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Abstract

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of 

tandemly repeated sequence, collectively called satellite DNA. The processes generating and 

maintaining different satellite DNA abundances across lineages are important to understand as 

satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive 

isolation between species. While much theory has been developed to describe satellite evolution, 

empirical tests of these models have fallen short because of the challenges in assessing satellite 

repeat regions of the genome. Advances in computational tools and sequencing technologies now 

enable identification and quantification of satellite sequences genome-wide. Here, we describe 

some of these tools and how their applications are furthering our knowledge of satellite evolution 

and function.

Introduction

High copy number tandemly repeated DNA sequences, known as satellites, form a 

substantial part of many eukaryotic genomes [1–3]. Satellites were discovered in cesium-

chloride density gradients as distinct bands of DNA that differ from the rest of the genome 

due to skewed nucleotide composition [4]. Now, these bands are known to include members 

of multi-copy gene families (e.g. rDNA, histones), transposable elements (TEs), and non-

coding repetitive sequences in large arrays that can span megabases. Modern discussions of 

satellite DNA generally focus on only the latter, and that is our focus here1. We note that 

arrays of non-coding satellite repeats may also have other sequences such as TEs 

interspersed within them [5]. Satellite arrays are generally found in heterochromatin and 

may form essential chromosome structures such as centromeres and telomeres (reviewed in 

[6]). Despite their key roles in these critical structures, satellites show astonishing variation 

in both sequence and copy number among species, even among close relatives [7], 

suggesting that they evolve rapidly. Various models of satellite evolution have been proposed 
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to explain this variation (Box 1) but genome-wide testing of these models has been lacking 

due to technological and computational limitations in assessing the repetitive portion of the 

genome. It is important to understand how and why satellite DNA varies among individuals 

and species because there are established links between satellites and phenotypes in a wide 

range of organisms, including humans. For example, satellite derepression is associated with 

cancer outcomes [8], chromosome mis-segregation and aneuploidy [9], and aging [10]. In 

addition, variation in satellite copy number has been associated with genetic 

incompatibilities between species [11] and differences in gene expression [12–14].

Within the past several years there has been an explosion of software resources specifically 

aimed at improving our ability to assess repeat variation across entire genomes. Combined 

with improvements in sequencing technology and the growing availability of genomic 

datasets in public databases, the time is ripe for testing models of satellite DNA evolution 
and functional impact across a broad array of organisms. This will lend insight into the 

generality of proposed models of neutral satellite evolution in taxa with diverse life histories 

and enable detection of adaptive evolution of candidate functional satellites.

The challenge of assessing genome-wide satellites

Satellites have been understudied across taxa due to the limitations of widely used 

sequencing technology and software tools for assessing variation [15]. For example, while 

Illumina sequencing provides data with low error rates at low cost, the short read lengths 

preclude inclusion of large repetitive regions in genome assemblies. In addition, typical 

short-read library preparation techniques include a PCR step that biases against 

amplification of sequences with extreme GC content, resulting in underrepresentation of 

some satellites prior to sequencing. Further, many computational methods are designed to 

assess repeats only in assembled data (e.g. Tandem Repeats Finder [16], Table I) and/or 

employ detection strategies that rely on similarity to known repetitive sequences (e.g. 

RepeatMasker [17]), which can preclude detection of novel repeats. Thus, accurately 

assessing and quantifying genome-wide satellite sequences across diverse taxonomic groups 

requires developing alternative approaches. New software and emerging library preparation 

and sequencing technologies reduce bias through interrogation of repetitive regions via 

either assembly-free computational methods or improved satellite inclusion in assemblies 

due to longer read lengths.

i. Assembly-free methods for assessing satellites—A variety of methods have been 

developed to avoid assembly bias by identifying satellites in unassembled read data (Table 

I). These methods employ different strategies to (i) identify reads derived from repetitive 

sequences, (ii) assign these reads to discrete repeat families, and (iii) quantify the genomic 

abundance and/or sequence variation of each repeat. In the first step, repeat-derived reads 

can be identified by alignment or similarity to known repeat sequences (Figure 1A, e.g 
ConTExt: McGurk and Barbash, bioRxiv doi: 10.1101/158386, alpha-CENTAURI [18]). 

However, this biases downstream analysis to known repeats. If comprehensive consensus 

sequences are not available or the goal is de novo discovery, then other strategies are more 

appropriate, depending on the repeat type. Reads derived from complex repeats can be 

identified by sequence similarity to each other in low coverage sequencing (“genome 
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skimming”) data or by down-sampling high coverage data such that only repetitive 

sequences are likely to be represented by multiple similar reads (e.g. RepeatExplorer [19], 

TAREAN [20]). One disadvantage to this approach is reduced power to detect low-copy 

repeats. In contrast, simple repeats can be identified by looking for recurrent motifs within 
reads, such as by kmer decomposition (Figure 1B, e.g. [21], k-Seek [22]). While this 

approach is not biased against low abundance repeats, the maximum detectable repeat 

monomer size is constrained by read length.

Once repeat-derived reads are identified, several strategies are available for assigning reads 

to discrete repeats and quantifying variation in those repeats, depending on the question of 

interest. The abundance of simple satellites can be quantified by their kmer counts, but this 

approach provides little information about higher order structures. In contrast, graph-based 

representations provide information on both structure and abundance. These methods work 

by constructing graphs based on the sequence similarity of reads, which can then be 

partitioned with clustering algorithms to identify distinct families/subfamiles of repeats (e.g. 

RepeatExplorer [19], TAREAN [20], [23]). Because of their repeated nature, tandem repeats 

generally appear as circular structures in the graph (Figure 1C). Subsequently, structural 

variation, copy number, and sequence polymorphism can be inferred and estimated using the 

clustered reads. If repeat consensus sequences are available, alignment-based strategies also 

yield copy-number information as well as sequence and structural variation. Any of these 

identification and assessment approaches can be combined to comprehensively assess 

repeats genome-wide (e.g. satMiner [24]) or to perform analysis of a specific repeat family 

(e.g. [18]).

ii. New sequencing technologies decrease bias and enable assembly—As 

mentioned above, typical Illumina sequencing library preparation workflows include PCR 

amplification of fragments prior to sequencing. New PCR-free library preparation 

techniques can mitigate this bias, although their regular adoption into “standard” sequencing 

protocols is not yet widespread. In the absence of PCR-free libraries, GC-bias can be 

accounted for by inferring correction factors from the relationship between coverage and GC 

content of single copy sequence [25,26] or by including GC composition as a covariate in 

regression analyses. However, such corrections are unlikely to completely account for bias at 

the extremes of GC-composition. Spike-in of calibration sequences into sequencing libraries 

may ultimately be required for accurate correction.

Read lengths have significantly improved for both widely-used (short read: Illumina) and 

relatively new (long read: Pacific Biosciences, PacBio; Oxford Nanopore) sequencing 

platforms (Table II). This increases the size of repeat monomers that kmer-based methods 

can interrogate and can be especially useful when employing targeted strategies, such as 

sequencing PCR amplicons, to assess copy number or sequence variation in a particular 

satellite [27]. The very long reads offered by PacBio and Nanopore can even yield 

assemblies of large satellite arrays using improved algorithms [28]. However, assessing 

variation in satellite sequence and abundance using these methods requires stringent filtering 

and validation methods to account for their high error rates.
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Combined with whole-genome sequencing approaches, optical mapping [29] provides an 

orthogonal way to assemble satellite arrays with large-monomers (~ 1 kb) without library 

preparation bias. This technique uses detection of fluorescently-labeled sequence motifs on 

single, stretched DNA fragments to construct a physical map of each fragment, thus 

providing long-range information to improve assemblies. However, short satellite monomer 

sequences cannot be mapped using this technology because labeled motifs cannot be 

detected distinctly if they are too close together.

Satellite expression or association with chromatin state/chromosome structures can also be 

assessed, using RNA sequencing (RNA-seq) or chromatin immunoprecipitation sequencing 

(ChIP-seq [30]). Newly developed protocols both enhance the sensitivity of these techniques 

and reduce bias due to PCR-duplicates arising from library preparation [31].

New approaches advance our knowledge of satellite evolution and function

i. Evolutionary patterns across taxa—Satellites can now be assessed from multiple 

lineages of nonmodel taxa at relatively low cost because (i) methods exist to identify and 

quantify satellite sequences de novo, (ii) short-read sequencing is relatively inexpensive, and 

(iii) low coverage sequencing schemes can be applied to even the largest genomes. As a 

result, there has been an explosion of studies assessing satellite diversity across a wide array 

of organisms including mammals: canids [32]; fish: Characidae [33], sterlet [34]; insects: 

cactophilic Drosophila [35], fireflies [36], locust [24], cricket [37]; and plants: Populus [38], 

bread wheat [39]. Comparison of sequences from males and females has uncovered satellites 

that differ in abundance between the sexes, enabling identification of sex chromosome 

satellites in systems with otherwise homomorphic (identical) sex chromosomes [34,40] with 

implications for the study of sex chromosome evolution. Predicted evolutionary patterns and 

hypotheses are beginning to be interrogated across taxonomic groups including the library 

hypothesis [22], age stratification of arrays [27], and concerted evolution [5,35] (Box 1). The 

taxonomic breadth of available short-read data sets the stage for rigorous comparative 

analyses of satellite evolution across life histories, mating strategies, polyploidization status, 

and divergence levels, though careful consideration of bias, including appropriate correction 

for GC-bias and batch effects, is paramount. Population-level studies remain rare (but see 

[22]), but will be valuable in investigating satellite evolutionary dynamics given the amount 

of variation in abundance and sequence even at small timescales.

ii. Neutral mutation and detecting selection—Extensive variation in specific satellite 

abundances across lineages suggests that they have high rates of copy number change. 

However, estimates of neutral rates of copy number change and sequence variation, 

including the relative contributions of gene conversion versus unequal exchange to these 

parameters, remain unknown. Estimation of these parameters is important in order to detect 

selection – for example, a satellite under stabilizing selection will have a narrower copy 

number distribution than expected given neutral processes, and, as the eventual fate of arrays 

is extinction (Box 1), remain in genomes longer than expected under neutrality. One 

approach for neutral rate estimation is assessment of satellites in whole-genome sequencing 

of mutation accumulation studies. Recently, Flynn and colleagues used k-Seek [22] to 

compare the satellite composition of Daphnia pulex lines derived from a single progenitor 
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either evolving under neutrality (bottlenecked to N = 1 each generation) or under selection 

(maintained as a large population) [26]. They found very high rates of satellite copy number 

change in the lines evolving under neutrality, on the order of 10-3 changes in copy number 

per repeat unit per generation. Further, variation in copy number across individuals from the 

large population was 33% lower than the variation across the mutation accumulation lines, 

suggesting that total satellite abundance is under stabilizing selection. Interestingly, some 

satellites were much more constrained than others.

iii. Including satellites in assemblies—Technologies that generate long-range data, 

such as long reads from single molecules or optical mapping, are now enabling assembly 

into or even across satellite regions [5]. Recently, Jain and colleagues (bioRxiv doi: 

10.1101/170373) assembled the entire centromere of the human Y-chromosome using 

Oxford Nanopore long reads. Once assembled, patterns predicted by theoretical models can 

be tested (Box 1). Combining PacBio long reads and optical mapping, Weissensteiner and 

colleagues confirmed the inverse relationship of repeat array length and recombination rate 

in the Eurasian crow [41]. Depending on array size and homogeneity, complete assemblies 

may still remain out of reach for some regions of the genome.

iv. Functional consequences of satellite variation—Assembly-free methods of 

quantifying satellite variants applied to ChIP-seq data have revealed some of the selfish and 

functional roles of satellite sequences. For example, Iwata-Otsubo and colleagues identified 

differences in array length and sequence diversity associated with selfishly-transmitted 

centromeres in mice by assessing satellite sequences immunoprecipitated with the 

centromere protein CenP-A [42]. While, in this study, specific satellite DNA sequences were 

associated with centromeres, studies in other organisms have suggested that sequence 

identity may not be as important. In a comparative ChIP-seq approach across races of maize, 

satellite sequence identity was not as closely associated with centromere function [43]. More 

work is necessary to further distinguish possible functional roles of different satellites and 

the relationship of function to copy number and sequence variation across the genome.

Conclusions

Recent developments in computational methods and sequencing technology are advancing 

our understanding of satellite evolution and function. Best practices should be established to 

mitigate biases introduced by library preparation and sequencing technologies. For short 

read data, incorporation of PCR-free library preparation techniques into short-read genome 

sequencing workflows should become routine where possible, i.e. when the amount of DNA 

is not limiting. When PCR-based libraries are necessary, biases in GC composition can be 

explored and corrected computationally. To control for batch effects, co-preparation and 

pooling of libraries across multiple lanes of sequences rather than sequential preparation and 

sequencing of samples is essential [22,26]. Spike-ins of known repeats can, in principle, 

serve as additional control. Finally, with improved read lengths, it will be important to 

continue adapting or developing new methods for satellite assessment in long-read, error 

prone datasets.
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To achieve the ultimate goal of identifying satellites evolving under selection, future work 

should establish the parameters of neutral satellite evolution and develop methods to detect 

departures from neutrality. Questions include: Do the empirical genome-wide distributions 

of satellite copy number and sequence variation across lineages fit with our expectations 

given neutral processes of replication slippage, unequal exchange, point mutation, and gene 

conversion? What is the respective contribution of each of these mechanisms? How and why 

do these vary across different satellites genome-wide? How prevalent is selection and what 

is the source? With this knowledge we will finally be able to identify the dominant 

mechanistic and evolutionary forces shaping variation in this “black box” of the genome.
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Box 1

Satellite DNA mechanisms and evolution1

Origins

Any process that generates tandemly-arrayed sequence is a potential source of new 

satellite DNA. Polymerase slippage is likely the major mechanism generating tandemly 

repeated simple sequences. Other processes such as rolling-circle replication and multiple 

TE insertions at the same site can generate tandem arrays of longer sequences.

Change in copy number

Once tandemly repeated sequences are formed, recombination with unequal exchange 

can change the repeat copy number in the array, (reviewed in [55–57]. Recombination 

can involve any pair of repeats in homologous or sister arrays (i). Thus, ectopic 

recombination allows expansions and contractions of arrays (ii). Intrastrand exchange 

may also cause array size contractions and expansions through loop deletions and 

reinsertion of resulting extrachromosomal circles [58]. Because unequal exchange occurs 

on tandemly repeated sequences, the contraction of an array to a single repeat unit is a 

dead end; any neutrally evolving array will eventually reach this state and become extinct 

[59].

Sequence variation

The same ectopic recombination that leads to copy number change in tandem arrays also 

permits variant alleles to replace or be replaced by wild-type repeat units (ii). 

Noncrossover, “gene conversion”, events may also allow variants to spread. Variants may 

fix in some lineages and be lost in others, resulting in arrays which are homogeneous 

within populations/species but distinct between them, a process termed concerted 

evolution [60]. Further, the interplay between unequal exchange and mutation generates 

more complex higher order repeats (HORs), where variant repeat units reoccur at 

particular periodicities (e.g. human centromeric repeats [9]).

Spread in the population

For many satellites, the spread of copy number and sequence variants is likely neutral. 

However some satellites may be functional and selection may shape their population 

variation. Extremely large arrays are likely deleterious, with selection imposing upper 

limits on copy number expansions [61,62]. Functional satellite array size may be under 

constraint [9,63], though the role of sequence identity in satellite function/constraint 

remains debatable [43,64]. Satellite variation may also reflect selfish processes rather 

than organismal selection. For example, size variation in centromeric satellite arrays may 

bias chromosome segregation during meiosis [65,66], thus permitting some satellite 

alleles to selfishly increase their population frequency [42].

Interplay of recombination and selection yields predictable patterns

Because recombination ultimately results in array loss, satellites are more likely to persist 

in heterochromatic genomic regions where recombination is suppressed [59]. Here, 

satellites can persist at low copy number and differentially expand in copy number in 
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daughter lineages, known as the library hypothesis [67]. In addition, since recombination 

is less efficient at the ends of arrays, divergent satellite repeat units are expected at the 

boundaries of arrays. However, selection for particular sequence variants could 

homogenize arrays. The relative contributions of mutational mechanisms (recombination, 

gene conversion) and estimates of mutational parameters (change in array size, birth/

death of sequence variants within an array; [61]) under neutral evolution are open 

questions.

Ectopic recombination between arrays results in copy number and sequence

1Here, we briefly describe major models of satellite evolution. Please see [6] for a recent, 

detailed review.
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Figure 1. Assembly-free strategies for identifying and analyzing repetitive sequences
A) Alignment based approaches generally collapse repeat-derived reads onto known repeat 

consensus sequences (ConTExt, McGurk and Barbash, bioRxiv doi: 10.1101/158386). Copy 

number can be inferred from the alignment depth, while sequence polymorphism can be 

assessed from the collapsed reads. The large gray rectangle represents consensus sequence, 

while smaller black rectangles represent individual sequencing reads. Red positions within 

reads indicate sequence polymorphism. B) Kmer-based approaches decompose sequencing 

reads into overlapping subsequences of length k. Reads derived from simple satellites will 

be enriched for a small set of kmers. These kmers can be quantified (k-Seek [22]) or used in 

more abstract representations of reads [23]. C) Graph-based methods construct 

representations of repeats using sequence similarity. The nodes in such graphs are 

sequences: kmers (De Bruijin graphs), sequencing reads (e.g. RepeatExplorer [19]), or entire 

repeats [44]. The edges reflect neighboring relationships (sequence composition similarity). 

Because of their tandem nature, satellites often present as as circular graphs. Distinct repeat 
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families can be identified as clusters of nodes. Here, two distinct satellites (the separate 

circular graphs, left and center) as well as a non-tandem sequence (right) are depicted.
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Table II

Technological strategies for assessing satellite DNA

Platform Read length;
method

Pros Cons Example

Illumina Up to 300 bp; clustered 
amplicon

Inexpensive, low error 
rate

PCR bias in library prep*; 
short reads

[40]

Ion torrent Up to 400 bp; on-bead 
amplicon

Fast, inexpensive Lower yield; high error rate 
in homopolymer tracts

[27]

Pacific Biosciences Up to 50 kb; single 
molecule

Long reads; can 
assemble complex 
satellite regions

Expensive; high error rate** [5]

Oxford Nanopore Up to 300 kb; single 
molecule

Longest reads High error rate; extracting 
high molecular weight DNA 
is limiting

Jain et al., bioRxiv 
10.1101/170373

Optical mapping (nanochannel) Up to 220 kb; single 
molecule

Long-range positional 
information; orthogonal 
method to sequencing

Requires a reference 
genome; large nicking 
intervals preclude mapping 
simple sequences

[41]

*
PCR-free libraries reduce bias.

**
PacBio also offers a Circular Consensus Sequencing (CSS) approach, where single circular molecules are read multiple times, thus generating a 

high quality consensus for each molecule.
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