Skip to main content
. Author manuscript; available in PMC: 2018 Sep 27.
Published in final edited form as: Biometrics. 2017 Nov 29;74(3):803–813. doi: 10.1111/biom.12832

Table 1.

Canonical choices of K, g and hk(t) for Archimedean copulas that can be represented in the regression form of (5), i.e. g(Ψ(t))=k=1Kαk(θ)hk(t). The last four copulas are labeled according to their indices in Table 4.1 in Nelsen (2006).

Name K g(Ψ(t)) hk(t) αk
Ali-Mikhail-Haq 2
1-Ψ(t)Ψ(t)
h1(t)=1-tt, h2(t) = h1(t)2 α1 = 2, α2 = (1 − θ)
Gumbel-Hougaard 1 log Ψ(t) h1(t) = logt α1 = 21
Gumbel-Barnett 2 log Ψ(t) h1(t) = logt, h2(t) = (h1(t))2 α1 = 2, α2 = −θ
(4.2.2) in Nelsen 1 1 − Ψ(t) h1(t) = 1 − t α1 = 21
(4.2.7) in Nelsen 2 1 − Ψ(t) h1(t) = 1 − t, h2(t) = h1(t)2 α1 = 2, α2 = −θ
(4.2.12) in Nelsen 2
logΨ(t)1-Ψ(t)
h1(t) = 1, h2(t)=logt1-t α1=-log2θ, α2 = 1
(4.2.18) in Nelsen 2
11-Ψ(t)
h1(t) = 1, h2(t)=11-t α1=-log2θ, α2 = 1