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Abstract

The rapid progress in high-throughput sequencing has significantly enriched our capacity for studying the mitochon-
drial DNA (mtDNA). In addition to performing specific mitochondrial targeted sequencing, an increasingly popular al-
ternative approach is using the off-target reads from exome sequencing to infer mtDNA variants, including single nu-
cleotide polymorphisms (SNPs) and heteroplasmy. However, the effectiveness and practicality of this approach have
not been tested. Recently, RNAseq data have also been suggested as a good source for alternative data mining, but
whether mitochondrial variants can be detected from RNAseq data has not been validated. We designed a study to
evaluate the practicability of mtDNA variant detection using exome and RNA sequencing data. Five breast cancer cell
lines were sequenced through mitochondrial targeted, exome, and RNA sequencing. Mitochondrial targeted sequencing
was used as the gold standard to compute the validation and false discovery rates of SNP and heteroplasmy detection
in exome and RNAseq data. We found that exome and RNA sequencing can accurately detect mitochondrial SNPs.
However, the lower false discovery rate makes exome sequencing a better choice for heteroplasmy detection than
RNAseq. Furthermore, we examined three alignment strategies and found that aligning reads directly to the mitochon-
drial reference genome or aligning reads to the nuclear and mitochondrial references genomes simultaneously pro-
duced the best results, and that aligning to the nuclear genome first and afterwards to the mitochondrial genome per-
formed poorly. In conclusion, our study provides important guidelines for future studies that intend to use either
exome sequencing or RNAseq data to infer mitochondrial SNPs and heteroplasmy.
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Background

Mammalian cells each contain approximately 100 mitochon-
dria, which themselves contain between 2 and 10 copies of
mitochondrial DNA (mtDNA) [1]. Because of this, mutations to
mtDNA often result in heteroplasmic cells, with both normal
and mutant copies of mtDNA [2, 3]. While heteroplasmy of the
mtDNA is common in normal individuals, varying in frequency
between different tissue types [4, 5], heteroplasmy that results
in mitochondrial dysfunction, affecting the production of ATP
through oxidative phosphorylation, has been linked to many
neurological diseases [6] and drug toxicities [7, 8].

Before the advent of high-throughput sequencing technol-
ogy, the best options for complete mitochondrial genome
sequencing were direct Sanger sequencing and Affymetrix’s
MitoChip v.2.0, which contains a microarray of 25-mer probes
complementary to the revised Cambridge Reference Sequence
(rCRS) [9]. Quantifying mtDNA heteroplasmy has been
accomplished via a number of different methods (i.e. real-time
amplification refractory mutation system quantitative polymer-
ase chain reaction (PCR) [10], PCR restriction fragment length
polymorphism analysis [11], allele-specific oligonucleotide
dot-blot analysis [12] and pyrosequencing [13]), but the small
number of targets available to these methods limits their utility.
With high-throughput sequencing technology having emerged
as a reliable, cost-effective option, the mitochondrial genome,
including mtDNA heteroplasmy, is available for study like never
before, and while all three of the major sequencing platforms
(Illumina HiSeq, Roche 454 and Applied Biosystems SOLid) are
capable of sequencing mtDNA [14, 15], Illumina has dominated
that market in terms of use. This study will focus on the
Illumina platform.

Direct sequencing of the mitochondrial genome with high-
throughput sequencing technology can generate incredibly high
read depth, in the tens of thousands [5, 16–18], but this is not
the only option. Information about the mitochondrial genome
can be obtained through indirect methods as well by extracting
the mtDNA sequences produced by exome and whole genome
high-throughput sequencing data. Although mtDNA is not the
target of these sequencing types, there is usually significant
coverage of the mitochondrial genome, comprising about 1–5%
of reads from exome sequencing data [19]. Because of the high
copy number of mtDNA per cell, mtDNA coverage can exceed
the coverage of even the targeted genomic regions with an aver-
age depth of around 100 [20, 21], and research has demonstrated
the feasibility of extracting mtDNA sequences from exome
sequencing data [22]. Additional possibilities have emerged as
well, including the inference of mtDNA mutations from exome
sequencing data, and in fact, The Cancer Genome Atlas project
has inferred all of its mtDNA somatic mutations in this way
[23, 24]. These methods have even facilitated the diagnosis of
mitochondrial disorders from the mtDNA content in exome
sequencing data [25].

Exome sequencing has been widely used for mtDNA studies
[19, 20, 25–31]. However, to date, no study has evaluated the ac-
curacy of this approach. We performed mitochondrial targeted
sequencing and exome sequencing on five breast cancer cell
line samples. This allowed us to use the targeted mitochondrial
sequencing data as a gold standard to evaluate the true positive
rate and false discovery rate (FDR) when using exome sequenc-
ing data to determine mitochondrial single nucleotide poly-
morphisms (SNPs) and heteroplasmy. Additionally, RNAseq
data has been suggested as an alternative data source for min-
ing [32, 33]. Thus, we performed RNAseq on these five cell lines,

allowing us to evaluate the practicability of identifying mito-
chondrial SNPs and heteroplasmy using RNAseq data.

As previously suggested, mitochondrial alignment is sensi-
tive to nuclear mitochondrial sequences (nuMTs) [26]. NuMTs
are DNA sequences that are similar to mtDNA but have been
copied into the nuclear genome in the distant past. Such nuMTs
can cause ambiguity during alignment. Therefore, we compared
three distinct alignment approaches to identify the best ap-
proach for mitochondrial alignment.

Method

We cultured five breast cell lines in this study (MDAMB157,
SUM159, HS578T, CAL51 and MDAMB436). For all five cell lines,
we performed mitochondrial targeted sequencing, exome
sequencing and RNAseq. The sequencing of all samples was
performed at Vanderbilt Technologies for Advanced Genomics.

MtDNA enrichment was done using the amplification kit
from Affymetrix’s Genechip Human Mitochondria
Resequencing Array 2.0 (Affymetrix, USA). The Affymetrix
protocol specifically amplifies the entire mitochondrial genome
from genomic DNA using overlapping primers to eliminate the
bias that may be introduced from the PCR method. The enriched
mtDNA were barcoded and sequenced using the Illumina MiSeq
sequencing platform (Illumina, USA). MtDNA fragments with an
average size of 120 nucleotides were sequenced from both ends.
The average coverage of mitochondrial genome was 99.9%. For
exome sequencing, the exomes were captured using Illumina’s
TrueSeq capture kit. Seventy-five nucleotide paired-end
sequencing runs were performed using Illumina’s HiSeq 2000
platform. For RNAseq, total RNA was isolated with the Aurum
Total RNA Mini Kit. All samples were quantified on the
QuBit RNA assay. RNA quality was checked using Agilent
Bioanalyzer. RNA integrity number for both samples was 10.
The ribosome RNA reduction was performed using the Ribo-
Zero Magnetic Gold Kit (Human/Mouse/Rat) (Epicentre). The
RNA libraries were sequenced on Illumina High HiSeq 2500 with
paired-end 100 base pair long reads.

To study the effect of nuMTs on alignment, we examined
three distinct alignment approaches: (1) align all reads to the
nuclear reference genome plus the mitochondrial reference
genome simultaneously, relying on the aligner to make the cor-
rect decision on where the mitochondrial reads should align; (2)
align all reads, including potential nuMT reads, directly to the
mitochondrial genome; and (3) first align all reads to the nuclear
genome only, then align the unmapped reads to the mitochon-
dria genome. The third approach is the most conservative ap-
proach, which would eliminate all nuMT reads along with some
true mtDNA reads. The overall alignment approaches are illus-
trated in Figure 1.

Alignment was performed using Burrows–Wheeler Aligner
(BWA) [34]. The nuclear genome we used is the human refer-
ence genome HG19, and the mitochondrial genome we used is
the rCRS. We marked duplicates using Picard [35], and then per-
formed local realignment and local recalibration using the
Genome Analysis Toolkit [36] developed by the Broad Institute.
SNPs and heteroplasmy were inferred using MitoSeek [27].

To evaluate the efficiency of conducting mitochondrial re-
search using exome sequencing and RNAseq data, we computed
two statistics for SNPs and heteroplasmy. The first one is the val-
idation rate, and the second one is the FDR. If the number of SNPs
or heteroplasmies identified by mitochondrial targeted sequenc-
ing is A (gold standard) and the subset of A that can be validated
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in another approach (either exome or RNA sequencing) is B, then
the validation rate is B/A. If the number of SNPs or heteroplas-
mies identified by the alternative method (exome or RNA
sequencing) is C, and the subset of C that is not validated by the
gold standard mitochondrial targeted sequencing data is D, then
the FDR is D/C. We also obtained haplogroup information
(Supplementary Table S1) for each sample by checking the SNP
results against phylotree.org’s mtDNA phylogeny tree [37].

Results

We achieved high quality sequencing data. For mitochondrial
sequencing, we sequenced on average 2.3 million reads per
sample. For exome sequencing, we sequenced on average 59
million reads. For RNAseq, we sequenced on average 34 mil-
lion reads. We conducted thorough quality control on our

sequencing data based on the multi-stage quality control
protocol [38, 39] developed previously. No quality issues were
detected after thorough quality control (Table 1). Haplogroup
results showed consistent haplogroup determination across
all three types of sequencing for each cell line
(Supplementary Table S1). The ethnicities of the original con-
tributor of three of five cell lines used in our study are known
(MDAMB157—Black, HS578T—White, MDAMB436—White). The
haplogroup results of these three cell lines matched the cor-
rect ethnicity groups (MDAMB157—L3f1b1a, HS578T—J2c1 and
MDAMB436—H4a1a1).

For each of the three alignment approaches, we examined
four mitochondrial quality control statistics: median depth,
coverage, mapping quality and total mapped reads for exome
sequencing and RNAseq data. RNAseq data achieved higher
median depth for mitochondrial regions (Figure 2A). This is
not a surprising result because RNAs in the mitochondria
should be captured during the RNA library construction.
However, mitochondria are not within the capture regions of
the exome capture kit. Coverage was computed as the percent-
age of mitochondrial loci that have read depth >20. Exome
sequencing achieved higher coverage than RNAseq data
(Figure 2B). The median depth and coverage statistics together
suggest that exome sequencing’s coverage of the mitochon-
dria is more uniformly distributed than RNAseq’s coverage.
As expected, RNAseq tends to have high coverage for the cod-
ing regions and leave other non-coding regions in mtDNA
unsequenced. RNAseq and exome sequencing data achieved
similar mapping quality scores (Figure 2C). RNAseq data man-
aged to align more reads to the mitochondrial genome than
did exome sequencing data even when the exome sequencing
data had almost double the total number of reads of the
RNAseq data (Figure 2D). For all four of these statistics, the
rCRS-alone alignment approach achieved a slightly better
value compared with the simultaneous HG19-rCRS alignment
approach, while the sequential HG19 followed by rCRS align-
ment approach had the lowest values for these four quality
control statistics.

Figure 1. Workflow of the three mitochondrial mapping strategies we presented. Red¼Method 1; green¼Method 2; blue¼Method 3. A colour version of this figure is

available at BIB online: http://bib.oxfordjournals.org.

Table 1. Sample description and sequenced reads

Sample name Total reads BQ GC (%)

Mitochondria
MDAMB157 1 408 257 37 49
SUM159 1 544 359 36 46
HS578T 2 024 445 36 46
CAL51 1 588 780 36 46
MDAMB436 5 846 096 37 47

Exome
MDAMB157 41 111 584 33 52
SUM159 60 845 870 30 51
HS578T 39 824 496 35 52
CAL51 48 237 104 35 52
MDAMB436 93 702 907 33 51

RNAseq
MDAMB157
SUM159 36 556 608 34 61
HS578T 36 147 448 35 59
CAL51 38 752 295 34 61
MDAMB436 30 976 269 31 76
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Next, we examined the SNP validation rate (Figure 3A) and
FDR (Figure 3B) using exome sequencing and RNAseq data by
all three types of alignment approaches. The simultaneous
HG19-rCRS and rCRS-alone alignments achieved a perfect SNP
validation rate for both exome sequencing and RNAseq data,
meaning that every SNP identified in our samples through
mitochondrial targeted sequencing was also identified using
exome sequencing as well as RNA sequencing data. The se-
quential HG19 followed by rCRS alignment approach identi-
fied the lowest number of true SNPs. The simultaneous HG19-
rCRS and rCRS-alone alignment approaches on exome
sequencing data achieved the lowest possible FDR at 0%. The
same approaches on RNAseq data obtained 4.5% and 3.9%
FDR, which were still tolerable. The sequential HG19 followed
by rCRS alignment approach received the lowest validation
rate and the highest FDR, which make it a less ideal align-
ment approach in comparison. Based on both validation rate
and FDR, both the simultaneous HG19-rCRS and rCRS-alone
alignment approaches offer excellent validation rates and suf-
ficient FDR for SNP identification.

Finally, we examined the effectiveness of detecting mitochon-
drial heteroplasmy using exome sequencing and RNAseq data for

all three alignment approaches (Figure 4A). Heteroplasmy was
tested at three different thresholds: 1%, 5% and 10%. One of the
obvious trends is that as the heteroplasmy detection threshold
increases, the validation rate increases as well. All three align-
ment approaches produced roughly the same validation rate for
heteroplasmies, and RNAseq data produced a higher validation
rate than did exome sequencing data. The overall validation rate
for heteroplasmy is much lower than the SNP validation rate for
both exome sequencing and RNAseq data.

For FDR, the patterns were more complex (Figure 4B). Several
conclusions can be drawn from the FDR analysis. First, a higher
heteroplasmy detection threshold tends to produce lower false
positives. Five scenarios produced zero FDR (exome sequencing
with simultaneous HG19-rCRS and rCRS-alone alignment
approaches at the 5% and 10% heteroplasmy detection thresh-
olds, and the exome sequencing with sequential HG19 followed
by rCRS alignment approach at the 10% heteroplasmy detection
threshold). Second, RNAseq data generated substantially higher
FDR as compared with exome sequencing data at the same de-
tection thresholds. Even at the 10% heteroplasmy detection
threshold, the simultaneous HG19-rCRS and rCRS-alone align-
ments still generated 8% FDR on RNA sequencing data. Third,

Figure 2. We examined four quality measurements across all sequencing types and alignment methods. (A) The median depth. (B) Coverage, defined as percentage of

positions in rCRS that have depth >20. (C) Median mapping quality as reported by BWA. (D) Mapped reads. A colour version of this figure is available at BIB online:

http://bib.oxfordjournals.org.
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the sequential HG19 followed by rCRS alignment approach gen-
erated the highest FDR, especially for RNA sequencing data
(>60% across all three thresholds), which rendered it useless for
heteroplasmy detection.

RNA editing is a rare molecular process through which some
cells can make discrete changes to specific nucleotide se-
quences within an RNA molecule after it has been generated by
RNA polymerase. A recent study examined these potential RNA
editing sites within mitochondrial RNA and found three com-
mon RNA editing sites at positions C295T, G2129A and G6691A
[40]. We compared the DNA–RNA difference in our data and
found DNA–RNA differences at the three supposed RNA editing
sites. Additionally, we found three additional RNA editing can-
didates at positions C296T, G5746A and T5878C. C296T occurred
in four of five cell lines. G5746A and T5878C occurred in all five
cell lines (Table 2).

One interesting phenomenon we observed during the study
was related to orphan read alignment. Orphan reads by defin-
ition are the reads that have only one member of a pair mapped
and the other member unmapped. When applying the sequen-
tial HG19 followed by rCRS alignment approach, the majority of
the reads that aligned to the rCRS were orphan reads. But these

same reads were not orphan reads when using the simultan-
eous HG19-rCRS alignment approach. The reason is rather elu-
sive but can be explained by Figure 5. There are two reasons
that orphan reads were mapped to the rCRS when using the se-
quential approach. In the first scenario, when mapping a
paired-end read to the nuclear genome and the rCRS simultan-
eously, the first read of the pair can be mapped to nuMTs on the
nuclear genome and the second read of the pair can be mapped
to the rCRS. The paired-end read is mapped to different
chromosomes and it is considered discordant but not orphan
because both reads of the pair are mapped. When we try to align
the same paired-end read to the nuclear genome first and the
rCRS second, the first read of the pair is still mapped to nuMTs
on the nuclear genome, and the second read of the pair is un-
mapped. That unmapped read is subsequently mapped to the
rCRS as an orphan (Figure 5A). In the second scenario, when a
paired-end read is mapped to the nuclear genome and the rCRS
simultaneously, both reads of the pair are aligned to the rCRS.
When mapping the same paired-end read to the nuclear gen-
ome first, the first read in the pair is aligned to a nuMT on the
nuclear genome, even though it might not be the best match
globally. The second read of the pair is unmapped and subse-
quently mapped to rCRS as an orphan read (Figure 5B). The two
scenarios explain the reason behind the large quantity of

Figure 3. (A) Validation rate of SNPs identified from exome and RNAseq data

from all three alignment strategies using mitochondrial targeted sequencing as

the gold standard. (B) FDR of SNPs identified from exome and RNAseq data from

all three alignment strategies using mitochondrial targeted sequencing as the

gold standard. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.

Figure 4. (A) Validation rate of heteroplasmies identified from exome and RNAseq

data from all three alignment strategies using mitochondrial targeted sequencing

as the gold standard. (B) FDR of heteroplasmies identified from exome and RNAseq

data from all three alignment strategies using mitochondrial targeted sequencing

as the gold standard. The x-axis denotes the heteroplasmy detection thresholds at

alternative allele depth greater than 1%, 5% or 10%. A colour version of this figure

is available at BIB online: http://bib.oxfordjournals.org.
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orphan reads mapped to rCRS when using the sequential align-
ment approach. We conducted an additional analysis, in which
we counted the orphan reads from the sequential alignment ap-
proach. The result did improve, but it still remained the worst of
the three alignment strategies. Note that the scenarios of or-
phan reads described in our study are based on the alignment
results produced by BWA aligner. Other aligner may assign or-
phan reads differently from BWA.

Discussion

Based on our analysis results, several important conclusions can
be drawn. For SNP calling, exome sequencing data can be used to
detect mitochondrial SNPs with nearly perfect validation rates
and low FDR when compared with the gold standard mitochon-
drial targeted sequencing. RNAseq data can also be used to detect
mitochondrial SNPs, however, at a higher, yet still tolerable, FDR
(<5%). This conclusion about RNAseq data is consistent with a
previous finding of RNAseq data’s ability to identify nuclear gen-
ome SNPs, but at a higher false-positive rate [32]. By nature, ac-
curate SNP calling from RNA sequencing data is much more
challenging than that from DNA sequencing data. It is possible
that the FDR of SNP calling from RNA sequencing data can be
further improved by using more complex SNP calling tools. For
heteroplasmy, exome sequencing data can identify a portion
(10–50%) of all heteroplasmies depending on the detection
threshold applied. However, exome sequencing also detected

0–36% false-positive heteroplasmies. Increasing the detection
threshold to 5% decreased the false-positive rate to 0%.

RNAseq data are not ideal for detecting heteroplasmy com-
pared with exome sequencing data based on our analysis re-
sults. This conclusion is within the expectation. To sequence
RNA, RNA must first be reverse transcribed to complementary
DNA and usually reverse transcriptase PCR is required to in-
crease the quantity of the RNA. Both of these processes intro-
duce errors that are not easily identifiable, thus increasing the
FDR of SNP and heteroplasmy detections.

Of all three alignment approaches, simultaneous HG19-
rCRS and rCRS-alone approaches performed similarly and
produced trustworthy results. On one hand, when computa-
tion efficiency is a major concern, such as applications where
a big sample size is involved, the rCRS-alone approach is rec-
ommended considering the additional computational effort
needed for the simultaneous HG19-rCRS approach; on the
other hand, the simultaneous HG19-rCRS approach can help
filter out reads that come from nuMTs, lowering the possibil-
ity that these reads will map to mitochondria. In our study,
we exclusively used the popular aligner BWA. If more com-
putationally efficient aligners, such as STAR [41], are used,
the extra computation time used to align to HG19-rCRS sim-
ultaneously may be negligible. By aligning all reads to the
nuclear genome first (without the mitochondrial reference),
many true mitochondrial reads were forced to align to the
nuMTs on the nuclear reference. This had two consequences.

Table 2. RNA DNA position difference occurred in at least four of the five cell lines

Sample Position DNA RNA Reported
RNA
editingReference Alternate Reference

reads
Alternate
reads

Alternate
frequency

Reference Alternate Reference
reads

Alternate
reads

Alternate
frequency

CAL51 295 C C 376 0 0 C T 351 11 0.0304 Y
CAL51 296 C C 380 0 0 C T 352 5 0.014 N
CAL51 2129 G G 679 0 0 G A 7745 174 0.022 Y
CAL51 5746 G G 1363 3 0.0022 G A 2453 117 0.0455 N
CAL51 5878 T T 1660 4 0.0024 T C 1721 26 0.0149 N
CAL51 6691 G G 903 0 0 G A 538 6 0.011 Y
HS578T 295 C T 4 8 0.6667 C T 4 44 0.9167 Y
HS578T 296 C C 15 0 0 C C 49 0 0 N
HS578T 2129 G G 682 0 0 G A 7719 180 0.0228 Y
HS578T 5746 G G 1293 0 0 G A 1725 58 0.0325 N
HS578T 5878 T T 1611 0 0 T C 2514 28 0.011 N
HS578T 6691 G G 958 0 0 G A 1807 14 0.0077 Y
MDAMB157 295 C C 111 0 0 C T 302 11 0.0351 Y
MDAMB157 296 C C 109 0 0 C T 305 1 0.0033 N
MDAMB157 2129 G G 393 0 0 G A 7709 188 0.0238 Y
MDAMB157 5746 G G 935 0 0 G A 5302 211 0.0383 N
MDAMB157 5878 T T 1370 1 0.0007 T C 2494 3 0.0012 N
MDAMB157 6691 G G 665 0 0 G A 5258 12 0.0023 Y
MDAMB436 295 C C 198 0 0 C T 107 13 0.1083 Y
MDAMB436 296 C C 197 0 0 C T 111 2 0.0177 N
MDAMB436 2129 G G 966 2 0.0021 G A 7546 152 0.0197 Y
MDAMB436 5746 G G 1815 4 0.0022 G A 2268 81 0.0345 N
MDAMB436 5878 T T 2384 4 0.0017 T C 3840 25 0.0065 N
MDAMB436 6691 G G 1245 2 0.0016 G A 4031 32 0.0079 Y
SUM159 295 C C 708 0 0 C T 212 6 0.0275 Y
SUM159 296 C C 680 0 0 C T 203 4 0.0193 N
SUM159 2129 G G 1416 2 0.0014 G A 7791 150 0.0189 Y
SUM159 5746 G G 2883 0 0 G A 2140 103 0.0459 N
SUM159 5878 T T 3656 3 0.0008 T C 1536 19 0.0122 N
SUM159 6691 G G 2096 1 0.0005 G A 888 4 0.0045 Y
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First and foremost, there was a loss of depth of coverage
on the mtDNA. Second, many of the mitochondrial
reads that did not get mapped to the nuclear nuMTs were
of lower quality, which caused the sequential alignment ap-
proach to not produce any reliable SNPs or heteroplasmy.
Thus, the sequential alignment approach should not be used.

Key Points

• Mitochondrial SNP can be accurately detected in
exome and RNA sequencing data.

• A portion of the mitochondria heteroplasmies can be
detected in exome and RNA sequencing data.

Figure 5. (A) Scenario 1 of orphan read on mitochondria: one read from the pair is originally mapped to nuMTs, leaving the other read from that pair as an orphan. (B)

Scenario 2 of orphan read on mitochondria: one read from the pair is originally mapped to mitochondrial sequences, but when only nuclear genome is provided during

alignment, this read is forced to map to nuMTs (although this alignment is globally sub-optimal), leaving the other read from that pair as an orphan. A colour version

of this figure is available at BIB online: http://bib.oxfordjournals.org.
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• RNAseq data has higher false discovery rate for mito-
chondrial variant detection as compared with exome
sequencing data.

• Alignment strategy plays an important role in mito-
chondrial variant detection accuracy.

• RNA editing sites are identified in mitochondria.

Supplementary Data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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