
A regression framework for assessing covariate effects on the 
reproducibility of high-throughput experiments

Qunhua Li* and Feipeng Zhang
Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

Summary

The outcome of high-throughput biological experiments is affected by many operational factors in 

the experimental and data-analytical procedures. Understanding how these factors affect the 

reproducibility of the outcome is critical for establishing workflows that produce replicable 

discoveries.

In this work, we propose a regression framework, based on a novel cumulative link model, to 

assess the covariate effects of operational factors on the reproducibility of findings from high-

throughput experiments. In contrast to existing graphical approaches, our method allows one to 

succinctly characterize the simultaneous and independent effects of covariates on reproducibility 

and to compare reproducibility while controlling for potential confounding variables. We also 

establish a connection between our model and certain Archimedean copula models. This 

connection not only offers our regression framework an interpretation in copula models, but also 

provides guidance on choosing the functional forms of the regression. Furthermore, it also opens a 

new way to interpret and utilize these copulas in the context of reproducibility.

Using simulations, we show that our method produces calibrated type I error and is more powerful 

in detecting difference in reproducibility than existing measures of agreement. We illustrate the 

usefulness of our method using a ChIP-seq study and a microarray study.
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1. Introduction

High-throughput technologies are indispensable tools in modern biological research. In each 

experiment, a large number of candidates are evaluated for their association with a biological 

feature of interest, and the ones with significant associations are identified for further 

analyses. Despite their widespread use, outputs from high-throughput experiments are quite 

noisy and the reliability of their findings is a constant concern. Because ground truth is 
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usually lacking in this type of studies, the reproducibility of outcomes across replicated 

experiments plays an important role in establishing confidence in measurements and 

evaluating the performance of a workflow.

The performance of a high-throughput workflow can be affected by many operational 

factors, for example, experimental platforms or protocols, parameter settings in experimental 

procedures or data-analytical procedures, and labs conducting the experiments. 

Understanding how these factors affect the reproducibility of the outcome is crucial for 

identifying potential sources of irreproducibility and designing workflows that produce 

reliable results.

An important criterion for assessing the reproducibility of high-throughput experiments is 

how consistently significant candidates are ranked in replicate experiments. If the 

significance threshold is set, this assessment is straightforward: one may first identify the 

candidates that pass the threshold on individual replicates, then evaluate the reproducibility 

of the identifications, by computing, for example, the (rank) correlation between the 

significance scores of common identifications or the proportion of candidates that are 

commonly identified on the replicates. However, this evaluation depends on the choice of the 

threshold, thus may not truly reflect the intrinsic reproducibility of the workflows being 

evaluated.

A natural remedy is to perform the evaluation sequentially at a series of thresholds, and then 

to use the entire profile to describe the reproducibility of a workflow. By comparing the 

profiles, the reproducibilities of different workflows can be assessed, without linking them to 

any specific significance thresholds. This is particularly useful when the significance scores 

from different workflows are on different scales. Several graphical tools have been 

developed based on this sequential approach, for example, the correspondence at the top 

(CAT) plot (Irizarry et al., 2005) and the correspondence curve (Li et al., 2011). These tools 

have been used in various high-throughput settings for evaluating the inter and intra-

platform reproducibility of microarray (Irizarry et al., 2005; Guo et al., 2006), cross-

platform correspondence between microarray and RNA-seq (Kim et al., 2011), and the 

reproducibility of ChIP-seq studies (Landt et al., 2012; Li et al., 2011).

However, these tools are inconvenient to use for assessing the effects of operational factors 

on reproducibility, because they do not provide any quantitative summaries or statistical 

inference. For example, in a multiple-laboratory microarray study, Irizarry et al. (2005) 

studied how lab and platform affect the reproducibility of differential gene expression levels 

between a pair of replicate samples (details in Section 5). To investigate the lab and platform 

effects, identical biological samples were provided to all the labs, and the gene expression 

levels were measured by each lab on at least one of the three microarray platforms. Table 5a 

shows the measurements for a subset of genes. For each lab-platform combination, a CAT 

curve was plotted to evaluate the concordance between the absolute log2 fold changes across 

the replicates. The curves then were compared to assess platform and lab differences (Figure 

1b for a subset of four combinations). Though these curves are useful for visual comparison, 

lab or platform effects are difficult to infer due to lack of statistical inference. The 

comparison also becomes visually challenging when there are more than a handful of curves 
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(cf. Figure 2b in Irizarry et al. (2005) for ten combinations). Moreover, for some 

experimental designs, e.g. incomplete designs, it is impossible to plot curves for all the 

combinations, as observations from some combinations of operational factors are not 

available. In these scenarios, succinct numerical summaries on the effects of operational 

factors and their statistical inference are more useful for drawing scientific conclusions.

In this work, we develop a regression framework, motivated from the correspondence curve 

(Li et al., 2011), to assess how operational factors affect the reproducibility of high-

throughput experiments. The key idea is to view the correspondence curve as a series of 

probabilities that a candidate is reproducibly identified at a sequence of thresholds, and then 

model its relationship with operational factors through a novel cumulative link model. Using 

this formulation, our model not only incorporates the sequential feature of the 

aforementioned graphical tools, but also provides the power and flexibility associated with 

regression models.

Moreover, we also establish a connection between this model and certain Archimedean 

copula families through an algebraic relationship. Archimedean copulas are a class of 

parametric copulas. They are widely used to model dependence structures in multivariate 

data, especially in actuarial science, finance, hydrology, and survival analysis (see Genest 

and Favre (2007) for a review). The connection that we establish allows the regression 

coefficients in our model to be interpreted in copula models, naturally linking 

reproducibility with classical multivariate dependence models. Importantly, this connection 

provides a principled approach to selecting the canonical form of our regression model, 

analogous to the selection of canonical link functions in the generalized linear models 

(GLM). It also opens a new way to interpret and utilize these copulas in the context of 

reproducibility of high-throughput biological experiments.

The remainder of the article is organized as follows. In Section 2, we present our regression 

framework. We first describe a key interpretation of the correspondence curve that motivates 

the development of our method, then present our regression model, its connection with 

Archemidean copulas, and its interpretation as a cumulative link model. Section 3 presents 

the estimation procedure. In Section 4, we use simulation studies to evaluate the 

performance of our method. In Section 5, we apply our method to two real datasets that 

motivated this study. Section 6 discusses future work and enhancement.

2. Methods

The data that we consider consist of outputs of high-throughput experiments generated from 

S workflows (S ≥ 2). All the workflows measure the same underlying biological process, but 

they differ in certain operational factors, for example, experimental protocols, measurement 

platforms, or experimental parameters. Denote the vector of operational factors for the 

workflow s as xs. For each workflow, few replicates are available, such that the 

reproducibility of the findings identified in the workflow can be assessed across replicates. 

Table 5a shows an example with four workflows, two replicates and two factors. We will 

focus on the case of two replicates, as this is the primary focus of most existing methods, 

including the aforementioned graphical tools and correlation measures. For each replicate, 
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the output consists of a list of candidates, such as genes or protein-binding sites, and their 

significance scores, which are assigned by the workflow to indicate the strength of evidence 

for a candidate to be a true signal. The scores can be original measurements (e.g. fold 

enrichment) or test statistics derived from original measurements (e.g. p-value). They can 

distribute differently on different replicates. We will use the scores as our data. Without loss 

of generality, we assume that a score of small value indicates strong evidence (e.g. p-value) 

and receives a low value in its rank, i.e. the most significant candidate receives rank one. For 

scoring systems that represent strong evidence using high values, a monotonic 

transformation can be applied to reverse the order. Our interest is to quantitatively evaluate 

how operational factors affect the reproducibility of the rank lists across replicates.

Let Y1
s = (Y1, 1

s , Y1, 2
s ), …, Yn

s = (Yn, 1
s , Yn, 2

s ) be the significance scores of a sample of n 

candidates on two replicates, assigned by the workflow s. We suppose that the scores 

Y1, j
s , …, Yn, j

s  on the replicate j = 1, 2, are a sample of the random variable Y j
s from an 

unknown distribution F j
s. Because scores from different replicates may be on different scales, 

we identify significant candidates by the ranks of their scores, rather than the actual values. 

That is, given a cutoff t ∈ (0, 1), a candidate i is deemed as significant on the jth replicate, if 

its score Y i, j
s ≤ 𝔽 j

s − 1(t), where 𝔽 j
s( · ) is the empirical version of F j

s( · ), and 𝔽 j
s − 1( · ) is the 

inverse of 𝔽 j
s( · ). We declare a candidate as a reproducible identification from the workflow 

s, if it is significant on both replicates, i.e. Y i, 1
s ≤ 𝔽1

s − 1(t) and Y i, 2
s ≤ 𝔽2

s − 1(t). For notational 

simplicity, we omit the superscript s when no confusion arises thereinafter.

2.1 Probabilistic interpretation of the correspondence curve

To motivate our method, we first provide a brief introduction to the correspondence curve 

(Li et al., 2011), in comparison with the CAT plot (Irizarry et al., 2005), and then describe a 

key interpretation of the correspondence curve that leads to the development of our 

regression model.

The correspondence curve is a graphical tool for visualizing how the concordance of two 

rank lists changes in the decreasing order of significance. Suppose n candidates are 

evaluated. Let  = {t | 0 < t1 < … < tM ≤ 1} be a set of prespecified thresholds (M < n). The 

correspondence curve is constructed by plotting the pairs of (t,Ψn(t)) for all t ∈ , where

Ψn(t) = 1
n ∑

i = 1

n
I(Yi, 1 ≤ 𝔽1

−1(t), Yi, 2 ≤ 𝔽2
−1(t))

is the proportion of common entries that pass the threshold t among all candidates. This 

curve has characteristic shapes at independence (a parabola of Ψn(t) = t2) and at perfect 

positive correlation (a line of Ψn(t) = t). The strength of concordance between the rank lists 

and how the concordance changes with the significance can be read off from the curve by 

comparing the curve with the characteristic shapes. Its detailed properties can be found in 

(Li et al., 2011). Figure 1a shows the correspondence curves of four lab-platform 
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combinations, computed using the absolute log2 fold change on two replicate samples, in the 

multiple-laboratory microarray study (Irizarry et al., 2005) in Section 5.

A closely related curve is the CAT plot (Irizarry et al., 2005). To construct a CAT plot, one 

makes a list of l most significant candidates for each rank list, and plots the proportion of 

common entries on the two lists against the list size l. If one rewrites l ≡ ⌈tn⌉, where ⌈tn⌉ is 

the smallest integer that is greater than tn, then this curve is equivalent to plotting the pairs 

of (t, Ψn
∗(t)) and rescaling the x-axis by n, where

Ψn
∗(t) = 1

⌈tn⌉ ∑
i = 1

n
I(Yi, 1 ≤ 𝔽1

−1(t), Yi, 2 ≤ 𝔽2
−1(t)) .

Figure 1b shows the CAT plots of the same data as in Figure 1a.

Though both Ψn(t) and Ψn
∗(t) represent the proportion of common entries that pass a 

threshold t, Ψn(t) is with respect to all candidates, whereas Ψn
∗(t) is with respect to 

candidates that pass the threshold on one replicate. This subtle difference makes Ψn(t) a 

nondecreasing function of t, but not Ψn
∗(t). Consequently, the correspondence curve is 

nondecreasing with t, whereas the shape of a CAT plot can vary substantially with the 

spacing of t. As it is easier to model a nondecreasing curve, we will develop our model 

based on the correspondence curve.

Our key observation is that the population version of Ψn(t),

Ψ(t) = E[I Y1 ≤ F1
−1(t), Y2 ≤ F2

−1(t) ] = P(Y1 ≤ F1
−1(t), Y2 ≤ F2

−1(t)) (1)

is the probability that a candidate is reproducibly identified on both replicates at a given 

threshold t. Hence, the correspondence curve can be viewed as a set of probabilities that a 

candidate is reproducibly identified at a series of thresholds. Note that P(Y j ≤ F j
−1(t)) = t, so 

the threshold t actually is the probability that a candidate is identified on a single replicate. 

Therefore, the correspondence curve can be interpreted as an illustration of the empirical 

relationship between the probability of being reproducibly identified and the probability of 

being identified on individual replicates. A model-based approach depicting this relationship 

will be useful for succinctly summarizing the information provided by a correspondence 

curve. Furthermore, (1) indicates that each point on the correspondence curve can be 

interpreted as an expectation of a binary random variable, 

V i, t = I(Y i, 1 ≤ 𝔽1
−1(t), Y i, 2 ≤ 𝔽2

−1(t)), at threshold t. This suggests that the inference on a 

correspondence curve can be based on Vi,t.
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2.2 A regression model for a correspondence curve

We first consider a single correspondence curve. To model the curve, we take a parametric 

approach to represent the curve in a regression model, with Ψ(t) as the response variable and 

t as the predictor. As Ψ(t) can be interpreted as the expectation of the binary random 

variable Vi,t, we model this relationship using the generalized linear models (GLM) for 

binary responses. We therefore call this model the correspondence curve regression and 

define it as,

g(Ψ(t)) = ∑
k = 1

K
αkhk(t), t ∈ 𝒯, (2)

where  = {t | 0 < t1 < … < tM ≤ 1} is a set of prespecified thresholds, g is a known link 

function, h = (h1, …, hK) are prespecified functions, and α = (α1, …, αK) is an unknown 

parameter vector that reflects how the probability of being reproducibly identified changes 

with the probability of being identified on a single replicate through h. Clearly, the more 

predictive t is to Ψ(t), the higher the reproducibility is. Thus the value of αk reflects the 

strength of the reproducibility.

Note that Ψ(t) is by definition a monotonically increasing function of t, Ψ : [0, 1] → [0, 1]. 

Thus, g and hk must be chosen in a way to ensure that g−1 ∑k = 1
K αkhk(t)  is a monotonically 

increasing function with respect to t, satisfying g−1 ∑k = 1
K αkhk(0) = 0 and 

g−1 ∑k = 1
K αkhk(1) = 1. For example, one simple choice is logit(Ψ(t)) = α1+logit(t). In this 

form, α1 represents the log odds ratio of being reproducibly identified over being identified 

on a single replicate. A larger α1 reflects a higher reproducibility. In Section 2.3, we will 

describe a procedure to select the optimal choice of g, K, and hk according to the empirical 

dependence structure of (Y1, Y2).

Remark 1: The cutoff set  typically consists of evenly spaced cutoff points in the range of 

(0, 1]. In some applications, signals that fail to pass a critical value t0 will be of no practical 

interest, then one may set tM ≤ t0. We will evaluate how spacing between cutoff points 

affects the accuracy of estimation using simulations in Section 4.

2.3 Selection of K, hk and g through a connection with Archimedean copula models

Our model is essentially a parametric model to describe the relationship between the joint 

cumulative distribution function and the marginal cumulative distribution function for a 

bivariate distribution. One commonly used model for describing such a relationship is the 

copula model. As we will show, our regression model (2) is indeed related to Archimedean 

copulas. This connection not only offers our model and its regression coefficients an 

interpretation in the context of copula models, but also provides a principled way to select 

the functional form of our regression model.
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Introduction to Archimedean copulas—We first give a brief introduction to 

Archimedean copulas and refer to (Joe, 1997; Nelsen, 2006) for details. Copulas are 

multivariate models for modeling the dependence of multiple random variables. A J-

dimensional copula, C : [0, 1]J → [0, 1], is the multivariate cumulative distribution function, 

C(t1, …, tJ) = P(T1 ≤ t1, …, TJ ≤ tJ), of uniform random variables T1, …, TJ. Archimedean 

copulas are a class of parametric copulas that can be written in the form of

ψ(C(t1, …, tJ); θ) = ψ(t1; θ) + … + ψ(tJ; θ), (3)

where θ is an association parameter describing the strength of the dependence between Tj’s, 

and ψ is a parametric function specific to each Archimedean copula, mapping [0, 1] into 

[0,∞), called a generator function. Archimedean copulas consist of a great variety of 

families of copulas and can model various dependence structures. A list of commonly-used 

Archimedean copulas and their properties can be found in Nelsen (2006).

Connection with Archimedean copula models—To establish the connection between 

our model and Archimedean copula models, note that, when J = 2, the response variable in 

our model is actually the diagonal section of a bivariate copula, i.e. Ψ(t) = C(t, t). If C is an 

Archimedean copula with a generator function Ψ and an association parameter θ, then by 

(3),

ψ(Ψ(t)) ≡ ψ(C(t, t); θ) = 2ψ(t; θ) . (4)

For certain ψ, we observe that, after some algebraic rearrangement, (4) can be represented in 

the form of

g(Ψ(t)) = ∑
k = 1

K
αk(θ)hk(t), (5)

where hk(·) is a function of t (free of θ) and αk(θ) is a function of θ (free of t). For these 

copulas, their diagonal sections can be precisely represented in the form of our regression 

model (2), with the link function g and (h1, …, hK) as specified in (5). The value of K and 

the forms of hk and g are determined by the generator function ψ. We therefore refer to these 

functions as the canonical functions for the corresponding copula. With the canonical 

functional form, αk’s in (2) are functions of the association parameter θ in the 

corresponding copula model. Thus the estimates of αk reflect the strength of association, 

naturally linking reproducibility with the association of (Y1, Y2).

To see how this works, we consider two simple examples.
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Example 1: The Gumbel-Hougaard copula (Hougaard, 1986; Nelsen, 2006) is a 1-parameter 

Archimedean copula with the generator function, ψ(t) = (−log(t))θ, where θ ∈ [1,∞). Based 

on (4), [−log(Ψ(t))]θ = 2(−log(t))θ. After simplification, we obtain log(Ψ(t)) = 21/θ log(t). It 
follows the regression form in (5), with g = log(·), K = 1, h1 = log(·) and α1 = 21/θ.

Example 2: The copula labeled as (4.2.12) in Table 4.1 in Nelsen (2006) (referred to as 

Nelsen 4.2.12 copula thereinafter) is a 1-parameter Archimedean copula with the generator 

function, ψ(t) = (1
t − 1)θ, where θ ∈ [1,∞). Based on (4), ( 1

Ψ(t) − 1)θ = 2(1
t − 1)θ. After 

simplification, we obtain logit(Ψ(t)) = − log 2
θ + logit(t). It follows the regression form in (5), 

with g = logit(·), K = 2, h1 = 1, h2 = logit(·), α1 = − log 2
θ  and α2 = 1.

In Table 1, we identify a class of Archimedean copulas whose generator functions satisfy 

(4), and derive the corresponding g, αk and hk (details in Supplementary materials). 

Interestingly, we observe that g and hk have the same basic functional form for each copula 

in this class. Thus the corresponding regression models can be viewed as representing the 

relationship between t and Ψ(t) in various transformations. Moreover, we observe that the 

canonical link functions g for these copulas take the form of log(·), logit or odds. Thus 

covariate effects can be easily interpreted, for example, as relative probability or odds ratio 

to report reproducibly.

Remark 2: Note that αk is free of t. This indicates that the relationship between Ψ(t) and 

h(t) is homogeneous throughout the entire range of t. We refer to this property as the 

homogeneous reproducibility property and this class of copulas as the homogeneous 
reproducibility class. As shown in Table 1, several commonly-used Archimedean copulas 

are in this class. To the best of our knowledge, this property and this class have not been 

reported in literature.

Selection of K, hk and g—The connection above suggests a principled way to select the 

functional forms of hk and g in our regression (2). That is, the selection of functional forms 

can be done by finding the suitable parametric copula model for the distribution of (Y1, Y2), 

which has been well studied (Embrechts, 2009). This is analogous to the selection of the 

canonical link function for GLMs, which is also determined by the distribution of the 

response variable.

To proceed, one first selects the copula following the general guideline for copula selection 

(Genest and Favre, 2007), i.e. first plotting the rank scatterplot of the empirical distribution 

of (Y1, Y2), and then choosing a copula in Table 1 whose shape and tail behavior are similar 

to what is shown in the rank scatterplot. A formal goodness-of-fit test for copulas, such as 

Fermanian (2005); Genest et al. (2009), can be conducted to validate the choice. The 

regression form then can be found from Table 1 by looking up the copula.

Remark 3: In high-throughput experiments, candidates relevant to the biological interest 

typically are ranked higher and have a much higher rank consistency across replicates than 

irrelevant ones. The rank scatterplot of the scores (or in their reversed order) often resembles 
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the shapes and tail behaviors of the Nelsen 4.2.12 copula (Figure 3a–b) (or Gumbel-

Hougaard copula (Figure 2)) to some extent. The regression model with the corresponding 

functional forms is likely to be a good fit.

Remark 4: It is worth noting that a regression model with the canonical form is not 

equivalent to the corresponding copula model, since it only specifies the diagonal section of 

the copula rather than the full parametric form. Therefore, the regression model is more 

robust to model violations in the off-diagonal region of the joint distribution of (Y1, Y2) than 

the full copula model. One may also choose other functional forms based on the empirical 

relationship between Ψ(t) and t. In this case, the regression model no longer corresponds to 

a known parametric copula.

2.4 Correspondence curve regression with covariates

Our goal is to assess the influence of operational factors on the reproducibility of workflows. 

Let x be a vector of d covariates corresponding to operational factors for a workflow. For 

categorical variables, x will be the associated vector of dummy variables. Then we can 

incorporate the operational factors as covariates in (2) as

g(Ψ(t ∣ x)) = ∑
k = 1

K
αkhk(t) + W(t, β)T x, t ∈ 𝒯, (6)

where Ψ(t ∣ x) = P(Y1 ≤ F1
−1(t), Y2 ≤ F2

−1(t) ∣ x), W(t, β)Tx is a linear predictor characterizing 

the effect of the covariates x on reproducibility, and β = (β11, …, β1K, …, βd1, …, βdK)T are 

unknown coefficients to be estimated. Here W(t, β) = (W1(t, β1), …, Wd(t, βd))T, with 

W p(t, βp) = ∑k = 1
K βpkhk(t), where (h1, …, hK) is the same set of functions as the one for the 

baseline terms, and βpk measures the covariate effect on hk(t) due to xp for p = 1, …, d.

To fix ideas, we consider the simple regression model for the previous two examples.

Example 1 (Continued)—A simple regression model for the Gumbel-Hougaard copula. 

The canonical baseline regression is log(Ψ(t)) = α1 log(t), where α1 = 21/θ. The covariate 

term: W(t, β) = α1,x=1 log(t) − α1,x=0 log(t) ≡ β log(t). Then the corresponding simple 

regression model is log(Ψ(t)) = α1 log(t) + β log(t)x. It indicates that the probability that a 

candidate is reproducibly ranked among top 100t% in X = 1 is tβ times of that in X = 0.

Example 2 (Continued)—A simple regression model for the Nelsen 4.2.12 copula. The 

canonical baseline regression is logit(Ψ(t)) = α1 + logit(t), where α1 = − log 2
θ . The covariate 

term: W(t, β) = α1,x=1 + logit(t) − (α1,x=0 + logit(t)) ≡ β. Then the corresponding simple 

regression model is logit(Ψ(t)) = α1+logit(t)+βx. It indicates that the odds that a candidate is 

reproducibly ranked among top 100t% in X = 1 is exp(β) times of that in X = 0.
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2.5 Connection to cumulative link models

To better understand our method, we compare it with the standard cumulative link model for 

modeling ordinal data (McCullagh, 1980),

g(P(Y ≤ cm ∣ x)) = αm
∗ + βT x, (7)

where g is a link function, (c1, …, cM) are cutoff points, αm
∗  is the intecept reflecting the 

effect of cutoff cm at baseline, and β are regression coefficients. Our model (6) is similar to 

(7) in that both models dichotomize responses according to a series of thresholds and 

evaluate the covariate effects using a cumulative distribution function. Thus our model can 

be thought of as a cumulative link model and can be estimated in a way similar to the 

estimation of the standard cumulative link model (detailed in Section 3).

However, our model differs from (7) in two ways. First, the cumulative function in our 

model, P(Y1 ≤ F1
−1(t), Y2 ≤ F2

−1(t) ∣ x), is a bivariate function of (Y1, Y2) evaluated on the 

diagonal at the threshold t. Thus our model is neither a univariate cumulative link model (7) 

nor a bivariate cumulative link model (Kim, 1995), but a cumulative link model that 

characterizes the diagonal behavior of the bivariate cumulative distribution function of (Y1, 

Y2). Second, in contrast to (7), where the effect of thresholds, αm
∗ , is of little interest, our 

method explicitly models it in the regression Σk αkhk(t), and uses it as the primary means to 

describe the reproducibility of the baseline procedure.

3. Estimation

We develop a maximum likelihood approach to estimate the parameters in this model. 

Similar to the strategy for estimating the standard cumulative link models, our estimation 

procedure classifies the observations into nonoverlapping ordered categories and fits a 

multinomial likelihood. Specifically, considering the cutoffs, 0 = t0 < t1 < ···< tM = 1, the 

candidates from each workflow can be partitioned into M categories by the cutoffs of their 

scores, such that each category consists of the candidates that are deemed reproducible at tm 

but not at tm−1. That is, for scores ( Y i1
s , Y i2

s ), i = 1, …, n, from the workflow s, the categories 

can be defined as 𝕐 m
s = {i: ∑ j = 1

2 Ii j
s (tm) = 2}\{i: ∑ j = 1

2 Ii j
s (tm − 1) = 2}, where 

li j
s (tm) = I (Y i j

s ≤ 𝔽 j
s − 1(tm) ∣ xs) and 𝔽 j

s is the empirical cumulative distribution function of Y j
s. 

These categories form a multinomial distribution. Let Uim
s = I(i ∈ 𝕐 m

s ∣ xs) be the binary 

indicator for the scores of candidate i assigned by the workflow s to fall in the mth category, 

then the likelihood function of the multinomial distribution is
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L(θ) = ∏
s = 1

S
∏
i = 1

n
∏

m = 1

M
[P(i ∈ 𝕐 m

s ∣ xs)]
Uim

s

= ∏
s = 1

S
∏
i = 1

n
∏

m = 1

M
g−1 ∑

k = 1

K
αkhk(tm) + W(tm, β)Txs − g−1 ∑

k = 1

K
αkhk(tm − 1) + W(tm − 1, β)T xs

Uim
s

,

(8)

where θ = (αT, βT)T.

To fit this model, we first obtain Uim
s  for each candidate at each cutoff for each workflow, 

then perform the maximum likelihood estimation. We prove the asymptotic normality of θ̂ 

by applying the standard theory of maximum likelihood estimation for ordinal regressions 

(Theorem 1 in Supplementary materials).

4. Simulation studies

We use simulation studies to examine the performance of our method. In particular, we 

evaluate the accuracy of estimation and type I error under both canonical and misspecified 

models, as well as the power for detecting differences in reproducibility in the settings 

resembling high-throughput experiments.

Accuracy of estimation and type I error under canonical models—We first 

evaluate the performance of our method under canonical models. We generate (Y1, Y2) from 

a Gumbel-Hougaard copula, then estimate the regression coefficient using the corresponding 

canonical functional choice. Here we choose the association parameter of the copula as θG = 

1.0, 2.0, and 3.0, corresponding to independence (θG = 1.0) and the typical strength of 

dependence observed in real data (θG = 2.0 and 3.0), respectively.

To evaluate the accuracy of our estimation procedure, we consider the baseline model, 

log(Ψ(t)) = α1 log(t), and compare α̂
1 with its true value, α1 = 21/θG. To evaluate the impact 

of the spacing of the cutoff points, we perform the estimation with M = 20, 50, 100 equally 

spaced cutoff points in (0, 1). For each θG, we simulate 1000 datasets, each of which 

consists of the scores of n = 500, 1000, 10000 candidates on a pair of replicates.

As shown in Table 2a, the estimates are reasonably accurate. The spacing of cutoffs with 

different M’s seems to show little effects on the accuracy and efficiency of estimation in our 

simulations (Supplementary Table 1). As expected, larger sample sizes improve the accuracy 

and reduce the variance of estimation (Supplementary Table 1).

To assess the type I error for detecting the difference in reproducibility, we simulate the 

scores of a pair of replicates for two workflows (X = 0, 1) from the Gumbel-Hougaard 

copula with the same θ for θ = 1.0, 2.0 and 3.0. We then fit the canonical regression model, 
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log(Ψ(t)|X) = α1 log(t) + βX log(t), and test H0 : β = 0 using Wald test. For each θ, we 

simulate 1000 datasets, each of which consists of n = 10, 000 pairs of observations for each 

workflow. We then fit each model with M = 50 equally spaced cutoffs in (0, 1), and assess 

type I error rates at the significance levels of 0.01, 0.05 and 0.1. As shown in Table 2a, the 

empirical type I error is reasonably calibrated at all three significance levels.

Accuracy of estimation and type I error under model misspecfication—We next 

evaluate the performance of our method when the regression model does not correspond to 

the distribution that generates the data. In particular, we focus on the situation that the 

dependence structure of the copula for the regression model is reasonably similar to that of 

the empirical data, as this is the typical case that misspecification in model selection would 

occur in practice. To proceed, we generate data from a Clayton copula with an association 

parameter θC, which is not in the homogeneous reproducibility class, and then estimate the 

regression coefficient using the canonical regression for the Nelsen 4.2.12 copula. These two 

copulas have similar lower-tail dependence but different upper-tail dependence: Clayton 

copula has no upper-tail dependence, whereas Nelsen 4.2.12 copula has a positive upper-tail 

dependence. They are similar to each other when their association parameters are small, but 

are different in the upper tail when the association parameters are large. Here we simulate 

data from θC =1.0, 1.2 and 2.0 to imitate progressive levels of misspecification. For each θC, 

we simulate 1000 datasets, each of which consists of n = 10, 000 pairs of observations for 

each workflow, and then fit the regression model using M = 50.

Due to model misspecification, there is no direct correspondence between θC and the 

regression coefficients. However, because the two copulas have the similar lower-tail 

behavior, one may assess estimation accuracy by comparing the lower-tail dependence of the 

Nelson 4.2.12 copula computed from the estimated regression coefficients (λ̂
L = 2α̂1/log 2) 

with the true value computed from the Clayton copula (λL = 2−1/θC) (See Supplementary 

materials for derivation of lower-tail dependence for these two copulas).

As shown in Table 2b, the 95% confidence interval of λ̂
L covers the true value when the 

misspecification is moderate (θC ≤ 1.2), but it fails to do so when the violation is severe (θC 

= 2.0). Similarly, the type I error for the test of H0 : β = 0 is reasonably calibrated when the 

violation is moderate, and it starts to inflate when the violation is severe.

Power for detecting difference in reproducibility in a high-throughput setting
—We next evaluate the performance of our method in a simulation resembling high-

throughput biological studies. This type of studies typically involves a small subset of 

candidates that are truly associated with a biological feature and a large subset of irrelevant 

ones. The significance scores of relevant candidates are generally ranked higher and more 

consistently across replicates than those of irrelevant ones. The reliability of the findings 

from these studies largely depends on the agreement of relevant candidates. Therefore, our 

evaluation focuses on the power for detecting the difference in reproducibility for relevant 

candidates.

We consider a setting with two workflows, X = 0, 1. Workflow 1 ranks relevant candidates 

more reproducibly across replicates than workflow 0, and both workflows rank irrelevant 
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candidates with similar level of reproducibility. In an attempt to generate realistic 

simulations, we follow the simulation in Li et al. (2011) for generating scores of protein-

binding sites identified in replicate ChIP-seq experiments. Since the data is not generated 

from our model, this simulation provides an objective evaluation of the performance and 

robustness of our method.

For each workflow, we simulate the scores of a pair of replicate samples from a bivariate 

normal mixture distribution, ∑k = 0
1 πkN(

μk
μk

,
1 ρk
ρk 1 ), where k = 0, 1 represents irrelevant 

and relevant candidates, respectively, and πk represents the proportion of each 

corresponding category. As in Li et al. (2011), we assume that the scores of irrelevant 

candidates are independent across replicates, i.e. ρ0 = 0, and that the scores of relevant 

candidates are positively associated across replicates, i.e. ρ1 > 0. To reflect the difference in 

the reproducibility of relevant candidates, we choose a higher ρ1 for workflow 1 than for 

workflow 0, and keep the rest of parameters (μ1, σ1, μ0, σ0, ρ0) identical for the two 

workflows. We select simulation parameters based on the parameters estimated from a ChIP-

seq data set in (Li et al., 2011). We set μ1 = 2.5, σ1 = 1, μ0 = 0, σ0 = 1, ρ0 = 0 for both 

workflows, ρ1 = 0.6 for workflow 0, and ρ1 = 0.8, 0.9, 0.95 for workflow 1 to simulate 

different levels of reproducibility for relevant candidates. We further vary π1 = 0.05, 0.1 and 

0.3 to simulate the scenarios with different amounts of real signals. For each set of 

simulation parameters, we generate 100 datasets, each of which consists of the scores 

assigned by each of the two workflows on a pair of replicates with n = 10, 000 observations.

As a comparison, we also evaluate reproducibility using the concordance correlation 

coefficient (CCC) (Lin, 1989), a reproducibility index commonly used for assessing the 

agreement between readings from two assays. To keep the comparison on the same basis, we 

compute CCC using the ranks of scores, as our method is essentially based on ranks.

We compare the reproducibility between the two workflows using our method and CCC. As 

the data (Figure 2a) resembles the shape of the Gumbel-Hougaard copula (Figure 2b), we 

use the canonical model for the Gumbel-Hougaard copula to fit our data, with M = 50 

equally spaced cutoffs in (0, 1), and test the difference in reproducibility using Wald’s test 

for H0 : β = 0 at the significance level of α = 0.05. For CCC, we compute its 95% 

asymptotic confidence interval for the outcome of each workflow and test the difference in 

reproducibility according to whether the two confidence intervals overlap. CCC and its 

asymptotic confidence interval are computed using R package EpiR. Power is computed as 

the percentage of times that a significant difference in reproducibility is detected.

As shown in Table 3, our model consistently shows a higher power than CCC in all the 

simulations studied here. The gain in power is especially substantial when the proportion of 

relevant candidates is low. For example, when the proportion of relevant candidates is 10% 

and ρ1 for the two workflows are 0.6 and 0.95, respectively, CCC has little power to detect 

the difference (power=0.02), but our method still maintains a reasonable power 

(power=0.99).
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5. Application on real data

5.1 Comparing the reproducibility of ChIP-seq peak calling algorithms

We first illustrate our method using a ChIP-seq dataset in Li et al. (2011). In this study, 

ChIP-seq experiments for the transcription factor CTCF were performed on two biological 

replicates and CTCF binding sites were identified using multiple algorithms. The goal is to 

compare the performance of the algorithms and select the best one(s) for building an 

analysis pipeline for ENCODE production ChIP-seq data (Landt et al., 2012). To compare 

the reproducibility of identifications across replicates, Li et al. (2011) plotted the 

correspondence curve for each algorithm and ranked the algorithms according to the curves. 

Though this ranking is useful, it cannot infer how significant the difference is. The 

significance, however, is important for algorithm selection, especially when other 

performance criteria are also considered. For example, if the difference in reproducibility is 

not significant, then a fast or user-friendly algorithm would be preferred even though it is not 

the most reproducible one.

Here we use our regression model to compare the reproducibility of six algorithms, MACS, 

SPP, Peakseq, Cisgenome, Quest and SISSRS. For each algorithm, we compute Ψ(t) from 

the scores assigned by each algorithm on the two biological replicates using M = 50 equally 

spaced cutoffs in (0, 1). To select the functional form of the regression model, we examine 

the rank scatterplots of the scores on the two biological replicates and find that the Gumbel-

Hougaard copula is a reasonable fit. This is confirmed by the approximate linear relationship 

between log(t) and log(Ψ(t)) shown in most peak callers (Supplementary Figure 1). 

Therefore, we fit the regression model

log (Ψ(t)) = α1 log (t) + βM log (t)XM + βP log (t)XP + βC log (t)XC + βQ log (t)XQ + βS log (t)XS,

where SPP is used as the baseline and XM,XP,XC,XQ and XS are the dummy variables for 

MACS, Peakseq, Cisgenome, Quest and SISSRS, respectively.

Following Li et al. (2011), we perform our analysis on the binding regions that are 

commonly identified on both replicates. To ensure the comparison is on the same basis 

across algorithms, we use the most significant n = 6, 000 common regions identified by each 

algorithm, ranked based on the significance score on replicate 1, in our analysis.

Table 4 summarizes the results from our analysis. According to the 95% confidence intervals 

of β’s, we classify the algorithms into three tiers that are significantly different in 

reproducibility. The most reproducible tier consists of Peakseq, SPP, Quest and MACS. 

Peakseq is slightly more reproducible and Quest and MACS are slightly less reproducible 

than SPP, but the difference is not significant. At a given threshold, for example, t = 0.05, the 

estimated probabilities of being reproducibly reported in the top 100t% are t−0.030 = 1.094 

(95% CI: [0.959, 1.244]), t0.019 = 0.945 (95% CI: [0.804, 1.244]), t0.048 = 0.866 (95% CI: 

[0.737, 1.018]) times as high for Peakseq, Quest and MACS as for SPP, respectively. The 

next tier consists of Cisgenome. Its estimated probability of being reproducibly reported in 

the top 5% as t0.094 = 0.755 (95% CI: [0.640, 0.890]) times as high as for SPP. SISSRS is the 
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least reproducible algorithm in the comparison. The estimated probability of being 

reproducibly reported in the top 5% is only t0.452 = 0.258 (95% CI: [0.214, 0.311]) times as 

high as for SPP. The quantitative summary and statistical inference obtained above are more 

informative than a ranking for selecting algorithms, especially when multiple selection 

criteria are considered.

5.2 Application on a multiple-laboratory multiple-platform microarray dataset

We now apply our method to the multiple-laboratory microarray study in the introduction 

(Irizarry et al., 2005). This study was conducted by a consortium of ten labs to assess the 

intra- and inter-platform agreement of the gene expression levels measured on three 

microarray platforms. A major goal of this study was to assess how differences in platforms 

and labs contribute to the variation in gene expression measurements. In particular, it aimed 

to investigate if failing to control for lab effects is the major cause of the lack of 

reproducibility reported in previous studies. To standardize the comparison, all labs were 

provided identical RNA samples, which consist of two technical replicates. For each 

replicate, each lab measured the gene expression levels on at least one of the three 

microarray platforms. The detailed study design can be found in Irizarry et al. (2005).

To compare the reproducibility of the platforms, Irizarry et al. (2005) assessed the 

concordance of differential expression levels between the two replicates for each platform-

lab combination, using a comprehensive set of descriptive and graphical statistics, including 

correlation coefficients between gene expression levels across replicates, the proportion of 

common identifications among a series of top-n ranked genes, and the CAT plot. Though 

these statistics are informative, none of them succinctly summarizes platform effects and lab 

effects on reproducibility, provides any statistical inference, or evaluates platform effects 

while controlling for the lab effects.

Here we use our regression framework to characterize lab effects and platform effects. 

Because we were only able to obtain the data from Affymetrix and 2-Color-oligo platforms 

for Lab 1 and Lab 2 using the online scripts in Irizarry et al. (2005), we only include these 

two platforms and two labs in our analysis. As the number of differentially expressed genes 

in this sample is small comparing to the total number of genes, we perform our analysis for 

the n = 200 most differentially expressed genes. A subset of data is shown in Table 5. For 

each platform-lab combination, we compute Ψ(t) using the absolute log2 fold change of 

gene expression levels on the two replicate samples.

The rank scatterplot of the empirical data shows a dependence structure similar to that of the 

Nelsen (4.2.12) copula (Figure 3a–b). Therefore, the canonical regression form of this 

copula (Table 1) is a reasonable choice. One appeal of this model is that the strength of 

association between (Y1, Y2) is involved only through the intercept term in the regression 

model, without involving t, thus there is no need to include the interaction between 

covariates and t. Figure 3c confirms that there is an approximately linear relationship 

between logit(Ψ(t)) and logit(t) in all the four platform-lab combinations. Therefore, we fit 

the model
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logit(Ψ(t)) = α1 + α2logit(t) + βLXL + βPXP (9)

where Lab 1 and Affymetrix arrays are used as baseline, and XL and XP are binary indicator 

variables for Lab 2 and 2-color Oligo array, respectively, with M = 50 equally spaced cutoffs 

in (0, 1). Here we choose to estimate α2, instead of using the canonical value α2 = 1, to 

allow additional flexibility in model fitting. Furthermore, in light of the possible interactions 

between lab, platform and logit(t), we also fit a model with interaction terms: logit(Ψ(t)) = 

α1+α2logit(t)+βLXL+βPXP+βLtXLlogit(t)+βPtXP logit(t)+βLPXLXP+βLPtXLXP logit(t). 
However, none of the interaction terms are significant (95% CIs: (−0.148, 0.159) for βLt, 

(−0.024, 0.309) for βPt, (−0.458, 0.558) for βLP and (−0.299, 0.165) for βLPt) 

(Supplementary Table 2). Therefore, we choose (9) as our final model.

As shown in Table 5, our model indicates that two-color Oligo arrays are significantly less 

reproducible than Affymetrix arrays in ranking differentially expressed genes. Given a 

thresh-old t, the estimated odds of being reproducibly reported in the top 100t% is 

exp(−0.274) = 0.760 (95% CI=(0.598, 0.967)) times as high for two-color Oligo arrays as 

for Affymetrix arrays, when controlling the lab effects. When controlling the platform 

effects, Lab 2 is slightly more reproducible than Lab 1 (estimated odds ratio exp(0.034) = 

1.035), but the difference is not significant (95% CI=(0.814, 1.314)). These results confirm 

the trend illustrated in the CAT plot and the correspondence curve (Figure 1). More 

importantly, the coefficients from our regression model provide a succinct summary to 

quantify the significance of each covariate, while adjusting for the other variable.

6. Discussion

In this work, we present a novel regression modeling framework for assessing the influence 

of operational factors on the reproducibility of high-throughput ranking systems. This 

framework succinctly quantifies the simultaneous and independent effects of multiple 

covariates. It thus provides a parametric alternative to existing graphical tools for comparing 

and benchmarking the reproducibility of different workflows in high-throughput 

experiments. It is also applicable to other settings that involve screening top-ranked entries, 

for example, selecting signals indicating brain activities from fMRI images (Benjamini and 

Heller, 2008).

This work also leads to the discovery of a class of Archimedean copulas that have the 

property of homogeneous reproducibility. To the best of our knowledge, this property and 

this class have not been reported in literature. Our work reveals a new way to interpret and 

utilize these copulas. Further utilities of these copulas as modeling tools will be explored.

Our method can be extended in several ways. First, the assumption of homogeneous 

reproducibility in the current model may be violated in real applications, for instance, 

reproducibility may be different between top-ranked and bottom-ranked candidates. Though 

our simulations shows that this method still maintains a high power in this case, it can be 

improved by using a segmented regression model. Another extension is to handle missing 
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data, which is a common concern in real applications. As missing values in high-throughput 

experiments are often generated when measurements or significance are below threshold, 

one possibility is to extend our likelihood function to incorporate left truncation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The correspondence curve and the CAT plot illustrated using a microarray dataset in Irizarry 

et al. (2005). Plotted is the most differentially expressed 200 genes measured on the 

Affymetrix and two-color oligo platforms in Labs 1 and 2. (a) The correspondence curve. (b) 

The correspondence-at-the-top (CAT) plot.
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Figure 2. 
(a) Rank scatterplot of the simulated data (n = 1000) in the high-throughput setting (ρ1 = 0.6 

and π = 0.05). (b) Density plot of a Gumbel-Hougaard copula (θ = 1.3).
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Figure 3. 
Graphical illustration of the most differentially expressed 200 genes from Labs 1 and 2 on 

the Affymetrix and two-color oligo platforms in Irizarry et al. (2005). (a) Rank scatterplot of 

the absolute log2 fold change for the 200 genes. (b) Density plot of the Nelsen 4.2.12 copula 

(θ = 1.5). (c) Exploratory data analysis shows an approximated linear trend between logit(t) 
and logit(Ψ(t)).
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Table 1

Canonical choices of K, g and hk(t) for Archimedean copulas that can be represented in the regression form of 

(5), i.e. g(Ψ(t)) = ∑k = 1
K αk(θ)hk(t). The last four copulas are labeled according to their indices in Table 4.1 in 

Nelsen (2006).

Name K g(Ψ(t)) hk(t) αk

Ali-Mikhail-Haq 2 1 − Ψ(t)
Ψ(t) h1(t) = 1 − t

t , h2(t) = h1(t)2

α1 = 2, α2 = (1 − θ)

Gumbel-Hougaard 1 log Ψ(t) h1(t) = logt α1 = 21/θ

Gumbel-Barnett 2 log Ψ(t) h1(t) = logt, h2(t) = (h1(t))2 α1 = 2, α2 = −θ

(4.2.2) in Nelsen 1 1 − Ψ(t) h1(t) = 1 − t α1 = 21/θ

(4.2.7) in Nelsen 2 1 − Ψ(t) h1(t) = 1 − t, h2(t) = h1(t)2 α1 = 2, α2 = −θ

(4.2.12) in Nelsen 2
log Ψ(t)

1 − Ψ(t) h1(t) = 1, h2(t) = log t
1 − t α1 = − log 2

θ , α2 = 1

(4.2.18) in Nelsen 2 1
1 − Ψ(t) h1(t) = 1, h2(t) = 1

1 − t α1 = − log 2
θ , α2 = 1
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Table 4

Estimated regression coefficients for evaluating the reproducibility of peak calling algorithms. SPP is used as 

the baseline.

Estimate 95% Confidence Interval

Baseline α1 1.483 [1.446, 1.521]

MACS βM 0.048 [−0.006, 0.102]

Peakseq βP −0.030 [−0.083, 0.022]

Cisgenome βC 0.094 [0.039, 0.149]

Quest βQ 0.019 [−0.034, 0.073]

SISSRS βS 0.452 [0.390, 0.514]
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	Accuracy of estimation and type I error under canonical models—We first evaluate the performance of our method under canonical models. We generate (Y1, Y2) from a Gumbel-Hougaard copula, then estimate the regression coefficient using the corresponding canonical functional choice. Here we choose the association parameter of the copula as θG = 1.0, 2.0, and 3.0, corresponding to independence (θG = 1.0) and the typical strength of dependence observed in real data (θG = 2.0 and 3.0), respectively.To evaluate the accuracy of our estimation procedure, we consider the baseline model, log(Ψ(t)) = α1 log(t), and compare α̂1 with its true value, α1 = 21/θG. To evaluate the impact of the spacing of the cutoff points, we perform the estimation with M = 20, 50, 100 equally spaced cutoff points in (0, 1). For each θG, we simulate 1000 datasets, each of which consists of the scores of n = 500, 1000, 10000 candidates on a pair of replicates.As shown in Table 2a, the estimates are reasonably accurate. The spacing of cutoffs with different M’s seems to show little effects on the accuracy and efficiency of estimation in our simulations (Supplementary Table 1). As expected, larger sample sizes improve the accuracy and reduce the variance of estimation (Supplementary Table 1).To assess the type I error for detecting the difference in reproducibility, we simulate the scores of a pair of replicates for two workflows (X = 0, 1) from the Gumbel-Hougaard copula with the same θ for θ = 1.0, 2.0 and 3.0. We then fit the canonical regression model, log(Ψ(t)|X) = α1 log(t) + βX log(t), and test H0 : β = 0 using Wald test. For each θ, we simulate 1000 datasets, each of which consists of n = 10, 000 pairs of observations for each workflow. We then fit each model with M = 50 equally spaced cutoffs in (0, 1), and assess type I error rates at the significance levels of 0.01, 0.05 and 0.1. As shown in Table 2a, the empirical type I error is reasonably calibrated at all three significance levels.Accuracy of estimation and type I error under model misspecfication—We next evaluate the performance of our method when the regression model does not correspond to the distribution that generates the data. In particular, we focus on the situation that the dependence structure of the copula for the regression model is reasonably similar to that of the empirical data, as this is the typical case that misspecification in model selection would occur in practice. To proceed, we generate data from a Clayton copula with an association parameter θC, which is not in the homogeneous reproducibility class, and then estimate the regression coefficient using the canonical regression for the Nelsen 4.2.12 copula. These two copulas have similar lower-tail dependence but different upper-tail dependence: Clayton copula has no upper-tail dependence, whereas Nelsen 4.2.12 copula has a positive upper-tail dependence. They are similar to each other when their association parameters are small, but are different in the upper tail when the association parameters are large. Here we simulate data from θC =1.0, 1.2 and 2.0 to imitate progressive levels of misspecification. For each θC, we simulate 1000 datasets, each of which consists of n = 10, 000 pairs of observations for each workflow, and then fit the regression model using M = 50.Due to model misspecification, there is no direct correspondence between θC and the regression coefficients. However, because the two copulas have the similar lower-tail behavior, one may assess estimation accuracy by comparing the lower-tail dependence of the Nelson 4.2.12 copula computed from the estimated regression coefficients (λ̂L = 2α̂1/log 2) with the true value computed from the Clayton copula (λL = 2−1/θC) (See Supplementary materials for derivation of lower-tail dependence for these two copulas).As shown in Table 2b, the 95% confidence interval of λ̂L covers the true value when the misspecification is moderate (θC ≤ 1.2), but it fails to do so when the violation is severe (θC = 2.0). Similarly, the type I error for the test of H0 : β = 0 is reasonably calibrated when the violation is moderate, and it starts to inflate when the violation is severe.Power for detecting difference in reproducibility in a high-throughput setting—We next evaluate the performance of our method in a simulation resembling high-throughput biological studies. This type of studies typically involves a small subset of candidates that are truly associated with a biological feature and a large subset of irrelevant ones. The significance scores of relevant candidates are generally ranked higher and more consistently across replicates than those of irrelevant ones. The reliability of the findings from these studies largely depends on the agreement of relevant candidates. Therefore, our evaluation focuses on the power for detecting the difference in reproducibility for relevant candidates.We consider a setting with two workflows, X = 0, 1. Workflow 1 ranks relevant candidates more reproducibly across replicates than workflow 0, and both workflows rank irrelevant candidates with similar level of reproducibility. In an attempt to generate realistic simulations, we follow the simulation in Li et al. (2011) for generating scores of protein-binding sites identified in replicate ChIP-seq experiments. Since the data is not generated from our model, this simulation provides an objective evaluation of the performance and robustness of our method.For each workflow, we simulate the scores of a pair of replicate samples from a bivariate normal mixture distribution, 
, where k = 0, 1 represents irrelevant and relevant candidates, respectively, and πk represents the proportion of each corresponding category. As in Li et al. (2011), we assume that the scores of irrelevant candidates are independent across replicates, i.e. ρ0 = 0, and that the scores of relevant candidates are positively associated across replicates, i.e. ρ1 > 0. To reflect the difference in the reproducibility of relevant candidates, we choose a higher ρ1 for workflow 1 than for workflow 0, and keep the rest of parameters (μ1, σ1, μ0, σ0, ρ0) identical for the two workflows. We select simulation parameters based on the parameters estimated from a ChIP-seq data set in (Li et al., 2011). We set μ1 = 2.5, σ1 = 1, μ0 = 0, σ0 = 1, ρ0 = 0 for both workflows, ρ1 = 0.6 for workflow 0, and ρ1 = 0.8, 0.9, 0.95 for workflow 1 to simulate different levels of reproducibility for relevant candidates. We further vary π1 = 0.05, 0.1 and 0.3 to simulate the scenarios with different amounts of real signals. For each set of simulation parameters, we generate 100 datasets, each of which consists of the scores assigned by each of the two workflows on a pair of replicates with n = 10, 000 observations.As a comparison, we also evaluate reproducibility using the concordance correlation coefficient (CCC) (Lin, 1989), a reproducibility index commonly used for assessing the agreement between readings from two assays. To keep the comparison on the same basis, we compute CCC using the ranks of scores, as our method is essentially based on ranks.We compare the reproducibility between the two workflows using our method and CCC. As the data (Figure 2a) resembles the shape of the Gumbel-Hougaard copula (Figure 2b), we use the canonical model for the Gumbel-Hougaard copula to fit our data, with M = 50 equally spaced cutoffs in (0, 1), and test the difference in reproducibility using Wald’s test for H0 : β = 0 at the significance level of α = 0.05. For CCC, we compute its 95% asymptotic confidence interval for the outcome of each workflow and test the difference in reproducibility according to whether the two confidence intervals overlap. CCC and its asymptotic confidence interval are computed using R package EpiR. Power is computed as the percentage of times that a significant difference in reproducibility is detected.As shown in Table 3, our model consistently shows a higher power than CCC in all the simulations studied here. The gain in power is especially substantial when the proportion of relevant candidates is low. For example, when the proportion of relevant candidates is 10% and ρ1 for the two workflows are 0.6 and 0.95, respectively, CCC has little power to detect the difference (power=0.02), but our method still maintains a reasonable power (power=0.99).
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