ500) from transcription start site. Therefore, any

transcriptional regulation potentially occurring further up-

or downstream of this region will not be detected by this

approach. Furthermore, the software assumes that all chroma-

tin is in an open configuration; thereby any TFBS identified in

the aforementioned region is assumed to be functional. A more

refined estimation of TF activity can be obtained with com-

bined analysis of open chromatin (e.g. ATAC-seq and

DNAseI-Seq) and TFBS over-representation [38].

Over-representation analysis based on publicly available

annotated genes is an unsupervised, fast and usually helpful

first step of gene cluster interpretation. However, it should be

considered that over-representation analysis cannot fully

replace manual inspection and gene-by-gene interpretation

by an expert revisiting the available literature. It has

become clear that the human genome contains only approxi-

mately 20 000 protein-coding genes. With some training, the

human brain will remember these genes, their functions

and important aspects of regulation. For comparison, it

should be considered that native speakers usually under-

stand and use approximately 40 000 words, and the

vocabulary can exceed 200 000 words for individuals

speaking foreign languages. After some years of research

in the field of gene expression, many scientists become so

familiar with genes that they read expression lists like

crime novels. It should also be considered that in specific
research fields, such as liver physiology and development,

already the knowledge of approximately 2000 genes is

sufficient for a comprehensive understanding of most func-

tions. Computerized bioinformatics are certainly essential

but are ideally used complementarily to the human

brain, which intuitively generates hypotheses of possible

functional interrelations.
7. Metagenes for quantitative assessment of
biological processes

(a) Definition and principles
As soon as gene clusters of highly correlating genes have

been characterized by over-representation analysis, they can

be used for the calculation of metagenes. A metagene is

defined as a pattern of gene expression that associates

with a specific biological behaviour, e.g. proliferation or

inflammation. Metagenes can be calculated to characterize

biological processes in cell or tissue samples of interest. The

normalized mean of all genes of the metagene can be used

to calculate a score [24]. For example, a metagene of

‘mature liver function’ should include a representative set

of genes responsible for liver-specific processes, such as

endogenous and xenobiotic metabolism, synthesis of clotting

factors and further proteins secreted by the healthy liver.

Next, the expression value of each gene of a sample of interest

is divided by the mean (or median) of healthy reference livers

and the respective ratios of all genes of the list are averaged.

Instead of using simple ratios, more elaborate techniques of

normalization may be applied that also take into account

the variance of the individual genes. If a metagene is estab-

lished for a diseased state, e.g. liver inflammation, its

quality will, of course, depend on the representativeness of

the chosen reference tissues. Finally, metagenes can be used

to quantitatively compare samples, e.g. hESCs/hiPSCs differ-

entiated by distinct differentiation protocols to understand

their degree of differentiation and also unwanted features

induced by the protocol.
(b) Example of application
Clusters representative of all ‘mature liver functions’, ‘liver

inflammation’, ‘cell cycle’ and also more specific processes

such as ‘cholesterol metabolism’ have been identified and

were used for the calculation of metagenes [24]. This allowed

the quantification of the aforementioned biological processes

in various cell and disease models. For example, mouse livers

after acute intoxication with the hepatotoxic compound CCl4
show a simultaneous response of strongly reduced ‘mature

liver function’ and strongly increased ‘inflammation’ meta-

genes (figure 5a). By contrast, both metagenes remain

unaltered in steatotic livers of leptin-deficient obese mice

[24]. Interestingly, cultivated hepatocytes from healthy

C57BL6/N mice show responses of the ‘mature liver func-

tion’ and ‘inflammation’ metagenes similar to those from

CCl4-intoxicated mice, demonstrating that hepatocyte cul-

tures represent an in vitro model of the inflamed rather

than the healthy liver (figure 5a). Similarly, the metagene

approach could be used to quantify, e.g. ‘mature liver func-

tions’, ‘inflammation’, ‘cell cycle activity’ and ‘cholesterol

metabolism’ in liver tissue of patients (figure 5b).
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(c) Limitations and challenges

Although the metagene approach is an easy-to-use technique

that can be adapted to any specific cell or animal model, a

limitation remains that all genes selected for a metagene

enter the score with identical weight. However, recently,

GRN scores have been introduced that give individual genes

different weights as described in §8.
8. Cell-type assessment by gene regulatory
network-based approaches

(a) Definition and principles
A powerful example for how cell identity can be assessed

based on GRNs is the CellNet platform [22,39]. The GRNs

in this platform were established using gene expression
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profiles from over 3000 publicly available studies on diverse

cells and tissues, in control (healthy) conditions and also

after interventions (e.g. small interfering RNA (siRNA) and

transcription factor over-expression), and were processed

with the ‘context likelihood of relatedness’ algorithm [40].

The GRNs were controlled by comparison with gold stan-

dards using ENCODE-generated transcription factor-binding

data, expression profiles from stem cells overexpressing

specific transcription factors and ChIP–CHIP/ChIP-Seq of

transcription factors in stem cells (www.encodeproject.org/

). The GRNs were then used to generate a metric of specific

cell/tissues based on gene expression profiles, where

expressed genes are weighted by their expression levels,

their importance to the specific network and to the specific

cell/tissue network classifier [39]. This results in a well-

refined cell/tissue identity score, because it combines gene

expression profiles but also estimates a gene network func-

tion based on state-of-the-art knowledge on transcription

factor activity. This combined bioinformatics pipeline (tran-

scriptomics/multivariate analysis—PCA/gene clustering/

gene set enrichment analysis (GSEA)/CellNet) allows a

robust and quantitative characterization of the cell identity

obtained by differentiation of stem cells. The CellNet plat-

form is publicly available and easy to use also by scientists

without a specific background in bioinformatics.
(b) Example of application
Genome-wide expression data of ESCs/hiPSCs and HLCs

as described above (figure 2) were analysed by the

CellNet algorithm [22]. The ESC-GRN status was close to 1.0

for the stem cells of each of the three centres, while a low

ESC-GRN status of approximately 0.2 was obtained

for freshly isolated PHHs and for human liver tissue

(figure 6a). An interesting observation was that the ESC-GRN

status of HLCs did not decrease to the level of PHHs, with the

best result obtained by the protocol of centre 2 (CEL). The

GRN status for liver showed an increase from approximately
0.2 (ESCs/hiPSCs) to approximately 0.6 for HLCs from the

three centres, suggesting that the HLCs reached a phenotype

approximately halfway between stem cells and real hepato-

cytes. The colon-GRN status indicates an increase for HLCs

from all three centres, demonstrating that the protocols also

induce an unwanted secondary differentiation. The unwanted

colon-GRN status was highest for centre 2, the same protocol

that most successfully suppressed the GRN status of ESCs. Poss-

ibly, successful suppression of stemness by this protocol was

achieved at the expense of unwanted colon differentiation.

The fibroblast-GRN status demonstrates a further secondary

differentiation for all three protocols/centres.

A further possibility offered by the CellNet platform is the

calculation of network influence scores of transcription fac-

tors (figure 6b). This algorithm identifies the transcription

factors with highest influence over individual GRNs. In the

colon-GRN, this analysis leads to the suggestion that knock-

down of ELF3, KLF5 and KLF4 may suppress the unwanted

colon differentiation (figure 6b).
(c) Limitations and challenges
Although CellNet currently is among the most powerful and

practical methods to evaluate genome-wide data for similarities

with specific tissues, it is important to be aware of its limitations.

First, the tissue training datasets used in CellNet were generated

with whole-tissue extracts, which may lead to confounding

effects due to their multicellular composition. The degree of

these confounding effects depends on the individual tissues.

In the case of liver, the abundance of hepatocyte mRNA largely

overwhelms mRNA from non-parenchymal cells, owing to the

fact that hepatocytes represent the largest cell component of

the liver (approx. 70%) and that hepatocytes contain approxi-

mately four times more mRNA per cell than non-parenchymal

cells [13,41]. Hence, using a whole-liver expression profile is a

robust reference for assessing hepatocyte differentiation in

stem cells. Second, CellNet is limited to the cells/tissues that

were included in the training datasets, and the normalization

http://www.encodeproject.org/
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Figure 7. Example of upstream regulator identification with Ingenuity Pathway Analysis (IPA) software. The analysis was conducted using levels of differentially
expressed genes compared with levels in primary human hepatocytes (twofold cut-off, p , 0.05), in embryonic stem cells (ESC-MRC), induced-pluripotent stem
cells (iPSC-CEL) and their corresponding HLCs (HLC MRC-D21 and iPSC HLC CEL). (a) The heatmap shows the 2log( p-value) of the top 20 most significant upstream
regulators. (b) The heatmap shows the activation z-score of the top 20 most significant upstream regulator stem cells and HLCs.
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of the output may result in spurious tissue association if the cor-

rect tissue was not in the training set. Also, it does not yet include

disease or early developmental state datasets in cells and tissues.

This can be partially overcome by GO and KEGG enrichment

analysis. However, additional knowledge-based curation is

required for the identification of disease-related features.
9. Perspectives
(a) Knowledge-based algorithms
In addition to the aforementioned pipeline, knowledge-based

algorithms can be used to generate robust inferences on

upstream regulators associated with gene expression profiles.

Upstream regulators consist of not only transcription factors,

but also molecules such as cytokines, growth factors, micro-

RNA (miRNA) and chemicals that can be associated with

alterations in gene expression [42]. These algorithms integrate

extensive, manually curated relationships between genes and

signalling pathways controlling their expression, based on

observations in multiple experimental conditions reported

in the scientific literature. Hence, the strength of these algor-

ithms will depend on the breadth of literature and the
frequency of updates in the database used for each algorithm.

There exists commercial (e.g. IPA, QIAGEN Inc., https://

www.qiagenbioinformatics.com/products/ingenuitypath-

way-analysis) and open source software (e.g. DAVID,

https://david.ncifcrf.gov/tools.jsp; Cytoscape, http://

www.cytoscape.org/; GeneMania, http://genemania.org/).

However, only IPA leverages observed cause–effect associ-

ations reported in the literature, a feature that usually is not

considered in gene set enrichment analysis software. The

algorithms used at IPA are supported by a database with

more than 5 million findings curated from scientific literature

(Ingenuity Knowledge Base) [42]. Upstream regulators can be

estimated by determining the overlap of observed and pre-

dicted regulated genes for a particular regulator (using

Fisher’s exact test), and a z-score to assess directionality (pre-

dicted up-/downregulation) in genes composing the network

related to each upstream regulator [42]. This approach has

been applied to iPSC-derived mammary-like organoids and

revealed novel transcriptional regulators in embryoid

bodies committed to mammary gland differentiation [43].

Here, we provide an example of upstream regulators identified

by IPA in two stem cell and stem cell-derived hepatocytes

from our previous study [23]. The software identified HNF4

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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as the top-ranking transcriptional regulator both in embryonic

stem cells (ESC-MRC) and in induced pluripotent stem cells

(iPSC-CEL), while its score is lower in the corresponding

HLCs (figure 7a). The activation z-score indicates that HNF4

ranks as the lowest active regulator in stem cells, while its

activity rises in HLCs (figure 7b). This is consistent with the

acquisition of hepatocyte GRNs in HLCs caused, in part, by

upregulation of HNF4, and it is also consistent with the find-

ings of TFBS enrichment analysis. In addition, IPA identifies

regulators not revealed by GSEA, including further hepato-

cyte-specific regulators with low activity such as PPARG,

CEBPA and miRNA species (e.g. miR122 and let-7), and over-

active factors such as Myc, TGFb1 and ERBB2 (figure 7a,b).

These factors can be added to those identified by GSEA and

TFBS enrichment analysis, to generate a more robust assessment

of the networks controlling the state of differentiation in HLCs.

Furthermore, the relative relevance of each factor can be ranked

by the corresponding z-score. However, a weakness of this

algorithm is that it is biased towards best-studied transcriptional

regulatory networks.

(b) Single-cell gene expression analysis
International efforts are underway to catalogue all human cell

types using single-cell approaches [44]. Based on these data,

more fine-grade analysis of cell-type similarities will be poss-

ible, with sets of genes clearly describing a cell type and

differentiation state. Hepatocytes are known to show a zonal

expression pattern in the liver lobules, where numerous

genes are differentially expressed in the pericentral, midzonal

and periportal regions [45,46]. Thus, it may be considered as

inadequate to expect HLC cultivated under homogeneous

conditions to express all zonated hepatocyte genes. Analysis

in bulk HLCs of human orthologue genes to periportal (PP)-

and pericentral (PC)-enriched mouse genes [45] does not

suggest a bias towards a PP or PC profile (figure 8 and

electronic supplementary material, table S1). While a few

preferentially PP expressed genes (e.g. Ctsc, Cdh1 and Gldc)

(figure 8a) and preferentially PC expressed genes (e.g.
B3galnt1, Oat, Glul and RNase4) (figure 8b) showed comparable

levels in HLCs versus bulk human hepatocytes, many PP (e.g.

G6pc, Slc2a2, Pck1 and Sds; Fig 8a) or PC genes (e.g.

Adh4, Slc22a1, Slc01b3, Cp7a1 and Nr1i3) (figure 8b) are

between tens- and hundreds-fold lower in HLCs compared

with bulk freshly isolated hepatocytes (electronic supple-

mentary material, table S1). The analysis of single-cell

transcriptomes might reveal small fractions of HLCs achieving

a state of differentiation close to that of mature PP or PC

hepatocytes, which would not be detectable in bulk

RNA-Seq data.

Recently, a pioneer study on scRNA-Seq analysis of

iPSC-derived HLCs [47] from self-generating organoids

[48] reported a rather uniform composition of HLCs [47].

Furthermore, the transcriptional profile of HLCs was

closer to that of immature hepatocytes (i.e. hepatoblasts)

than to mature hepatocytes [47]. This is consistent

with the fact that liver zonation is achieved only after

birth [49,50]. However, the HLCs in this study represent

a unique differentiation procedure during self-

assembly into liver bud organoids and transplantation

into mouse liver [47,48]. Furthermore, RNA-Seq analysis

was conducted in only a few hundred cells. Further

studies are required to confidently identify subpopu-

lations of HLCs at different maturation stages, using

different methods for HLC differentiation, and higher

throughput analysis of thousands of cells.
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