1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Clin Chem. Author manuscript; available in PMC 2019 January 01.

-, HHS Public Access
«

Published in final edited form as:
Clin Chem. 2018 January ; 64(1): 82-98. d0i:10.1373/clinchem.2017.272344.

Use of Metabolomics in Improving Assessment of Dietary Intake

Marta Guasch-Ferrél, Shilpa N. Bhupathirajul-2, and Frank B. Hul:2:3
1Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA

2Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s
Hospital and Harvard Medical School, Boston, MA

3Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA

Abstract

BACKGROUND—Nutritional metabolomics is rapidly evolving to integrate nutrition with
complex metabolomics data to discover new biomarkers of nutritional exposure and status.

CONTENT—The purpose of this review is to provide a broad overview of the measurement
techniques, study designs, and statistical approaches used in nutrition metabolomics, as well as to
describe the current knowledge from epidemiologic studies identifying metabolite profiles
associated with the intake of individual nutrients, foods, and dietary patterns.

SUMMARY—A wide range of technologies, databases, and computational tools are available to
integrate nutritional metabolomics with dietary and phenotypic information. Biomarkers identified
with the use of high-throughput metabolomics techniques include amino acids, acylcarnitines,
carbohydrates, bile acids, purine and pyrimidine metabolites, and lipid classes. The most
extensively studied food groups include fruits, vegetables, meat, fish, bread, whole grain cereals,
nuts, wine, coffee, tea, cocoa, and chocolate. We identified 16 studies that evaluated metabolite
signatures associated with dietary patterns. Dietary patterns examined included vegetarian and
lactovegetarian diets, omnivorous diet, Western dietary patterns, prudent dietary patterns, Nordic
diet, and Mediterranean diet. Although many metabolite biomarkers of individual foods and
dietary patterns have been identified, those biomarkers may not be sensitive or specific to dietary
intakes. Some biomarkers represent short-term intakes rather than long-term dietary habits.
Nonetheless, nutritional metabolomics holds promise for the development of a robust and unbiased
strategy for measuring diet. Still, this technology is intended to be complementary, rather than a
replacement, to traditional well-validated dietary assessment methods such as food frequency
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questionnaires that can measure usual diet, the most relevant exposure in nutritional epidemiologic
studies.
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Recent high-throughput technologic developments in molecular biology, namely, genomics,
transcriptomics, proteomics, and metabolomics, are leading us toward a new era in
epidemiologic research. In the past few years, the scientific community has focused on a
more integrated systems epidemiology approach, in which several fields converge to
integrate traditional knowledge with novel -omicstechniques (1). Nutritional epidemiology
has not been the exception, and several studies in this field have incorporated -omics data in
the past decade (1). Along these lines, the concept of precision nutrition has recently
emerged (2) and refers to the integration of -omics techniques to personalize diets based on
individual genetic makeup to achieve better prevention or management of disease. Among
all the -omics, metabolomics plays a crucial role in the field of nutrition because it is more
time sensitive than other -omics and can reflect the current biological status of an individual
(3). The human metabolome can be influenced by several factors, such as age, diseases,
drugs, environment, genetic factors, lifestyle, and nutrition (3).

Metabolomics can provide a comprehensive picture of overall dietary intake by measuring
the full profile of small molecule metabolites in biological samples such as saliva, blood,
and urine. Thus, it could help deepen our knowledge of metabolic pathways relevant to
human nutrition (3). Importantly, because nutritional epidemiologic studies frequently rely
on self-reported dietary assessment methods that are subject to recall bias and measurement
error and because objective biomarkers do not exist for all nutrients and foods (4),
metabolomics can be a promising technique to objectively identify dietary biomarkers.
Metabolite profiling accounts for intrinsic variability in metabolism by measuring
downstream components or metabolic products of foods, and might therefore accurately
reflect true exposure as compared with traditional methods that measure individual food
intake (5). Thereby, nutritional metabolomics, which refers to the integration of metabolic
profiling with nutrition in complex biosystems, can be applied to discover new biomarkers
of nutritional exposure and status and can help disentangle the molecular mechanisms by
which diet affects health and disease. Diet can have effects on 2 different components of the
metabolome: the endogenous metabolome, referring to all metabolites present in a biological
sample of the host, and the food metabolome, which includes metabolites that are derived
from food consumption and their subsequent metabolism in the human body (6). Food
metabolome not only includes metabolites of known micro-and macronutrients but also
nonnutrient food compounds with biological roles yet to be elucidated.

To date, several studies have identified metabolomic signatures associated with the intake of
specific foods and food groups, including fruits, vegetables, meat, fish, nuts, whole-grain
bread, wine, coffee, and cocoa (6). A growing body of evidence has also emerged relating
metabolic profiles with overall dietary patterns. Therefore, the purpose of this review is 2-
fold: (a) to provide a broad overview of the metabolite measurement techniques, study
designs, and statistical approaches used in nutrition metabolomics studies, and () to
describe the current knowledge from epidemiologic studies identifying metabolite profiles
associated with the intake of individual nutrients, foods, and dietary patterns.
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Methods and Approaches in Studies of Nutritional Metabolomics
MEASUREMENT OF METABOLITES

Metabolomics refers to the systematic analysis of low molecular weight biochemical
compounds in a biological sample. Urine, serum, and plasma samples are the most common
biofluids used in nutritional metabolomics studies. One of the major differences between
urine and plasma is that urine contains a higher concentration of nonmetabolites and
nonnutrient compounds (representing noncontributory information or noise) that are derived
from food phytochemicals and other chemicals. However, most of the metabolites in urine
are excreted faster than those from plasma and can serve as acute markers of frequently
consumed foods. For example, urine excretion of proline betaine is known to peak within a
few hours after intake and be almost completely excreted within 24 h (7). Blood, on the
other hand, contains a higher concentration of metabolically active compounds, and lipid-
soluble metabolites are present only in plasma, not in urine (3).

In general, 2 different metabolomics techniques have been applied: (4) mass spectrometry
coupled with gas- or liquid-phase chromatography, and (&) proton (XH) nuclear magnetic
resonance (NMR)# spectroscopy (8). Other platforms, such as inductively coupled plasma
mass spectrometry, are also used to detect trace minerals and other electrolytes in biological
samples (9). Targeted approaches that focus on a specific subset of predefined metabolites,
as well as more agnostic untargeted approaches that analyze many measurable compounds in
the sample, including chemical unknowns, have been implemented (8). Although targeted
approaches are usually less expensive and follow a hypothesis-driven approach of
metabolites of known identity, untargeted metabolomics detect thousands of unknown
metabolites that may provide novel information on biological pathways with clinical
relevance. However, because of the higher cost of the latter approach, the high density of the
data acquired, and the methods required for complex statistical analysis, several
epidemiological studies so far have relied solely on targeted metabolite profiling. Human
metabolic databases, such as the Human Metabolome Database, can be a useful resource for
nutritional metabolomics. The Human Metabolome Database includes more than 6800 fully
annotated metabolites, such as metabolic intermediates, hormones, drugs, and food
components (10). Despite the existence of many metabolites, the nutrition community is
particularly interested in metabolic pathways in which nutrients are involved, including
carbohydrate, lipids, amino acids, and energy metabolism pathways, along with mineral,
trace elements, and vitamin metabolism pathways (3).

STUDY DESIGNS USED IN NUTRITIONAL METABOLOMICS

Intervention studies—Metabolomics can be used as a key tool in the search for novel
biomarkers of dietary intake. Studies of nutritional metabolomics need to account for
intersubject metabolic variation and should be able to deal with measurements of subtle
metabolic modulations against relatively low doses of bioactive food nutrients or
supplements (11). One method is to conduct controlled dietary intervention trials; in acute

4Nonstandard abbreviations: NMR, nuclear magnetic resonance; FFQ, food frequency questionnaire; PCA, principal component
analysis; PLS-DA, partial least-square discriminant analysis; O-PLS-DA, orthogonal partial least-squares discriminant analysis;
TMAQO, trimethylamine-A-oxide; EPIC, European Prospective Study into Cancer; BCAA, branched-chain amino acids.
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feeding studies, participants consume the food of interest in a single meal. For short- to
medium-term trials, participants typically consume the food of interest in repeated meals
over a given period, ranging from a few days up to several months. For this purpose, a
crossover study design has traditionally been favored over a parallel design because it
effectively deals with intersubject variation as each participant serves as his or her own
control. Biofluids can be collected before and after the consumption of the food of interest in
acute studies; in short- and medium-term trials, biofluids are usually collected at baseline
and at the end of the intervention period (6). Any biomarker identified in acute studies must
ideally be validated with longer intervention studies and replicated in different populations.
Given the need to detect accurate measurements of dietary exposures, nutritional
metabolomics can be a useful tool for identifying objective markers of relatively short-term
response to diet interventions, as well as compliance with such dietary interventions. In
addition, well-conducted clinical trials are less prone to confounding and measurement
errors compared with observational studies.

Observational studies—One of the advantages of nutritional metabolomics studies is the
possibility to identify a wide range of dietary biomarkers instead of a single biomarker.
Indeed, multimetabolite biomarker panels can offer a better estimation than single
biomarkers and increase the accuracy and precision of dietary assessment when combined
with a food frequency questionnaire (FFQ). In this context, observational studies with
repeated measurements of diet over time, which provide information of usual diet, play an
important role. Epidemiologic studies in this field compare low and high consumers of
nutrients/foods using FFQ, food records, and other dietary assessment tools, and then
characterize objective biomarkers that are reflective of habitual intake or related to the intake
of specific nutrients and food groups. These studies can also be used to detect metabolite
signatures associated with overall dietary patterns. It is important to note that many of the
foods consumed are highly correlated, and there is a risk of identifying biomarkers that are
not specific to the particular food of interest (6). For example, vitamin C, several
carotenoids, and flavonoids are common to many fruit and vegetables; therefore, they can be
used as generic biomarkers of total fruit and vegetable intake but not specific to individual
fruits or vegetables (12).

A number of these observational studies have applied cross-sectional designs comparing
groups of participants at a single time point (i.e., consumers vs nonconsumers). Another
possible approach to identify dietary biomarkers through metabolomics is the study of
longitudinal variations in metabolite concentrations and their associations with diet and
particular health outcomes or markers in population-based studies and clinical trials (6).
With these prospective designs, individuals or populations exposed to different
environments, lifestyles, or dietary patterns can be distinguished and metabolic differences
can be identified.

Nevertheless, it is worth mentioning that most of the observational studies in nutritional
metabolomics have small sample sizes and have not been replicated. One of the reasons that
may account for the lack of replication in metabolomics studies is the fact that such analyses
have not yet been standardized and homogenized, especially compared with genome-wide,
large-scale studies (13). Several differences across studies exist, including storage of
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biological samples, different platforms for analyses of specimens, quality control and data
preparation, and relative vs absolute quantification of metabolites. Therefore, there is an
urgent need to evaluate metabolite stability and biological variability in large populations
before markers of food intake or dietary patterns can be properly validated (13).

STATISTICAL APPROACHES

Analyses of high-throughput nutritional metabolomics data require the use of advanced
bioinformatics and computational tools. Challenges with metabolomics analyses include
data preparation and normalization, data reduction into fewer dimensions, and interpretation.
In the section below, we briefly provide an overview of the statistical approaches commonly
used in nutritional metabolomics studies.

Data preparation—The first step in metabolomics analysis is to prepare the metabolic
profile of raw data generated by the analysis of biological samples. Raw data undergo data
preprocessing, data alignment, data normalization, and signal correction before application
of statistical methods (14). The first step is preprocessing; in mass spectrometry, this step
includes peak detection, peak matching, retention time alignment, peak integration, and peak
filling (13). Data alignment consists of matching peaks (/7/2) and retention times to
standards to align the different sample profiles. Some software tools also include gap filling,
which checks raw data for any peak that has not been detected in a sample but was found in
others. Quality control is also undertaken in this phase with the use of repeatability filters
(i.e., filtering out features with coefficient of variation >30% or lower cut-points for targeted
biomarkers) (13). In most laboratories, internal standards and pooled study samples are used
to standardize data across data sets. In NMR, preprocessing needs to account for peak
overlap and peak shift. Binning (or grouping) of metabolite signals based on correlation
structure is commonly used to account for peak shift (15). Peak fitting can address peak
shifting and overlap, but it is time consuming (16). Batch normalization, scaling, and outlier
removal are also important parts of data preparation; normalization is used to account for
uncontrolled metabolome-wide effects like dilution. Normalization is aimed to remove any
unwanted variation in the spectrometric signal that cannot be controlled for or removed in
any other way (17). Annotation of metabolites is usually the last step before applying
statistical analysis. Comparing peaks with standards, databases, and commercial software is
an important part of the process to avoid “putative annotation” because each feature could
correspond to multiple metabolites. Although these methods are generally applied to
targeted and untargeted data, identification of individual metabolite from untargeted peaks is
challenging. Although online databases of annotated metabolites are growing, many
unknown compounds still need to be identified.

Missing values in metabolomics data sets occur widely and can arise from different sources,
including technical and biological reasons. Several methods to deal with missing data in
metabolomics analysis have been examined (18-21). In mass spectrometry data analysis, a
common approach is to remove from the analysis individual metabolites when a large
proportion of participants have missing values or to remove a participant with many missing
metabolites (21). Other standard methods of missing value imputation include the
replacement of missing values with a nonzero value while maintaining data structure (i.e.,
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minimum value, mean, or median value between 0 and the detection limit). Importantly,
results and interpretation of the data can vary depending on the imputation method used
(18). Other algorithms, including K-nearest neighbors, Bayesian principal component
analysis (PCA), local least-squares regression, singular value decomposition, and random
forest, can also be used to impute missing data in metabolomics analysis (19, 22). In a study
comparing 5 different imputation methods on unsupervised and supervised analyses, random
forest provided better classification rates for PCA and partial least-squares discriminant
analysis (PLS-DA) (19). However, in a recent study comparing 7 imputation methods, no
imputation method was perfect, but the simple substitution methods (half minimum and
mean) consistently performed poorly (22).

Statistical methods to derive metabolomics fingerprints of diet—To maximize
the recovery of information and to help in the interpretation of high-dimensional data sets,
advanced statistical and bioinformatics tools are applied (11). Clustering methods are often
used to reduce and divide the data into groups with a high degree of similarity (23). The
most popular clustering techniques in nutritional metabolomics include multivariate analysis
such as simple unsupervised clustering algorithms, PCA, and supervised techniques like
PLS-DA and its variant combining a data-filtering step such as orthogonal signal correction
and orthogonal partial least-squares discriminant analysis (O-PLS-DA) (24). These
techniques create subgroups of metabolites without a priori hypotheses of metabolic
pathways or the association with dietary information. Unsupervised PCA derives a linear
transformation that preserves as much of the variance in the original data as possible while
maximizing intergroup variation and minimizing within-group variation. PLS-DA, on the
other hand, maximizes the covariance between scores in x (predictor) and y (outcome)
spaces, and it accounts for both systematic variations in the metabolic profiles and
correlations between metabolomics data and the outcome. Partial least-squares analysis is
often used for discriminant analysis to classify metabolic profiles according to categories
(i.e., dietary patterns) (13).

PCA is usually the starting point for an exploratory analysis, as it allows visualization of
biological sets based on the resemblance of samples with respect to their biochemical
composition, as well as allowing the extraction of information on factors contributing to the
difference among samples (25). PCA creates a reduction summary of the data, which can be
analyzed graphically using scores plot and loading plots (11). PCA can facilitate the
comparison of many complex data such as biofluid spectra and can provide information on
metabolite changes. This technique is particularly efficient for the identification of outliers.
Although PCA can help to reduce the dimension of the data set, it does not give an insight of
the association between metabolite signatures and dietary components. Other techniques
such as correlations and multivariate regression analyses are then applied to test the
associations between the factors extracted from PCA with dietary patterns and food groups.

Supervised multivariate analyses are commonly used in nutritional metabolomics. PLS-DA
provides a way to filter out metabolic information that is not correlated to the predefined
classes, whereas the PLS-DA loadings, similarly to PCA loadings, yield information on
which spectral signals are associated with the observed clustering (11). The O-PLS-DA
method is similar to PLS-DA, but the interpretation of the models is improved because the
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structured noise is modeled separately from the variation common to the matrices. O-PLS-
DA enables a more straightforward and accurate interpretation of metabolomics data (24).
O-PLS-DA models the metabolic profile that is linearly predictive of the dietary component
of an individual but also captures external factors not linearly related to the outcome, such as
age, sex, and batch effects. These techniques are useful in exploring the relation of any
features in the metabolomics profiling data set with an external variable (i.e., intake of a
specific food based on a questionnaire or any biological outcome marker).

All these statistical methods require rigorous model validation using cross-validation and
permutation testing [i.e., using a proportion of the data as the test set (usually 10%) and
building the model in the remaining training set] and ideally external validation in
independent studies to avoid false-positive discoveries and to ensure model robustness (13).
Moreover, as a comprehensive way of interpreting the data, it is highly recommended to
report Bonferroni adjustment and false-positive discovery rate procedures to account for
multiple comparison testing, as well as Pvalues and Cls, effect size, and adjustment for
covariates (26).

Fig. 1 depicts an example of scores (A) and loading plots (B) obtained from O-PLS-DA.
Data in Fig. 1 are hypothetical and used only for the purpose of illustrating scores and
loading plots. Fig. 1A could represent O-PLS-DA of 1H NMR of urine data and dietary
interventions. Blue dots in the figure represent control diet, and red triangles represent
dietary pattern intervention. Component 1 and component 2 are extracted from O-PLS-DA
analysis. Loading scatterplot (Fig. 1B) shows the individual compounds.

Pathway analyses and other systems biology approaches—Because of the efforts
to analyze complex genomic data and their integration with bioinformatics in the past
decades, several metabolic databases, such as KEGG, MetaCyc, and BiGG families, have
been developed (27, 28). These databases can help to elucidate underlying metabolic
pathways and integrate targeted and untargeted metabolomics data. Semisupervised pathway
analysis, such as the web-based tool Metabolic Set Enrichment Analysis (29) (which
includes >1000 predefined metabolite sets covering various metabolic pathways, biofluids,
and tissue locations), follows the principle of gene enrichment analysis to derive metabolic
sets. These techniques, often used for the prediction of health outcomes, can also be applied
to nutritional metabolomics to evaluate the associations between these enriched metabolite
sets and dietary patterns. Agnostic network models are commonly used to combine
significant metabolites identified from the targeted approach with the untargeted method to
discover and validate metabolomics signatures. Correlation networks, a systems biology tool
that enables visualization of the complex correlation structure between metabolites and
clinical parameters (30), can be combined with algorithms for detecting active subnetworks
to integrate data into metabolic pathways. These software tools, although not yet widely
used in nutrition metabolomics, can help in the understanding and visualization of metabolic
networks, as well as the description and prediction of metabolic pathways, and also
constitute an important resource for nutrition research (25). Most of the statistical
approaches that are currently used for genomics and metabolomics data treatment can serve
as a foundation for nutritional studies, for which high-throughput metabolomics data are
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becoming extensively available. A schematic summary work flow of nutritional
metabolomics approaches is presented in Fig. 2.

Metabolomic Fingerprinting of Diet

Metabolomic techniques have been applied to several clinical and population settings to
characterize metabolic effects of nutrients, foods, and dietary patterns. Biomarkers identified
with the use of high-throughput metabolomics (usually mass spectrometry and NMR) have
been measured in urine, plasma, and serum, and fall into different subclasses, including
polar metabolites (amino acids, acylcarnitines, carbohydrates, bile acids, metabolites from
purine and pyrimidine) and apolar metabolites (lipid classes). Briefly, most studies focused
on the identification of dietary biomarkers of specific food and food groups, whereas fewer
identified biomarkers of single nutrients (6). The most extensively studied food groups
include fruits, vegetables, meat, fish, bread, whole-grain cereals, nuts, wine, coffee, tea,
cocoa, and chocolate (6). The number of participants in these studies ranged from 4 to 500
participants, and a majority used a cross-sectional study design to identify specific
metabolites of a food or food group differing between consumers and nonconsumers (6).

BIOMARKERS AND METABOLITES OF SINGLE NUTRIENTS

Several biomarkers of single nutrients including fiber and protein intake have been
identified. In a randomized intervention study, concentrations of metabolite markers 2,6-
dihydroxybenzoic acid and 2-aminophenol sulfate increased after participants followed a
high-fiber diet (mean intake 48 g compared with the low-fiber group at 30.2 g) for 5 weeks
(31). In another controlled intervention study in which participants were randomized to a
high or low glycemic index diet for 6 months, hippuric acid was correlated with dietary fiber
intake (32). However, none of the biomarkers identified in the first study were confirmed in
the second. The lack of consistency across studies may be explained because of differences
in study duration (5 weeks vs 6 months), interventions (high-fiber diet in the first study
consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products,
whereas the intervention diets in the second study were designed to achieve a difference of
15 glycemic index points), or the age of participants (37-45 years vs 30-70 years). This
highlights the need to validate and replicate biomarkers in different populations to identify
consistent biomarkers for the same nutrient.

In another crossover feeding trial of two 28-day diet periods of high and low glycemic load
diet, concentrations of kynurenate and trimethylamine-A-oxide (TMAQ) were found to be
significantly higher after consumption of a low glycemic load diet (33). A cross-sectional
analysis of 1003 participants from the Twins UK cohort showed that protein intake was
positively associated with several plasma amino acids, including valine, phenylalanine, and
tyrosine, and inversely associated with glutamine (34). In a randomized, crossover feeding
study including 11 obese nondiabetic participants, plasma concentrations of tryptophan,
phenylalanine, and kynurenine were increased after a high-fat meal with whey protein
isolate (35).
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METABOLOMIC FINGERPRINTS OF SPECIFIC FOOD GROUPS

Several studies have identified biomarkers of total polyphenol intake and polyphenols from
specific food groups, including polyphenols from cocoa powder (36-38), red wine and grape
juice (39, 40), almond skin (41), nuts (42), and orange juice (43). In the PRE-DIMED study,
a randomized, parallel, clinical trial for primary prevention of cardiovascular disease, using
an untargeted metabolomics analysis of urine from 32 consumers of cocoa-derived products
and 32 controls, the discriminant biomarkers of cocoa consumption were related to the
metabolic pathways of theobromine and polyphenols (38). In another study of 57 volunteers
at high cardiovascular risk, tartrate was associated with wine polyphenol consumption (40).
Hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids were
identified in human urine samples after the consumption of flavan-3-ols from almond skin in
an acute feeding study (41). Betonicine, stachydrine, methyl glucopyranoside (i + ),
dihydroferulic acid, and galactonate were proposed as new metabolic signatures to
distinguish the intake of orange juice with different polyphenol content in the BIONAOS
study, which compared a normal-polyphenol orange juice with a high-polyphenol orange
juice for 12 weeks in a randomized parallel study (43). Moreover, a recent study evaluating
metabolic profiles in urine of 481 subjects from the European Prospective Investigation into
Cancer (EPIC) and Nutrition cohort identified >80 polyphenol metabolites associated with
the consumption of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and
pears, and chocolate products) (44).

As extensively reviewed by Scalbert et al. (6), many biomarkers identified using
metabolomics were associated with the consumption of fruits, vegetables, and specific
markers of citrus fruit and cruciferous vegetables. As an example, proline and betaine were
identified as biomarkers of citrus intake in an acute feeding study of 8 participants and then
validated with 499 participants from INTERMAP (7) and another cross-sectional study (45).
At the same time, urine concentrations of S-methyl-L-cysteine sulfoxide were found to be
related to the intake of cruciferous vegetables in a short-term intervention study that
included 20 healthy men who consumed 250 g/day of cruciferous vegetables (broccoli and
Brussels sprouts) for 14 days (46). Metabolite biomarkers of tomato sauce consumption have
also been characterized (47). Specifically, serum concentrations of creatine, creatinine,
leucine, choline, methionine, and acetate were found to be increased after a 4-week
intervention with 160 g/day of high-lycopene tomato sauce, and ascorbic acid, lactate,
pyruvate, isoleucine, and alanine were increased after the intervention with 160 g/day of
normal-lycopene content tomato sauce (47).

Potential markers of nut intake identified in intervention studies ranging from 12 weeks to 6
months (42, 48, 49) include conjugated fatty acids, serotonin metabolites, and microbial-
derived phenolic metabolites. In the PREDIMED study, walnut consumption was
characterized by the presence of 18 urinary metabolites, including markers of fatty acid
metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the
tryptophan/serotonin pathway (38).

Metabolomics fingerprints of beverage consumption have been extensively examined as
well. Coffee has been reported to be positively associated with specific classes of
sphingomyelins and negatively associated with long- and medium-chain acylcarnitines (50).
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In a case—cohort study of type 2 diabetes incidence including 1610 EPIC-Potsdam
participants, in which 163 metabolites were targeted, coffee consumption was inversely
associated with diacylphosphatidylcholine C32:1 in both men and women and phenylalanine
in men, whereas in women, coffee intake was positively associated with acyl-alkyl-
phosphatidylcholines C34:3, C40:6, and C42:5 (51). Other confirmed metabolite markers of
coffee exposure included methylxanthines and reduced, sulfated, and methylated forms of
hydroxycinnamates (52-54), which are coffee-derived metabolites. Recently, among
participants of a 3-stage coffee trial in which 47 participants refrained from drinking coffee
in the first month, consumed 4 cups of filtered coffee per day in the second month, and 8
cups of coffee per day in the third month, 115 plasma metabolites, evaluated with a
nontargeted metabolomic profiling approach, were significantly associated with coffee
intake (55). Five metabolic pathways were significantly enriched: (&) xanthine metabolism,
which includes caffeine metabolites, (6) benzoate metabolism that reflects polyphenol
metabolite products of gut-microbiota metabolism, (¢) steroid, which is novel but may
reflect sterol content of coffee, (d) fatty acid metabolism (acyl choline), a novel link to
coffee; and (€) endocannabinoid, a novel link to coffee (55).

Metabolites linked with carnitine metabolism and sulfation of tyrosine are among the set of
metabolites linked to cocoa intake (37, 38). Findings from the Atherosclerosis Risk in
Communities study suggested that sugar-rich foods and beverages were inversely associated
with 5 metabolites in the 2-hydroxybutyrate-related sub-pathway and 7 unsaturated long-
chain fatty acids, and positively associated with 5-y-glutamyl dipeptides (56). Hippuric acid,
previously identified as a marker of fiber intake (32), has also been identified as a marker of
tea consumption, especially green and black tea, in several intervention and cross-sectional
studies (48, 57, 58). The nonspecificity of the biomarkers to 1 specific food highlights the
limitation of using nutritional metabolomics for the characterization of markers of food
intake. As another illustration, hydroxytyrosol, which is a minor dopamine metabolite that
derives from oleuropein, is a well-established biomarker of olive oil consumption (59).
Plasma and urinary hydroxytyrosol levels have been shown to increase in a dose-dependent
manner with the phenolic content of food (i.e., olive oil) (60). However, recently, findings
from the PREDIMED study have revealed a direct association between red wine
consumption and urinary hydroxytyrosol, independent of the amount of olive oil consumed
(59). Thus, hydroxytyrosol cannot be considered a specific biomarker, as it cannot
differentiate between olive oil and red wine consumption.

In a randomized, crossover, feeding study of 19 post-menopausal women comparing the
intake of refined wheat, whole-meal rye, and refined rye breads providing 50 g of
carbohydrates, and in which 189 metabolites were targeted, 8 amino acids (leucine,
isoleucine, citrulline, ornithine, proline, asparagine, methionine, and lysine) were
significantly influenced by intervention (P < 0.01). Branched-chain amino acids (BCAA)
were higher after refined wheat bread consumption compared with the other breads at 45 and
60 min (61). Other metabolites, including 3-(3,5-dihydroxyphenyl)-1-propanoic acid sulfate,
enterolactone glucuronide, azelaic acid, and 2-aminophenol sulfate, have also been detected
as markers of whole-grain rye bread intake (62). Finally, a targeted metabolomics study of
>300 lipid metabolites suggested that lysophosphatidylcholine, lyso-platelet-activating
factor, and several phospholipid fatty acids were associated with consumption of full-fat
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dairy products (63). In addition, a recent 24-week energy-restricted intervention study with
low [0-1 dairy products/day (<600 mg calcium/day)] or high [4-5 dairy products/day
(approximately 1200 mg calcium/day)] dairy intake showed that high dairy consumption
increased urinary citrate and creatinine and decreased the urinary excretion of TMAQ and
hippurate (64).

METABOLOMICS SIGNATURES OF DIETARY PATTERNS

Several studies have evaluated metabolite profiles related to overall dietary patterns. We
searched PubMed for studies published in English from database inception to April 2017
using the search terms {[“metabolomics” (MeSH Terms) OR “metabolomics” (All Fields)]
OR [metabolite (All Fields)] AND profiling (All Fields)]} AND {[“diet” (MeSH Terms) OR
“diet” (All Fields) OR “dietary” (All Fields)] AND [pattern (All Fields)] OR [“diet therapy”
(MeSH Terms)] OR [“diet” (All Fields) AND “therapy” (All Fields)] OR “diet therapy” (All
Fields) OR [“dietary” (All Fields) AND “intervention” (All Fields)] OR “dietary
intervention” (All Fields)} NOT [“review” (Publication Type) OR “review literature as
topic” (MeSH Terms) OR “review” (All Fields)] AND “humans” (MeSH Terms). We
excluded nonhuman studies, studies in children, reviews, and commentary articles. We
further excluded studies focusing on dietary supplementation and single foods because of a
recent comprehensive review by Scalbert et al. (6) on metabolomics studies on food groups.
After exclusions, the search identified 130 studies, of which 16 (summarized in Table 1)
evaluated biomarkers of dietary patterns or dietary interventions using metabolomics
profiling.

Most studies included healthy participants and applied mass spectrometry or NMR in blood
and urine to extract metabolite profiles. Nine articles included cross-sectional analyses
discriminating consumers from non-consumers of specific dietary patterns. Nine studies
were intervention studies that evaluated the effect of overall dietary patterns on metabolic
profiles. Several dietary patterns have been studied in the context of nutrition metabolomics,
including vegetarian and lactovegetarian diets, omnivorous diet, Western dietary patterns,
prudent dietary patterns, Nordic diet, and Mediterranean diet.

Using a cross-sectional study design, Bouchard-Mercier et al. investigated the associations
between dietary patterns and metabolic profiles (65). In a targeted mass spectrometry
analysis of 14 amino acids and 41 acylcarnitines, a PCA-derived Western dietary pattern was
associated with a metabolite signature characterized by high levels of BCAA (leucine),
aromatic amino acids (phenylalanine), and short-chain acylcarnitines (65). In another cross-
sectional analysis of 2380 EPIC-Potsdam participants (127 serum metabolites were analyzed
using mass spectrometry), a dietary pattern characterized by high intakes of red meat and
fish and low intakes of whole-grain bread and tea was directly related to high plasma levels
of hexose and phosphatidylcholines (66). A pattern consisting of high intake of potatoes,
dairy products, and cornflakes was associated with higher methionine and BCAA
concentrations (66). Another cross-sectional study of women from the Twins UK cohort,
characterized by metabolites associated with several nutritional scores, including fruit and
vegetable intake, high alcohol intake, low meat intake pattern, hypocaloric dieting, and
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traditional English diet; phosphatidylcholine-dyacil C38:6 and acylcarnitine C9 were
significantly and positively associated with hypocaloric dieting (34).

Another interesting study aimed to investigate the differences in concentrations of 118
circulating metabolites between male meat eaters, fish eaters, vegetarians, and vegans was
conducted in the Oxford EPIC cohort. The study found that concentrations of 79% of
metabolites differed significantly by diet groups. Concentrations of acylcarnitines, C-0, C-4,
and C-5 were highest among meat eaters, followed by fish eaters, vegetarians, and vegans.
At the same time, concentrations of acylcarnitines, C-3 and C-16, 61 glycerophospholipids,
and 12 sphingolipids were highest among meat eaters and lowest among vegans. In contrast,
fish eaters and vegetarians had the highest concentrations of amino acids (such as leucine,
valine, lysine, methionine, tryptophan, and tyrosine) and biogenic amines (67).

Recently, Playdon et al. (58) identified metabolomic fingerprints of diet quality [evaluated
using different dietary scores (Healthy Eating Index-2010, Alternate Mediterranean Diet
Score, WHO Healthy Dietary Indicator, and Baltic Sea Diet)] in healthy male smokers from
5 nested case—control studies of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention
study. Healthy Eating Index-2010 was associated with 17 identifiable chemical structure
metabolites: 3 amino acids, 2 cofactors or vitamins, 9 lipids, and 3 exogenous xenaobiotics.
Alternate Mediterranean Diet Score was associated with 21 identifiable metabolites: 4 amino
acids, 1 carbohydrate, 2 cofactors or vitamins, 11 lipids, and 3 xenobiotics. WHO Healthy
Dietary Indicator was associated with 11 metabolites: 3 amino acids, 2 cofactors or vitamins,
4 lipids, and 2 xenobiotics. Baltic Sea Diet associated with 10 metabolites: 2 amino acids, 1
carbohydrate, 3 cofactors or vitamins, and 4 lipids. The lysolipid pathway contained the
largest number of metabolites associated with diet quality (68).

Several randomized intervention trials evaluated the effect of dietary interventions on
metabolic profiles; however, most of these studies had small samples sizes and short follow-
up periods (Table 1). The effect of a Mediterranean diet intervention on the urinary
metabolome was assessed in the PREDIMED trial by comparing a subsample of nondiabetic
subjects at 1 and 3 years of follow-up (69). Findings from this study showed that the most
relevant metabolic signatures related to a Mediterranean diet intervention were metabolites
of carbohydrate pathways (3-hydroxybutyrate, citrate, and cis-aconitate), creatine,
creatinine, amino acids (proline, A-acetylglutamine, glycine, BCAA, and derived
metabolites), lipids (oleic and suberic acids), and microbial co-metabolites
(phenylacetylglutamine and p-cresol) (69).

The RESMENA study was an intervention study that included 72 subjects with metabolic
syndrome features who consumed either an energy-restricted Mediterranean diet or an
energy-restricted control diet (low fat) for 6 months (70). Metabolomics in plasma samples
showed that the Mediterranean diet intervention resulted in significant changes in the
metabolic profile at 2 months (mainly phospholipids and lysophospholipids), but differences
were attenuated at 6 months (70).

Garcia-Perez et al. published the findings of a controlled, crossover, feeding study of 19
healthy participants who followed 4 different diets for 72 h separated by 5 days (71). The 4
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diets differed in compliance to the WHO healthy eating guidelines: decreased sugar, salt,
and total fat consumption and increased intake of whole grains, fruits, vegetables, and
dietary fiber. Diet 1 was the most concordant with the guidelines and diet 4, the least
concordant. The authors noted that 19 urinary metabolites were significantly increased after
consumption of diet 1 compared with diet 4. Specifically, diet 1 resulted in higher
concentration of urinary biomarkers from individual healthy foods like hippurate (marker of
fruit and vegetable consumption), (A-acetyl-) S-methyl-L-cysteine-sulfoxide (cruciferous
vegetables), dimethylamine and TMAQ (fish), and 1-methylhistidine and 3-methylhistidine
(oily fish and chicken). On the contrary, diet 4 was associated with higher concentration of 9
urinary metabolites, related to higher amounts of red meat (O-acetylcarnitine, carnitine, and
creatine) and sugars (glucose) (71).

DIETARY BIOMARKERS DERIVED FROM GUT MICROBIOTA METABOLISM OF DIETARY
COMPONENTS

Microbial species in human gut can directly deliver compounds from their metabolome,
which are absorbed and contribute to human metabolism (such as amino acids, bile acids,
short-chain fatty acids, vitamins, and energy substrates) (3). On the other hand, the gut
microbiota can change constituents in food and make them available to themselves or the
host for additional metabolism (3).

A number of metabolites that are related to diet and can be metabolized by gut microbiota
have been identified. For example, microbial enzymes can hydrolyze soy isoflavones and
release several metabolites, including aglycons, daidzein, genistein, and glycetin (3). The gut
microbiota can also transform polyphenols to phenolic breakdown products, including
benzoate and various derivatives of hydroxyphenylacetic and hydropropionic acids (3). Ina
randomized, parallel, controlled study designed to compare a high-soy diet [104 (24) mg
total isoflavones/day] with a low-soy diet [0.54 (0.58) mg total isoflavones/day] in 76
healthy young adults followed for 10 weeks, concentrations of isoflavones and their gut flora
metabolites in plasma, urine, and feces were significantly increased in participants who
consumed the high-soy diet. Fecal S-glucosidase activity was significantly higher in the
subjects who consumed the high-soy diet than in those who consumed the low-soy diet (72).

Some of the most studied gut microbiota-dependent metabolites are those related to TMAO
and its precursors choline and carnitine. Foods such as meat and meat products, egg yolks,
and high-fat dairy products, which are high in phosphatidylcholine, choline, carnitine, and
trimethylamine (TMA), serve as precursors to TMAO (73). TMAO has been found to be a
potential biomarker of meat intake, but it has also been reported as a biomarker of fish and
seafood intake, and more recently, it has been reported to be related to plant foods like
soybeans (71, 74, 75). Although certain microbial metabolites can be putative food
biomarkers, there is a complex relation between the food sources, gut microbiota, and the
food metabolites derived; thus, these biomarkers should be interpreted with caution.

Application of Metabolomics in the Field of Nutritional Epidemiology

Widely used dietary assessment methods such as diet records and FFQ have been
instrumental in their ability to measure diet in large populations and in examining the role of
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diet in human health (4). Because diet represents a complex set of exposures that are
intercorrelated, and because foods are mixtures of known and unknown constituents,
assessing dietary intakes in the context of relatively large within-individual variations is an
ongoing challenge in nutritional epidemiology (76). The integration of metabolomics into
traditional nutritional epidemiology can, to some extent, overcome the limitations of
traditional dietary assessment methods and can provide important insights into mechanistic
pathways. In Table 2, we briefly summarize and compare traditional dietary assessment
methods with biomarkers of dietary intake. Traditional assessment methods are noninvasive
and have the advantage of providing useful information on long-term dietary intake (FFQs
and multiple-week diet records). FFQs are easy to administer with a low respondent burden;
multiple-week records provide open-ended dietary data and do not rely on memory (4).
Nevertheless, they are subject to some biases, such as recall errors, health consciousness
bias, and errors in nutrient estimation from food composition diets. On the other hand,
objective biomarkers, usually measured in serum, plasma, and urine, can objectively assess
dietary intakes, represent the true “bioavailable” dose, and can serve as validation markers of
other assessment methods. However, they may not be sensitive to intakes, can have low
specificity, and are not available for many nutrients and foods. In addition, they are
expensive, more invasive, and are subject to laboratory errors (4). Some examples of these
biomarkers include urinary nitrogen for protein intake, 24-h urinary potassium and sodium,
doubly labeled water for energy intake, plasma vitamin D, serum and plasma folate,
essential fatty acids and other vitamins, trace minerals, and metabolite biomarkers.

Nutritional metabolomics holds considerable promise for the development of a more robust
and unbiased strategy for measuring diet. However, there are important issues to consider.
Certain metabolites have a short half-life and may, therefore, not represent usual intake,
which is the most relevant exposure in nutritional epidemiology. Of note, a single
measurement of metabolites is not sufficient to represent usual intake. For a metabolite to be
a valid biomarker of dietary intake, it needs to be sensitive to intake and should be relatively
easy to measure in biofluids.

So far, an extensive list of potential biomarkers related to the intake of nutrients, foods, and
diets has been revealed by metabolomics. Compared with single biomarkers of food
consumption, nutritional metabolomics is contributing to the discovery of biomarker
patterns. Metabolomics can also generate biomarker patterns to evaluate the efficacy of
nutritional interventions for maintaining and improving health at the individual level.
However, it is unlikely that metabolomics biomarkers will replace traditional dietary
assessments using self-reported methods because for most foods and nutrients, sensitive and
specific biomarkers are not available or have not yet been identified. In addition,
metabolomics assays are expensive, rendering them infeasible to assess dietary habits among
hundreds and thousands of participants in large cohort studies. Therefore, biomarkers
identified from metabolomics and traditional self-reported methods such as validated FFQs
should be used in a complementary fashion. In the future, reproducible metabolomics
biomarkers may be used to validate self-reported measurements of dietary intake, calibrate
estimates of dietary intake, identify novel biomarkers of food consumption, and provide
objective biomarkers of adherence to dietary interventions and dietary patterns. However,
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more efforts are needed to develop, validate, and fine-tune assessment methods that can
capture the multidimensional nature of diet.

From the standpoint of public health, the incorporation of nutritional metabolomics into
traditional nutritional epidemiology can help to identify subgroups that differ in their
response to specific dietary components so that interventions can be tailored to those who
will benefit the most, reducing the cost and side effects for those who will not (77).
However, before nutritional metabolomics can have a real impact on public health, there is
an urgent need to establish reference intervals based on absolute metabolite concentrations
in defined human bio-fluids, improve the specificity of metabolite biomarkers of certain
foods, and to conduct studies with adequate statistical power with independent replications
in diverse cohorts while considering ethnic and regional differences.

Finally, because recent metabolomics efforts have focused on the analysis of known
metabolites, current efforts to characterize unknowns may enable more comprehensive
investigations and the discovery of novel metabolic pathways. The field of nutritional
epidemiology will greatly benefit from the integration of other -omics technologies, such as
genomics, proteomics, epigenomics, and metagenomics. Global initiatives are needed to
standardized data collection and analytic methods for metabolomics in human nutrition (3)
and to create consortia of metabolomics studies including well-assessed dietary data across
diverse populations in the world.
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Fig. 1. Example of scores (A) and loading plots (B) of O-PLS-DA
Data in this figure are hypothetical and used for the only purpose of illustrating scores and

loading plots. (A) could represent O-PLS-DA of IH NMR of urine data and dietary
interventions. Blue dots represent control diet, and red triangles represent dietary pattern
intervention. Component 1 and component 2 are extracted from O-PLS-DA analysis.
Loading scatterplot (B) shows the individual compounds.
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Work flow of nutritional metabolomics approaches.
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Table 2

Comparison of traditional dietary assessment methods and biomarkers.
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Self-reported measures of diet

Objective measures of diet

Validated FFQ

Multiple-week diet records

Biomarkers identified through
metabolomics approaches

Provides information on usual long-term
intake

Detailed dietary data that do not rely on memory

Objective assessment of intake and
represents bioavailable dose

Estimating and recall errors

Errors from incorrect estimate of portion size and
omission of foods

Subject to laboratory errors

Easily administered and low respondent
burden

Participant burden is high

Can be measured in stored biospecimens

Least expensive method and noninvasive

Noninvasive but expensive

Expensive and more invasive

Can assess usual dietary intake

Can assess usual dietary intake if measured
multiple times over the course of a year

May not be time-integrated or represent
usual long-term intake; may not be
sensitive or specific to intakes

Health consciousness bias

Health consciousness bias

Not applicable

Errors in nutrition estimation from food
composition tables

Errors in nutrition estimation from food
composition tables

Biomarkers are not available for many
nutrients and most foods

Culture and population specific

Needs literate and motivated participants

Biomarker variations may exist between
cultures and populations

Association analyses in large
epidemiologic studies

Validation of other methods and assess compliance

Can be used to assess associations in
cohort or nested case—control studies

Adapted with permission from Satija et al. (4).
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