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Abstract

Objective—To evaluate whether a history of traumatic brain injury (TBI) with reported loss of 

consciousness (LOC) is a risk factor for earlier onset of Alzheimer’s disease (AD) in an autopsy-

confirmed sample.

Method—Data from 2,133 participants with autopsy-confirmed AD (i.e., at least Braak 

neurofibrillary tangle stages III to VI and CERAD neuritic plaque score moderate to frequent) 

were obtained from the National Alzheimer’s Coordinating Center (NACC). Participants were 

categorized by presence/absence of self-reported remote (i.e., > 1 year prior to their first 

Alzheimer’s Disease Center visit) history of TBI with LOC (TBI+ vs. TBI−). Analyses of 

Covariance (ANCOVA) controlling for sex, education, and race compared groups on clinician-

estimated age of symptom onset and age of diagnosis.

Results—Average age of onset was 2.34 years earlier (p = .01) for the TBI+ group (n = 194) 

versus the TBI− group (n = 1900). Dementia was diagnosed on average 2.83 years earlier (p = .

002) in the TBI+ group (n = 197) versus the TBI− group (n = 1936). Using more stringent 

neuropathological criteria (i.e., Braak stages V–VI and CERAD frequent), both age of AD onset 

and diagnosis were 3.6 years earlier in the TBI+ group (both p’s < .001).

Conclusions—History of TBI with reported LOC appears to be a risk factor for earlier AD 

onset. This is the first study to use autopsy-confirmed cases, supporting previous investigations 

that used clinical criteria for the diagnosis of AD. Further investigation as to possible underlying 

mechanisms of association is needed.
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Introduction

Traumatic brain injury (TBI) has received increasing support as a risk factor for the later 

development of cognitive decline, including all-cause dementia (Barnes et al., 2014; Wang et 

al., 2012), mild cognitive impairment (MCI) (Li, Risacher, McAllister, & Saykin, 2016; 

LoBue, Denney, et al., 2016), Alzheimer’s disease (AD) (LoBue, Wadsworth, et al., 2016; 

Plassman et al., 2000), and frontotemporal dementia (FTD) (Deutsch, Mendez, & Teng, 

2015; LoBue, Wilmoth, et al., 2016). Although several studies have found that moderate to 

severe TBI increases dementia risk (Gedye, Beattie, Tuokko, Horton, & Korsarek, 1989; 

Plassman et al., 2000; Wang et al., 2012), others have failed to find an association (Crane et 

al., 2016; Dams-O’Connor et al., 2013), and evidence for mild TBI as a risk factor is limited, 

making it difficult to draw firm conclusions. Nonetheless, a series of autopsy and imaging 

studies have found evidence that a single moderate to severe TBI may contribute to the 

accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) (Johnson, 

Stewart, & Smith, 2012, 2013; Scott et al., 2016), the hallmark pathology of AD, suggesting 

a potential mechanistic association between TBI and an increased risk for dementia in some 

individuals.

TBI is thought to contribute to an accumulation of AD-related pathology by disrupting 

neurometabolic processes (Johnson et al., 2013). Rotational and shearing forces can lead to 

traumatic axonal injury, characterized by cytoskeletal damage, axonal swelling, and deficient 

neuronal transport (Johnson, Stewart, & Smith, 2010). These processes are believed to lead 

to the accumulation of intracellular Aβ (Ikonomovic et al., 2004; Johnson et al., 2013), and 

eventually the formation of Aβ plaques after being released into the surrounding brain tissue 

following progressive cell death (Johnson et al., 2010). Approximately 33% of individuals 

who died from a single, moderate to severe TBI were observed to have Aβ plaques at 

autopsy (Johnson et al., 2012; Roberts et al., 1994), and nearly 30% of individuals who 

survived at least one year post-TBI had Aβ plaques and/or NFTs present (Johnson et al., 

2012). Aβ plaques have also been found to be more common in vivo in individuals with a 

history of moderate to severe TBI when compared to controls, with the accumulation being 

linked to TBI-related white matter damage, which overlapped the pattern of deposition 

observed in AD (Scott et al., 2016). Although an association between a single TBI and NFTs 

is less clear, significantly higher percentages of NFTs were found in individuals at least one 

year after sustaining a single moderate to severe TBI compared to age-matched controls 

(Johnson et al., 2012). Thus, it appears that for some individuals, a history of TBI can be 

associated with an increased risk for later developing AD neuropathology, although the 

mechanism underlying this risk is poorly understood.

Since TBI may contribute to an accumulation of AD-related pathology, TBI may accelerate 

clinical expression of cognitive disorders later in life. For example, in a series of large 
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multicenter investigations, our group examined individuals diagnosed with AD, mild 

cognitive impairment, and frontotemporal dementia, and consistently found that a remote 

history of TBI (> 1 year prior to evaluation) with reported loss of consciousness (LOC) was 

linked to an approximately 2.5 year earlier age of onset for each condition (LoBue, Denney, 

et al., 2016; LoBue, Wadsworth, et al., 2016; LoBue, Wilmoth, et al., 2016). However, 

previous studies have differed in the degree of this association, with some reporting that a 

TBI history can accelerate the onset of AD by 7 to 9 years (Gedye et al., 1989; Nemetz et 

al., 1999; Sullivan, Petitti, & Barbaccia, 1987), while others found no relationship between 

TBI and earlier AD onset (Guo et al., 2000; Plassman et al., 2000; Rasmusson, Brandt, 

Martin, & Folstein, 1995). Notably, previous studies have used clinical criteria for 

diagnosing AD rather than more reliable neuropathological criteria (Beach, Monsell, 

Phillips, & Kukull, 2012). As such, the primary aim of this study was to determine whether 

TBI is associated with earlier age of AD onset in an autopsy-confirmed sample. The findings 

would provide clarity to the currently mixed literature and generate additional insight into 

TBI as a risk factor for earlier onset of AD.

Methods

Participants

Data for this study were obtained from the National Alzheimer’s Coordinating Center 

(NACC) Uniform Data Set (UDS) and Neuropathology Data Set. NACC has collected 

clinical, autopsy, demographic, and genetic data on healthy controls and those diagnosed 

with mild cognitive impairment, AD, and other types of dementia from Alzheimer’s Disease 

Centers (ADCs) across the United States from September 2005 (Morris et al., 2006). All 

ADCs are funded by the National Institute on Aging (NIA). Written informed consents were 

obtained from participants at each ADC and approved by the ADC’s Institutional Review 

Board (IRB). Research using the NACC database was approved by the University of 

Washington IRB. Selection criteria for this study included participants from UDS versions 1 

and 2 who were a) aged 50 years or older, b) had a clinical diagnosis of all-cause dementia 

during initial/follow-up visits up to March 2015, and c) had significant AD-related 

pathology at autopsy. In total, data were drawn from 32 ADCs in this sample. A clinical 

diagnosis of dementia was made by a team of multi-disciplinary ADC clinicians using 

established guidelines for possible/probable AD (NINCDS/ADRDA criteria; (McKhann et 

al., 1984), Lewy body dementia (McKeith et al., 2005), vascular dementia (NINDS-AIREN; 

Roman et al., 1993), frontotemporal dementia (Neary et al., 1998), and other medical 

conditions (Diagnostic and Statistical Manual for Mental Disorders, 4th edition). A 

pathological diagnosis of AD was inferred from the NIA-AA criteria (Hyman & 

Trojanowski, 1997) using Braak neurofibrillary tangle stages and CERAD neuritic plaque 

scores. Braak stages refer to patterns of distribution and severity depositions of NFTs, where 

stages I–II indicate transentorhinal involvement, III–IV indicate limbic and hippocampal 

involvement, and V–VI indicate extensive neocortical involvement (Braak & Braak, 1991). 

CERAD neuritic plaque scores are used in combination with Braak staging, and indicate the 

density of neuritic plaques (primarily composed of Aβ deposits) in select neocortical regions 

(Mirra, Hart, & Terry, 1993). In the current study, the combination of Braak stages III–VI 

with moderate or frequent CERAD plaque scores (Hyman & Trojanowski, 1997) indicated 
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that AD-related pathology was a sufficient explanation for cognitive impairment, and can be 

considered a minimum threshold for a histopathological diagnosis of AD (Beach et al., 

2012). From this initial sample, an additional sample was derived to assess whether findings 

remained using criteria where the probability of histopathologic AD was the highest (i.e., 

Braak stages V–VI and frequent CERAD scores) (Hyman & Trojanowski, 1997).

Measures

The NACC dataset consisted of three questions related to TBI history that were answered by 

participant or informant report during ADC visits. Specifically, it was asked if participants 

had ever sustained a TBI resulting in LOC < 5 minutes, ≥ 5 minutes, or a chronic deficit. 

Responses to these three questions were coded as absent, recent/active, remote/inactive, or 

unknown. Recent/active was defined as having a TBI < 1 year ago or requiring ongoing 

treatment and remote/inactive was defined as having a TBI ≥ 1 year ago with recovery or no 

current treatment. Because time since injury was unknown, we examined the effect of a 

history of remote TBI by including participants who reported a remote/inactive TBI (i.e. 

occurring ≥ 1 year prior) at the initial ADC visit, while excluding those who were coded as 

having a recent/active TBI at the initial visit or anytime thereafter. To limit potential 

confounding of cognitive decline directly related to an injury, those reporting a chronic 

deficit from a TBI were also excluded. Therefore, only those participants who reported a 

remote/inactive TBI at the initial visit with no ongoing chronic deficits (TBI+) or an absence 

of TBI history at every visit (TBI−) were included in this study.

Age of dementia onset was defined as: 1) the ADC clinician’s estimated age of cognitive 

decline based on participant/informant report, medical records, and observation, and 2) the 

participant’s age at the ADC visit in which they were diagnosed with dementia. Because 

demographics (e.g., age, sex, race, education), family history of dementia (e.g., a first-degree 

relative), apolipoprotein E ε4 status (Apoe4; number of alleles), and depression (i.e., 

lifetime history) have been linked to an increased risk for dementia, these were examined to 

assess their potential influence on age of dementia onset. Depression history was defined 

through NACC as having been seen by a clinician regarding depressed mood, having been 

prescribed an antidepressant medication, or having been diagnosed with a mood disorder 

(i.e., major depression, dysthymia, bipolar disorder). Depression and a family history of 

dementia were coded in the NACC database as absent, present, or unknown.

Statistical Analyses

Chi-square analyses were used to assess whether TBI+ and TBI− groups differed by 

demographics, number of Apoe4 alleles, family history of dementia, and depression history. 

To test whether years of education differed between groups, an Independent sample t test 

was used. Any differences in these variables were then used as covariates in primary 

analyses. An Analysis of Covariance (ANCOVA) was used to assess whether age of 

dementia onset (clinician estimated age of cognitive decline and age at diagnosis) was 

significantly different between the TBI+ and TBI− groups. Additional ANCOVAs were 

performed to assess whether associations remained for participants with the highest 

probability that their dementia was explained by AD (i.e., Braak stages V–VI in combination 

with frequent CERAD scores) (Hyman & Trojanowski, 1997). Afterward, ANCOVAs were 
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performed again only for participants without co-morbid frontotemporal lobar degeneration 

and/or Lewy body pathology to determine if effects remained after excluding those with 

mixed pathologies known to have an earlier symptom onset. Assumptions for analyses were 

reviewed, and while there was homogeneity of regression slopes (no significant interactions 

between TBI history and any covariate), violations of homogeneity of variance occurred. 

Welch Analyses of Variance (ANOVA) were used to reduce the chances of a Type I error to 

account for inequality of variance. Missing data were assessed for each individual analysis 

and participants missing relevant data were not included in analyses. All analyses were 

conducted using IBM SPSS Statistics V24 (IBM Corp, SPSS Statistics V24, Armonk, New 

York, USA, 2013) with p < 0.05 as the level of significance.

Results

Clinical, demographic, and sample characteristics

A total of 2,153 participants with autopsy-confirmed AD were included, of which 197 

reported a history of TBI (TBI+) and 1,956 did not (TBI−). One participant was missing 

information regarding race, 1% (n = 20) were missing years of education, 10% (n = 217) 

family history of dementia, 15% (n = 314) Apoe4 status, 1% (n = 20) age of diagnosis, and 

3% (n = 59) clinician-estimated age of symptom onset. TBI+ and TBI− groups were 

primarily Caucasian (94%) and well-educated (M = 15.18), and they did not differ in 

lifetime history of depression, depression within the last 2 years of dementia diagnosis, 

family history of dementia, or number of Apoe4 alleles. TBI+ and TBI− groups differed on 

race, sex, and years of education, as the TBI− group had a smaller proportion of Caucasians, 

fewer males, and lower levels of education than the TBI+ group (See Table 1). Similar 

results were observed among participants with the highest probability that their dementia 

was explained by AD (i.e., groups differed by sex, race, and education).

TBI history and age of symptom onset and dementia diagnosis

After excluding participants with missing data and controlling for race, sex, and years of 

education, the average age of clinician-estimated symptom onset was 2.35 years earlier (p 
= .01, d = 0.23, 95% CI [0.08, 0.38]) for the TBI+ group compared to the TBI− group. 

Similarly, the average age at which participants received a dementia diagnosis was 2.83 

years earlier (p = .002, d = 0.28, 95% CI [0.13, 0.43]) for the TBI+ group compared to the 

TBI-group (See Table 2). Among cases with the highest probability of dementia due to AD, 

a 3.6-year earlier onset and diagnosis (both p’s < .001, both d’s = 0.36, 95% CI [0.19, 0.54]) 

was observed in the TBI+ group compared to the TBI-group (See Table 2). Of the 

covariates, only male sex was associated with earlier onset and diagnosis of AD, which was 

seen in both samples (both p’s < .001). Inequality of variance was significant for the overall 

sample (p < 0.01) and the sample with more stringent neuropathological criteria (p = .029). 

However, Welch ANOVAs showed that the TBI+ group had a significantly earlier age of 

symptom onset and age of diagnosis for both samples (both p’s < 0.01) compared to the TBI

− group, supporting the initial findings. Similarly, examining only participants with an 

absence of frontotemporal lobar degeneration or Lewy body pathology showed a 3.6 year 

earlier dementia onset (p = .014, d = 0.35, 95% CI [0.10, 0.59]) and a 3.44 year earlier 

Schaffert et al. Page 5

Neuropsychology. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diagnosis (p = .022, d = 0.34, 95% CI [0.09, 0.58]) in those with (n = 69) vs. without (n = 

751) a history of TBI.

Discussion

A history of TBI with reported LOC occurring more than one year prior to diagnosis was 

associated with an approximately 3-year earlier age of symptom onset and diagnosis in 

individuals with autopsy-confirmed AD. While these findings are consistent with previous 

reports in well-characterized individuals clinically diagnosed with MCI (LoBue, Denney, et 

al., 2016), FTD (LoBue, Wilmoth, et al., 2016), and AD (LoBue, Wadsworth, et al., 2016), 

this is the first study to utilize an autopsy-confirmed AD sample. Despite mixed findings in 

the literature, it appears that a history of TBI with LOC can hasten the onset of AD for some 

individuals.

Axonal injury is one proposed mechanism of increasing dementia risk following a TBI, and 

some injuries have been suspected of initiating chronic neurodegeneration, at least after 

moderate to severe TBI (Johnson et al., 2013). In a longitudinal study, Tomaiuolo et al. 

(2012) evaluated group differences in white matter volume in normal controls and survivors 

of severe TBI at 1 and 8 years post-injury. The study revealed significantly smaller corpus 

callosum volumes in TBI survivors compared to controls and more importantly, significant 

loss of corpus callosum volume between 1 and 8 years post-injury, suggesting axonal 

degeneration that exceeded the time frame of acute injury effects (Tomaiuolo et al., 2012). 

Because accelerated white matter degeneration has been found to be associated with 

increased risk for cognitive decline in aging individuals (Silbert et al., 2012), it is possible 

that some injuries may be linked to an earlier dementia onset via a progressive loss of white 

matter connections. However, it is unknown if degenerative changes continue beyond this 

timeframe or occur in less severe injuries. It is suspected that the effects of TBI may lead to 

a greater accumulation of pathological burden that overlaps several neurodegenerative 

conditions similar to AD, and as a result, might accelerate onset of neurodegenerative 

dementias (for a review, see LoBue, Cullum, Didehbani, et al., in press). Alternatively, rather 

than initiating a neurodegenerative process, TBI may induce a static reduction in brain and 

cognitive reserve that lowers the threshold for manifestation of cognitive dysfunction related 

to AD and other dementia conditions. If so, TBI may reduce the brain’s ability to 

compensate for an underlying neurodegenerative process, which could increase the risk of 

earlier dementia onset (for a review, see Bigler & Stern, 2015). Thus, the mechanistic link 

between TBI and earlier dementia onset remains unknown.

Despite some individuals having shown increased AD neuropathology following moderate 

to severe TBI (Johnson et al., 2012), not all studies have supported this link. For example, 

Crane et al. (2016) conducted a large retrospective analysis to examine a history of TBI as a 

risk factor for the development of various neuropathological changes in 1,589 community 

dwelling older adults. Specifically, the authors concluded that a remote TBI with LOC was 

associated with increased Lewy bodies and cerebral microinfarcts, but not AD pathology in 

the 213 cases that came to autopsy. Although other lines of evidence suggest that Lewy 

bodies can accumulate following traumatic axonal injury (Sundman, Hall, & Chen, 2014; 

Uryu et al., 2007), one possible explanation for the lack of an association observed with AD 
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may relate to the use of a very high threshold to define AD pathology in that study (i.e., the 

authors’ quantified NFTs in the neocortex, or only Braak Stages V and VI), and the results 

may have differed if more inclusive criteria were used. Alternatively, it is possible that some 

neuropathological features may plateau early in the disease process (Serrano-Pozo, Frosch, 

Masliah, & Hyman, 2011), thus making it difficult to measure an increase in 

neuropathological features at autopsy. Nonetheless, not all individuals with a history of TBI 

have higher levels of AD pathology (Johnson et al., 2012) or are at an increased risk for AD 

(Dams-O’Connor et al., 2013).

TBI severity, age at injury, and repeated injuries may be factors that moderate the risk for 

later developing dementia. For example, Gardner et al. (2014) found that a moderate to 

severe TBI sustained after age 55 was associated with an increased risk of all-cause 

dementia (hazard ratios ranged from 1.31 to 1.65) when followed for 7 years, while an 

association with mild TBI was only observed among individuals injured after age 65 (hazard 

ratios 1.22 to 1.26). The risk for dementia was doubled for individuals who sustained 

multiple TBIs of any severity, though other studies have not found such an association with 

all-cause dementia (Mehta, Ott, Kalmijn, et al., 1999; Dams-O’Connor et al., 2013). 

Methodological differences, such as duration of followup, TBI classification, and methods 

of determining dementia diagnosis, may help explain the mixed literature regarding TBI and 

the risk of AD and other dementias.

There are several methodological limitations that could limit the generalizability of our 

findings. First, because of the limitations in the available data, the time of injury in NACC 

cases UDS versions 1 and 2 is unknown, and TBIs may have occurred between one-year and 

several decades earlier, even though individuals with more recent injuries were excluded. As 

such, it is possible that the clinician-estimated age of cognitive decline (i.e. symptom onset) 

could have preceded injury in some individuals. Second, UDS versions 1 and 2 in the NACC 

database does not include indices of TBI severity, presence of multiple TBIs, and/or other 

relevant symptoms beyond LOC. Furthermore, the NACC database does not capture 

information regarding presence or duration of post-traumatic amnesia, which can be 

confused for brief LOC in individual cases, and as such, it is unknown if some patients 

reported a brief LOC in place of post-traumatic amnesia (e.g., see Ruff, Iverson, Barth, 

Bush, & Broshek, 2009). Finally, although cases were selected from a national registry, most 

were well-educated Caucasians, which could limit generalizability.

Despite these limitations, this is the first study to find that a history of TBI with LOC was 

associated with an approximately 3-year earlier onset of AD in a neuropathologically 

confirmed sample, consistent with a previous report from a large national sample using 

clinical diagnoses (LoBue, Wadsworth, et al., 2016). These findings provide further evidence 

for TBI as a risk factor for earlier onset of AD, and highlight the importance for further 

research. Future neuropathological and imaging studies are needed to assess whether TBI 

results in increasing neuropathological burden through continued white matter degeneration 

or lowers neuronal reserve. In addition, investigations to help elucidate specific injury 

characteristics that may predispose some individuals to develop dementia and earlier 

symptom onset are needed.
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Public Significance Statement

This study adds to the growing body of evidence that a traumatic brain injury (TBI) with 

loss of consciousness (LOC) is a risk factor for developing Alzheimer’s-related dementia 

earlier than someone without a history of TBI with LOC. Future research is needed to 

understand what specific injury and demographic characteristics may put some 

individuals more at risk than others, and the mechanism by which TBI may accelerate the 

onset of these disorders.

Schaffert et al. Page 11

Neuropsychology. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schaffert et al. Page 12

Table 1

Demographics of an autopsy-confirmed Alzheimer’s disease sample with and without a history of TBI

TBI+ (n=197) TBI− (n=1956) Statistic (p-value)

Education in years, M (SD) 15.87 (3.01) 15.11 (3.25) −3.15 (002*)

Males, n (%) 134 (68%) 1047 (54%) 15.18 (< .001**)

Non-Hispanic Caucasian, n (%) 195 (99%) 1826 (93%) 9.9 (.007*)

Family history of dementia, n (%) 116 (62%) 1113 (64%) .11 (.74)

Number of APOE ε4 alleles .42 (.81)

 Zero APOE ε4 alleles, n (%) 71 (43%) 691 (41%)

 One APOE ε4 allele, n (%) 71 (43%) 758 (45%)

 Two APOE ε4 alleles, n (%) 24 (14%) 224 (13%)

Depression

 Lifetime, n (%) 95 (49%) 927 (49%) .003 (.96)

 Within 2 years of diagnosis, n (%) 87 (45%) 847 (44%) .05 (.83)

*
p < .05,

**
p < .001

Note. APOE ε4 indicates apolipoprotein E ε4.
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