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Abstract

BACKGROUND—Nutritional metabolomics is rapidly evolving to integrate nutrition with 

complex metabolomics data to discover new biomarkers of nutritional exposure and status.

CONTENT—The purpose of this review is to provide a broad overview of the measurement 

techniques, study designs, and statistical approaches used in nutrition metabolomics, as well as to 

describe the current knowledge from epidemiologic studies identifying metabolite profiles 

associated with the intake of individual nutrients, foods, and dietary patterns.

SUMMARY—A wide range of technologies, databases, and computational tools are available to 

integrate nutritional metabolomics with dietary and phenotypic information. Biomarkers identified 

with the use of high-throughput metabolomics techniques include amino acids, acylcarnitines, 

carbohydrates, bile acids, purine and pyrimidine metabolites, and lipid classes. The most 

extensively studied food groups include fruits, vegetables, meat, fish, bread, whole grain cereals, 

nuts, wine, coffee, tea, cocoa, and chocolate. We identified 16 studies that evaluated metabolite 

signatures associated with dietary patterns. Dietary patterns examined included vegetarian and 

lactovegetarian diets, omnivorous diet, Western dietary patterns, prudent dietary patterns, Nordic 

diet, and Mediterranean diet. Although many metabolite biomarkers of individual foods and 

dietary patterns have been identified, those biomarkers may not be sensitive or specific to dietary 

intakes. Some biomarkers represent short-term intakes rather than long-term dietary habits. 

Nonetheless, nutritional metabolomics holds promise for the development of a robust and unbiased 

strategy for measuring diet. Still, this technology is intended to be complementary, rather than a 

replacement, to traditional well-validated dietary assessment methods such as food frequency 
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questionnaires that can measure usual diet, the most relevant exposure in nutritional epidemiologic 

studies.

Recent high-throughput technologic developments in molecular biology, namely, genomics, 

transcriptomics, proteomics, and metabolomics, are leading us toward a new era in 

epidemiologic research. In the past few years, the scientific community has focused on a 

more integrated systems epidemiology approach, in which several fields converge to 

integrate traditional knowledge with novel -omics techniques (1). Nutritional epidemiology 

has not been the exception, and several studies in this field have incorporated -omics data in 

the past decade (1). Along these lines, the concept of precision nutrition has recently 

emerged (2) and refers to the integration of -omics techniques to personalize diets based on 

individual genetic makeup to achieve better prevention or management of disease. Among 

all the -omics, metabolomics plays a crucial role in the field of nutrition because it is more 

time sensitive than other -omics and can reflect the current biological status of an individual 

(3). The human metabolome can be influenced by several factors, such as age, diseases, 

drugs, environment, genetic factors, lifestyle, and nutrition (3).

Metabolomics can provide a comprehensive picture of overall dietary intake by measuring 

the full profile of small molecule metabolites in biological samples such as saliva, blood, 

and urine. Thus, it could help deepen our knowledge of metabolic pathways relevant to 

human nutrition (3). Importantly, because nutritional epidemiologic studies frequently rely 

on self-reported dietary assessment methods that are subject to recall bias and measurement 

error and because objective biomarkers do not exist for all nutrients and foods (4), 

metabolomics can be a promising technique to objectively identify dietary biomarkers. 

Metabolite profiling accounts for intrinsic variability in metabolism by measuring 

downstream components or metabolic products of foods, and might therefore accurately 

reflect true exposure as compared with traditional methods that measure individual food 

intake (5). Thereby, nutritional metabolomics, which refers to the integration of metabolic 

profiling with nutrition in complex biosystems, can be applied to discover new biomarkers 

of nutritional exposure and status and can help disentangle the molecular mechanisms by 

which diet affects health and disease. Diet can have effects on 2 different components of the 

metabolome: the endogenous metabolome, referring to all metabolites present in a biological 

sample of the host, and the food metabolome, which includes metabolites that are derived 

from food consumption and their subsequent metabolism in the human body (6). Food 

metabolome not only includes metabolites of known micro-and macronutrients but also 

nonnutrient food compounds with biological roles yet to be elucidated.

To date, several studies have identified metabolomic signatures associated with the intake of 

specific foods and food groups, including fruits, vegetables, meat, fish, nuts, whole-grain 

bread, wine, coffee, and cocoa (6). A growing body of evidence has also emerged relating 

metabolic profiles with overall dietary patterns. Therefore, the purpose of this review is 2-

fold: (a) to provide a broad overview of the metabolite measurement techniques, study 

designs, and statistical approaches used in nutrition metabolomics studies, and (b) to 

describe the current knowledge from epidemiologic studies identifying metabolite profiles 

associated with the intake of individual nutrients, foods, and dietary patterns.
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Methods and Approaches in Studies of Nutritional Metabolomics

MEASUREMENT OF METABOLITES

Metabolomics refers to the systematic analysis of low molecular weight biochemical 

compounds in a biological sample. Urine, serum, and plasma samples are the most common 

biofluids used in nutritional metabolomics studies. One of the major differences between 

urine and plasma is that urine contains a higher concentration of nonmetabolites and 

nonnutrient compounds (representing noncontributory information or noise) that are derived 

from food phytochemicals and other chemicals. However, most of the metabolites in urine 

are excreted faster than those from plasma and can serve as acute markers of frequently 

consumed foods. For example, urine excretion of proline betaine is known to peak within a 

few hours after intake and be almost completely excreted within 24 h (7). Blood, on the 

other hand, contains a higher concentration of metabolically active compounds, and lipid-

soluble metabolites are present only in plasma, not in urine (3).

In general, 2 different metabolomics techniques have been applied: (a) mass spectrometry 

coupled with gas- or liquid-phase chromatography, and (b) proton (1H) nuclear magnetic 

resonance (NMR)4 spectroscopy (8). Other platforms, such as inductively coupled plasma 

mass spectrometry, are also used to detect trace minerals and other electrolytes in biological 

samples (9). Targeted approaches that focus on a specific subset of predefined metabolites, 

as well as more agnostic untargeted approaches that analyze many measurable compounds in 

the sample, including chemical unknowns, have been implemented (8). Although targeted 

approaches are usually less expensive and follow a hypothesis-driven approach of 

metabolites of known identity, untargeted metabolomics detect thousands of unknown 

metabolites that may provide novel information on biological pathways with clinical 

relevance. However, because of the higher cost of the latter approach, the high density of the 

data acquired, and the methods required for complex statistical analysis, several 

epidemiological studies so far have relied solely on targeted metabolite profiling. Human 

metabolic databases, such as the Human Metabolome Database, can be a useful resource for 

nutritional metabolomics. The Human Metabolome Database includes more than 6800 fully 

annotated metabolites, such as metabolic intermediates, hormones, drugs, and food 

components (10). Despite the existence of many metabolites, the nutrition community is 

particularly interested in metabolic pathways in which nutrients are involved, including 

carbohydrate, lipids, amino acids, and energy metabolism pathways, along with mineral, 

trace elements, and vitamin metabolism pathways (3).

STUDY DESIGNS USED IN NUTRITIONAL METABOLOMICS

Intervention studies—Metabolomics can be used as a key tool in the search for novel 

biomarkers of dietary intake. Studies of nutritional metabolomics need to account for 

intersubject metabolic variation and should be able to deal with measurements of subtle 

metabolic modulations against relatively low doses of bioactive food nutrients or 

supplements (11). One method is to conduct controlled dietary intervention trials; in acute 

4Nonstandard abbreviations: NMR, nuclear magnetic resonance; FFQ, food frequency questionnaire; PCA, principal component 
analysis; PLS-DA, partial least-square discriminant analysis; O-PLS-DA, orthogonal partial least-squares discriminant analysis; 
TMAO, trimethylamine-N-oxide; EPIC, European Prospective Study into Cancer; BCAA, branched-chain amino acids.
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feeding studies, participants consume the food of interest in a single meal. For short- to 

medium-term trials, participants typically consume the food of interest in repeated meals 

over a given period, ranging from a few days up to several months. For this purpose, a 

crossover study design has traditionally been favored over a parallel design because it 

effectively deals with intersubject variation as each participant serves as his or her own 

control. Biofluids can be collected before and after the consumption of the food of interest in 

acute studies; in short- and medium-term trials, biofluids are usually collected at baseline 

and at the end of the intervention period (6). Any biomarker identified in acute studies must 

ideally be validated with longer intervention studies and replicated in different populations. 

Given the need to detect accurate measurements of dietary exposures, nutritional 

metabolomics can be a useful tool for identifying objective markers of relatively short-term 

response to diet interventions, as well as compliance with such dietary interventions. In 

addition, well-conducted clinical trials are less prone to confounding and measurement 

errors compared with observational studies.

Observational studies—One of the advantages of nutritional metabolomics studies is the 

possibility to identify a wide range of dietary biomarkers instead of a single biomarker. 

Indeed, multimetabolite biomarker panels can offer a better estimation than single 

biomarkers and increase the accuracy and precision of dietary assessment when combined 

with a food frequency questionnaire (FFQ). In this context, observational studies with 

repeated measurements of diet over time, which provide information of usual diet, play an 

important role. Epidemiologic studies in this field compare low and high consumers of 

nutrients/foods using FFQ, food records, and other dietary assessment tools, and then 

characterize objective biomarkers that are reflective of habitual intake or related to the intake 

of specific nutrients and food groups. These studies can also be used to detect metabolite 

signatures associated with overall dietary patterns. It is important to note that many of the 

foods consumed are highly correlated, and there is a risk of identifying biomarkers that are 

not specific to the particular food of interest (6). For example, vitamin C, several 

carotenoids, and flavonoids are common to many fruit and vegetables; therefore, they can be 

used as generic biomarkers of total fruit and vegetable intake but not specific to individual 

fruits or vegetables (12).

A number of these observational studies have applied cross-sectional designs comparing 

groups of participants at a single time point (i.e., consumers vs nonconsumers). Another 

possible approach to identify dietary biomarkers through metabolomics is the study of 

longitudinal variations in metabolite concentrations and their associations with diet and 

particular health outcomes or markers in population-based studies and clinical trials (6). 

With these prospective designs, individuals or populations exposed to different 

environments, lifestyles, or dietary patterns can be distinguished and metabolic differences 

can be identified.

Nevertheless, it is worth mentioning that most of the observational studies in nutritional 

metabolomics have small sample sizes and have not been replicated. One of the reasons that 

may account for the lack of replication in metabolomics studies is the fact that such analyses 

have not yet been standardized and homogenized, especially compared with genome-wide, 

large-scale studies (13). Several differences across studies exist, including storage of 
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biological samples, different platforms for analyses of specimens, quality control and data 

preparation, and relative vs absolute quantification of metabolites. Therefore, there is an 

urgent need to evaluate metabolite stability and biological variability in large populations 

before markers of food intake or dietary patterns can be properly validated (13).

STATISTICAL APPROACHES

Analyses of high-throughput nutritional metabolomics data require the use of advanced 

bioinformatics and computational tools. Challenges with metabolomics analyses include 

data preparation and normalization, data reduction into fewer dimensions, and interpretation. 

In the section below, we briefly provide an overview of the statistical approaches commonly 

used in nutritional metabolomics studies.

Data preparation—The first step in metabolomics analysis is to prepare the metabolic 

profile of raw data generated by the analysis of biological samples. Raw data undergo data 

preprocessing, data alignment, data normalization, and signal correction before application 

of statistical methods (14). The first step is preprocessing; in mass spectrometry, this step 

includes peak detection, peak matching, retention time alignment, peak integration, and peak 

filling (13). Data alignment consists of matching peaks (m/z) and retention times to 

standards to align the different sample profiles. Some software tools also include gap filling, 

which checks raw data for any peak that has not been detected in a sample but was found in 

others. Quality control is also undertaken in this phase with the use of repeatability filters 

(i.e., filtering out features with coefficient of variation >30% or lower cut-points for targeted 

biomarkers) (13). In most laboratories, internal standards and pooled study samples are used 

to standardize data across data sets. In NMR, preprocessing needs to account for peak 

overlap and peak shift. Binning (or grouping) of metabolite signals based on correlation 

structure is commonly used to account for peak shift (15). Peak fitting can address peak 

shifting and overlap, but it is time consuming (16). Batch normalization, scaling, and outlier 

removal are also important parts of data preparation; normalization is used to account for 

uncontrolled metabolome-wide effects like dilution. Normalization is aimed to remove any 

unwanted variation in the spectrometric signal that cannot be controlled for or removed in 

any other way (17). Annotation of metabolites is usually the last step before applying 

statistical analysis. Comparing peaks with standards, databases, and commercial software is 

an important part of the process to avoid “putative annotation” because each feature could 

correspond to multiple metabolites. Although these methods are generally applied to 

targeted and untargeted data, identification of individual metabolite from untargeted peaks is 

challenging. Although online databases of annotated metabolites are growing, many 

unknown compounds still need to be identified.

Missing values in metabolomics data sets occur widely and can arise from different sources, 

including technical and biological reasons. Several methods to deal with missing data in 

metabolomics analysis have been examined (18–21). In mass spectrometry data analysis, a 

common approach is to remove from the analysis individual metabolites when a large 

proportion of participants have missing values or to remove a participant with many missing 

metabolites (21). Other standard methods of missing value imputation include the 

replacement of missing values with a nonzero value while maintaining data structure (i.e., 
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minimum value, mean, or median value between 0 and the detection limit). Importantly, 

results and interpretation of the data can vary depending on the imputation method used 

(18). Other algorithms, including K-nearest neighbors, Bayesian principal component 

analysis (PCA), local least-squares regression, singular value decomposition, and random 

forest, can also be used to impute missing data in metabolomics analysis (19, 22). In a study 

comparing 5 different imputation methods on unsupervised and supervised analyses, random 

forest provided better classification rates for PCA and partial least-squares discriminant 

analysis (PLS-DA) (19). However, in a recent study comparing 7 imputation methods, no 

imputation method was perfect, but the simple substitution methods (half minimum and 

mean) consistently performed poorly (22).

Statistical methods to derive metabolomics fingerprints of diet—To maximize 

the recovery of information and to help in the interpretation of high-dimensional data sets, 

advanced statistical and bioinformatics tools are applied (11). Clustering methods are often 

used to reduce and divide the data into groups with a high degree of similarity (23). The 

most popular clustering techniques in nutritional metabolomics include multivariate analysis 

such as simple unsupervised clustering algorithms, PCA, and supervised techniques like 

PLS-DA and its variant combining a data-filtering step such as orthogonal signal correction 

and orthogonal partial least-squares discriminant analysis (O-PLS-DA) (24). These 

techniques create subgroups of metabolites without a priori hypotheses of metabolic 

pathways or the association with dietary information. Unsupervised PCA derives a linear 

transformation that preserves as much of the variance in the original data as possible while 

maximizing intergroup variation and minimizing within-group variation. PLS-DA, on the 

other hand, maximizes the covariance between scores in x (predictor) and y (outcome) 

spaces, and it accounts for both systematic variations in the metabolic profiles and 

correlations between metabolomics data and the outcome. Partial least-squares analysis is 

often used for discriminant analysis to classify metabolic profiles according to categories 

(i.e., dietary patterns) (13).

PCA is usually the starting point for an exploratory analysis, as it allows visualization of 

biological sets based on the resemblance of samples with respect to their biochemical 

composition, as well as allowing the extraction of information on factors contributing to the 

difference among samples (25). PCA creates a reduction summary of the data, which can be 

analyzed graphically using scores plot and loading plots (11). PCA can facilitate the 

comparison of many complex data such as biofluid spectra and can provide information on 

metabolite changes. This technique is particularly efficient for the identification of outliers. 

Although PCA can help to reduce the dimension of the data set, it does not give an insight of 

the association between metabolite signatures and dietary components. Other techniques 

such as correlations and multivariate regression analyses are then applied to test the 

associations between the factors extracted from PCA with dietary patterns and food groups.

Supervised multivariate analyses are commonly used in nutritional metabolomics. PLS-DA 

provides a way to filter out metabolic information that is not correlated to the predefined 

classes, whereas the PLS-DA loadings, similarly to PCA loadings, yield information on 

which spectral signals are associated with the observed clustering (11). The O-PLS-DA 

method is similar to PLS-DA, but the interpretation of the models is improved because the 
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structured noise is modeled separately from the variation common to the matrices. O-PLS-

DA enables a more straightforward and accurate interpretation of metabolomics data (24). 

O-PLS-DA models the metabolic profile that is linearly predictive of the dietary component 

of an individual but also captures external factors not linearly related to the outcome, such as 

age, sex, and batch effects. These techniques are useful in exploring the relation of any 

features in the metabolomics profiling data set with an external variable (i.e., intake of a 

specific food based on a questionnaire or any biological outcome marker).

All these statistical methods require rigorous model validation using cross-validation and 

permutation testing [i.e., using a proportion of the data as the test set (usually 10%) and 

building the model in the remaining training set] and ideally external validation in 

independent studies to avoid false-positive discoveries and to ensure model robustness (13). 

Moreover, as a comprehensive way of interpreting the data, it is highly recommended to 

report Bonferroni adjustment and false-positive discovery rate procedures to account for 

multiple comparison testing, as well as P values and CIs, effect size, and adjustment for 

covariates (26).

Fig. 1 depicts an example of scores (A) and loading plots (B) obtained from O-PLS-DA. 

Data in Fig. 1 are hypothetical and used only for the purpose of illustrating scores and 

loading plots. Fig. 1A could represent O-PLS-DA of 1H NMR of urine data and dietary 

interventions. Blue dots in the figure represent control diet, and red triangles represent 

dietary pattern intervention. Component 1 and component 2 are extracted from O-PLS-DA 

analysis. Loading scatterplot (Fig. 1B) shows the individual compounds.

Pathway analyses and other systems biology approaches—Because of the efforts 

to analyze complex genomic data and their integration with bioinformatics in the past 

decades, several metabolic databases, such as KEGG, MetaCyc, and BiGG families, have 

been developed (27, 28). These databases can help to elucidate underlying metabolic 

pathways and integrate targeted and untargeted metabolomics data. Semisupervised pathway 

analysis, such as the web-based tool Metabolic Set Enrichment Analysis (29) (which 

includes >1000 predefined metabolite sets covering various metabolic pathways, biofluids, 

and tissue locations), follows the principle of gene enrichment analysis to derive metabolic 

sets. These techniques, often used for the prediction of health outcomes, can also be applied 

to nutritional metabolomics to evaluate the associations between these enriched metabolite 

sets and dietary patterns. Agnostic network models are commonly used to combine 

significant metabolites identified from the targeted approach with the untargeted method to 

discover and validate metabolomics signatures. Correlation networks, a systems biology tool 

that enables visualization of the complex correlation structure between metabolites and 

clinical parameters (30), can be combined with algorithms for detecting active subnetworks 

to integrate data into metabolic pathways. These software tools, although not yet widely 

used in nutrition metabolomics, can help in the understanding and visualization of metabolic 

networks, as well as the description and prediction of metabolic pathways, and also 

constitute an important resource for nutrition research (25). Most of the statistical 

approaches that are currently used for genomics and metabolomics data treatment can serve 

as a foundation for nutritional studies, for which high-throughput metabolomics data are 
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becoming extensively available. A schematic summary work flow of nutritional 

metabolomics approaches is presented in Fig. 2.

Metabolomic Fingerprinting of Diet

Metabolomic techniques have been applied to several clinical and population settings to 

characterize metabolic effects of nutrients, foods, and dietary patterns. Biomarkers identified 

with the use of high-throughput metabolomics (usually mass spectrometry and NMR) have 

been measured in urine, plasma, and serum, and fall into different subclasses, including 

polar metabolites (amino acids, acylcarnitines, carbohydrates, bile acids, metabolites from 

purine and pyrimidine) and apolar metabolites (lipid classes). Briefly, most studies focused 

on the identification of dietary biomarkers of specific food and food groups, whereas fewer 

identified biomarkers of single nutrients (6). The most extensively studied food groups 

include fruits, vegetables, meat, fish, bread, whole-grain cereals, nuts, wine, coffee, tea, 

cocoa, and chocolate (6). The number of participants in these studies ranged from 4 to 500 

participants, and a majority used a cross-sectional study design to identify specific 

metabolites of a food or food group differing between consumers and nonconsumers (6).

BIOMARKERS AND METABOLITES OF SINGLE NUTRIENTS

Several biomarkers of single nutrients including fiber and protein intake have been 

identified. In a randomized intervention study, concentrations of metabolite markers 2,6-

dihydroxybenzoic acid and 2-aminophenol sulfate increased after participants followed a 

high-fiber diet (mean intake 48 g compared with the low-fiber group at 30.2 g) for 5 weeks 

(31). In another controlled intervention study in which participants were randomized to a 

high or low glycemic index diet for 6 months, hippuric acid was correlated with dietary fiber 

intake (32). However, none of the biomarkers identified in the first study were confirmed in 

the second. The lack of consistency across studies may be explained because of differences 

in study duration (5 weeks vs 6 months), interventions (high-fiber diet in the first study 

consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products, 

whereas the intervention diets in the second study were designed to achieve a difference of 

15 glycemic index points), or the age of participants (37–45 years vs 30–70 years). This 

highlights the need to validate and replicate biomarkers in different populations to identify 

consistent biomarkers for the same nutrient.

In another crossover feeding trial of two 28-day diet periods of high and low glycemic load 

diet, concentrations of kynurenate and trimethylamine-N-oxide (TMAO) were found to be 

significantly higher after consumption of a low glycemic load diet (33). A cross-sectional 

analysis of 1003 participants from the Twins UK cohort showed that protein intake was 

positively associated with several plasma amino acids, including valine, phenylalanine, and 

tyrosine, and inversely associated with glutamine (34). In a randomized, crossover feeding 

study including 11 obese nondiabetic participants, plasma concentrations of tryptophan, 

phenylalanine, and kynurenine were increased after a high-fat meal with whey protein 

isolate (35).
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METABOLOMIC FINGERPRINTS OF SPECIFIC FOOD GROUPS

Several studies have identified biomarkers of total polyphenol intake and polyphenols from 

specific food groups, including polyphenols from cocoa powder (36–38), red wine and grape 

juice (39, 40), almond skin (41), nuts (42), and orange juice (43). In the PRE-DIMED study, 

a randomized, parallel, clinical trial for primary prevention of cardiovascular disease, using 

an untargeted metabolomics analysis of urine from 32 consumers of cocoa-derived products 

and 32 controls, the discriminant biomarkers of cocoa consumption were related to the 

metabolic pathways of theobromine and polyphenols (38). In another study of 57 volunteers 

at high cardiovascular risk, tartrate was associated with wine polyphenol consumption (40). 

Hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids were 

identified in human urine samples after the consumption of flavan-3-ols from almond skin in 

an acute feeding study (41). Betonicine, stachydrine, methyl glucopyranoside (i + β), 

dihydroferulic acid, and galactonate were proposed as new metabolic signatures to 

distinguish the intake of orange juice with different polyphenol content in the BIONAOS 

study, which compared a normal-polyphenol orange juice with a high-polyphenol orange 

juice for 12 weeks in a randomized parallel study (43). Moreover, a recent study evaluating 

metabolic profiles in urine of 481 subjects from the European Prospective Investigation into 

Cancer (EPIC) and Nutrition cohort identified >80 polyphenol metabolites associated with 

the consumption of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and 

pears, and chocolate products) (44).

As extensively reviewed by Scalbert et al. (6), many biomarkers identified using 

metabolomics were associated with the consumption of fruits, vegetables, and specific 

markers of citrus fruit and cruciferous vegetables. As an example, proline and betaine were 

identified as biomarkers of citrus intake in an acute feeding study of 8 participants and then 

validated with 499 participants from INTERMAP (7) and another cross-sectional study (45). 

At the same time, urine concentrations of S-methyl-L-cysteine sulfoxide were found to be 

related to the intake of cruciferous vegetables in a short-term intervention study that 

included 20 healthy men who consumed 250 g/day of cruciferous vegetables (broccoli and 

Brussels sprouts) for 14 days (46). Metabolite biomarkers of tomato sauce consumption have 

also been characterized (47). Specifically, serum concentrations of creatine, creatinine, 

leucine, choline, methionine, and acetate were found to be increased after a 4-week 

intervention with 160 g/day of high-lycopene tomato sauce, and ascorbic acid, lactate, 

pyruvate, isoleucine, and alanine were increased after the intervention with 160 g/day of 

normal-lycopene content tomato sauce (47).

Potential markers of nut intake identified in intervention studies ranging from 12 weeks to 6 

months (42, 48, 49) include conjugated fatty acids, serotonin metabolites, and microbial-

derived phenolic metabolites. In the PREDIMED study, walnut consumption was 

characterized by the presence of 18 urinary metabolites, including markers of fatty acid 

metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the 

tryptophan/serotonin pathway (38).

Metabolomics fingerprints of beverage consumption have been extensively examined as 

well. Coffee has been reported to be positively associated with specific classes of 

sphingomyelins and negatively associated with long- and medium-chain acylcarnitines (50). 
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In a case–cohort study of type 2 diabetes incidence including 1610 EPIC-Potsdam 

participants, in which 163 metabolites were targeted, coffee consumption was inversely 

associated with diacylphosphatidylcholine C32:1 in both men and women and phenylalanine 

in men, whereas in women, coffee intake was positively associated with acyl-alkyl-

phosphatidylcholines C34:3, C40:6, and C42:5 (51). Other confirmed metabolite markers of 

coffee exposure included methylxanthines and reduced, sulfated, and methylated forms of 

hydroxycinnamates (52–54), which are coffee-derived metabolites. Recently, among 

participants of a 3-stage coffee trial in which 47 participants refrained from drinking coffee 

in the first month, consumed 4 cups of filtered coffee per day in the second month, and 8 

cups of coffee per day in the third month, 115 plasma metabolites, evaluated with a 

nontargeted metabolomic profiling approach, were significantly associated with coffee 

intake (55). Five metabolic pathways were significantly enriched: (a) xanthine metabolism, 

which includes caffeine metabolites, (b) benzoate metabolism that reflects polyphenol 

metabolite products of gut-microbiota metabolism, (c) steroid, which is novel but may 

reflect sterol content of coffee, (d) fatty acid metabolism (acyl choline), a novel link to 

coffee; and (e) endocannabinoid, a novel link to coffee (55).

Metabolites linked with carnitine metabolism and sulfation of tyrosine are among the set of 

metabolites linked to cocoa intake (37, 38). Findings from the Atherosclerosis Risk in 

Communities study suggested that sugar-rich foods and beverages were inversely associated 

with 5 metabolites in the 2-hydroxybutyrate-related sub-pathway and 7 unsaturated long-

chain fatty acids, and positively associated with 5-γ-glutamyl dipeptides (56). Hippuric acid, 

previously identified as a marker of fiber intake (32), has also been identified as a marker of 

tea consumption, especially green and black tea, in several intervention and cross-sectional 

studies (48, 57, 58). The nonspecificity of the biomarkers to 1 specific food highlights the 

limitation of using nutritional metabolomics for the characterization of markers of food 

intake. As another illustration, hydroxytyrosol, which is a minor dopamine metabolite that 

derives from oleuropein, is a well-established biomarker of olive oil consumption (59). 

Plasma and urinary hydroxytyrosol levels have been shown to increase in a dose-dependent 

manner with the phenolic content of food (i.e., olive oil) (60). However, recently, findings 

from the PREDIMED study have revealed a direct association between red wine 

consumption and urinary hydroxytyrosol, independent of the amount of olive oil consumed 

(59). Thus, hydroxytyrosol cannot be considered a specific biomarker, as it cannot 

differentiate between olive oil and red wine consumption.

In a randomized, crossover, feeding study of 19 post-menopausal women comparing the 

intake of refined wheat, whole-meal rye, and refined rye breads providing 50 g of 

carbohydrates, and in which 189 metabolites were targeted, 8 amino acids (leucine, 

isoleucine, citrulline, ornithine, proline, asparagine, methionine, and lysine) were 

significantly influenced by intervention (P < 0.01). Branched-chain amino acids (BCAA) 

were higher after refined wheat bread consumption compared with the other breads at 45 and 

60 min (61). Other metabolites, including 3-(3,5-dihydroxyphenyl)-1-propanoic acid sulfate, 

enterolactone glucuronide, azelaic acid, and 2-aminophenol sulfate, have also been detected 

as markers of whole-grain rye bread intake (62). Finally, a targeted metabolomics study of 

>300 lipid metabolites suggested that lysophosphatidylcholine, lyso-platelet-activating 

factor, and several phospholipid fatty acids were associated with consumption of full-fat 
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dairy products (63). In addition, a recent 24-week energy-restricted intervention study with 

low [0–1 dairy products/day (<600 mg calcium/day)] or high [4–5 dairy products/day 

(approximately 1200 mg calcium/day)] dairy intake showed that high dairy consumption 

increased urinary citrate and creatinine and decreased the urinary excretion of TMAO and 

hippurate (64).

METABOLOMICS SIGNATURES OF DIETARY PATTERNS

Several studies have evaluated metabolite profiles related to overall dietary patterns. We 

searched PubMed for studies published in English from database inception to April 2017 

using the search terms {[“metabolomics” (MeSH Terms) OR “metabolomics” (All Fields)] 

OR [metabolite (All Fields)] AND profiling (All Fields)]} AND {[“diet” (MeSH Terms) OR 

“diet” (All Fields) OR “dietary” (All Fields)] AND [pattern (All Fields)] OR [“diet therapy” 

(MeSH Terms)] OR [“diet” (All Fields) AND “therapy” (All Fields)] OR “diet therapy” (All 

Fields) OR [“dietary” (All Fields) AND “intervention” (All Fields)] OR “dietary 

intervention” (All Fields)} NOT [“review” (Publication Type) OR “review literature as 

topic” (MeSH Terms) OR “review” (All Fields)] AND “humans” (MeSH Terms). We 

excluded nonhuman studies, studies in children, reviews, and commentary articles. We 

further excluded studies focusing on dietary supplementation and single foods because of a 

recent comprehensive review by Scalbert et al. (6) on metabolomics studies on food groups. 

After exclusions, the search identified 130 studies, of which 16 (summarized in Table 1) 

evaluated biomarkers of dietary patterns or dietary interventions using metabolomics 

profiling.

Most studies included healthy participants and applied mass spectrometry or NMR in blood 

and urine to extract metabolite profiles. Nine articles included cross-sectional analyses 

discriminating consumers from non-consumers of specific dietary patterns. Nine studies 

were intervention studies that evaluated the effect of overall dietary patterns on metabolic 

profiles. Several dietary patterns have been studied in the context of nutrition metabolomics, 

including vegetarian and lactovegetarian diets, omnivorous diet, Western dietary patterns, 

prudent dietary patterns, Nordic diet, and Mediterranean diet.

Using a cross-sectional study design, Bouchard-Mercier et al. investigated the associations 

between dietary patterns and metabolic profiles (65). In a targeted mass spectrometry 

analysis of 14 amino acids and 41 acylcarnitines, a PCA-derived Western dietary pattern was 

associated with a metabolite signature characterized by high levels of BCAA (leucine), 

aromatic amino acids (phenylalanine), and short-chain acylcarnitines (65). In another cross-

sectional analysis of 2380 EPIC-Potsdam participants (127 serum metabolites were analyzed 

using mass spectrometry), a dietary pattern characterized by high intakes of red meat and 

fish and low intakes of whole-grain bread and tea was directly related to high plasma levels 

of hexose and phosphatidylcholines (66). A pattern consisting of high intake of potatoes, 

dairy products, and cornflakes was associated with higher methionine and BCAA 

concentrations (66). Another cross-sectional study of women from the Twins UK cohort, 

characterized by metabolites associated with several nutritional scores, including fruit and 

vegetable intake, high alcohol intake, low meat intake pattern, hypocaloric dieting, and 
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traditional English diet; phosphatidylcholine-dyacil C38:6 and acylcarnitine C9 were 

significantly and positively associated with hypocaloric dieting (34).

Another interesting study aimed to investigate the differences in concentrations of 118 

circulating metabolites between male meat eaters, fish eaters, vegetarians, and vegans was 

conducted in the Oxford EPIC cohort. The study found that concentrations of 79% of 

metabolites differed significantly by diet groups. Concentrations of acylcarnitines, C-0, C-4, 

and C-5 were highest among meat eaters, followed by fish eaters, vegetarians, and vegans. 

At the same time, concentrations of acylcarnitines, C-3 and C-16, 61 glycerophospholipids, 

and 12 sphingolipids were highest among meat eaters and lowest among vegans. In contrast, 

fish eaters and vegetarians had the highest concentrations of amino acids (such as leucine, 

valine, lysine, methionine, tryptophan, and tyrosine) and biogenic amines (67).

Recently, Playdon et al. (58) identified metabolomic fingerprints of diet quality [evaluated 

using different dietary scores (Healthy Eating Index-2010, Alternate Mediterranean Diet 

Score, WHO Healthy Dietary Indicator, and Baltic Sea Diet)] in healthy male smokers from 

5 nested case–control studies of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention 

study. Healthy Eating Index-2010 was associated with 17 identifiable chemical structure 

metabolites: 3 amino acids, 2 cofactors or vitamins, 9 lipids, and 3 exogenous xenobiotics. 

Alternate Mediterranean Diet Score was associated with 21 identifiable metabolites: 4 amino 

acids, 1 carbohydrate, 2 cofactors or vitamins, 11 lipids, and 3 xenobiotics. WHO Healthy 

Dietary Indicator was associated with 11 metabolites: 3 amino acids, 2 cofactors or vitamins, 

4 lipids, and 2 xenobiotics. Baltic Sea Diet associated with 10 metabolites: 2 amino acids, 1 

carbohydrate, 3 cofactors or vitamins, and 4 lipids. The lysolipid pathway contained the 

largest number of metabolites associated with diet quality (68).

Several randomized intervention trials evaluated the effect of dietary interventions on 

metabolic profiles; however, most of these studies had small samples sizes and short follow-

up periods (Table 1). The effect of a Mediterranean diet intervention on the urinary 

metabolome was assessed in the PREDIMED trial by comparing a subsample of nondiabetic 

subjects at 1 and 3 years of follow-up (69). Findings from this study showed that the most 

relevant metabolic signatures related to a Mediterranean diet intervention were metabolites 

of carbohydrate pathways (3-hydroxybutyrate, citrate, and cis-aconitate), creatine, 

creatinine, amino acids (proline, N-acetylglutamine, glycine, BCAA, and derived 

metabolites), lipids (oleic and suberic acids), and microbial co-metabolites 

(phenylacetylglutamine and p-cresol) (69).

The RESMENA study was an intervention study that included 72 subjects with metabolic 

syndrome features who consumed either an energy-restricted Mediterranean diet or an 

energy-restricted control diet (low fat) for 6 months (70). Metabolomics in plasma samples 

showed that the Mediterranean diet intervention resulted in significant changes in the 

metabolic profile at 2 months (mainly phospholipids and lysophospholipids), but differences 

were attenuated at 6 months (70).

Garcia-Perez et al. published the findings of a controlled, crossover, feeding study of 19 

healthy participants who followed 4 different diets for 72 h separated by 5 days (71). The 4 
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diets differed in compliance to the WHO healthy eating guidelines: decreased sugar, salt, 

and total fat consumption and increased intake of whole grains, fruits, vegetables, and 

dietary fiber. Diet 1 was the most concordant with the guidelines and diet 4, the least 

concordant. The authors noted that 19 urinary metabolites were significantly increased after 

consumption of diet 1 compared with diet 4. Specifically, diet 1 resulted in higher 

concentration of urinary biomarkers from individual healthy foods like hippurate (marker of 

fruit and vegetable consumption), (N-acetyl-)S-methyl-L-cysteine-sulfoxide (cruciferous 

vegetables), dimethylamine and TMAO (fish), and 1-methylhistidine and 3-methylhistidine 

(oily fish and chicken). On the contrary, diet 4 was associated with higher concentration of 9 

urinary metabolites, related to higher amounts of red meat (O-acetylcarnitine, carnitine, and 

creatine) and sugars (glucose) (71).

DIETARY BIOMARKERS DERIVED FROM GUT MICROBIOTA METABOLISM OF DIETARY 
COMPONENTS

Microbial species in human gut can directly deliver compounds from their metabolome, 

which are absorbed and contribute to human metabolism (such as amino acids, bile acids, 

short-chain fatty acids, vitamins, and energy substrates) (3). On the other hand, the gut 

microbiota can change constituents in food and make them available to themselves or the 

host for additional metabolism (3).

A number of metabolites that are related to diet and can be metabolized by gut microbiota 

have been identified. For example, microbial enzymes can hydrolyze soy isoflavones and 

release several metabolites, including aglycons, daidzein, genistein, and glycetin (3). The gut 

microbiota can also transform polyphenols to phenolic breakdown products, including 

benzoate and various derivatives of hydroxyphenylacetic and hydropropionic acids (3). In a 

randomized, parallel, controlled study designed to compare a high-soy diet [104 (24) mg 

total isoflavones/day] with a low-soy diet [0.54 (0.58) mg total isoflavones/day] in 76 

healthy young adults followed for 10 weeks, concentrations of isoflavones and their gut flora 

metabolites in plasma, urine, and feces were significantly increased in participants who 

consumed the high-soy diet. Fecal β-glucosidase activity was significantly higher in the 

subjects who consumed the high-soy diet than in those who consumed the low-soy diet (72).

Some of the most studied gut microbiota-dependent metabolites are those related to TMAO 

and its precursors choline and carnitine. Foods such as meat and meat products, egg yolks, 

and high-fat dairy products, which are high in phosphatidylcholine, choline, carnitine, and 

trimethylamine (TMA), serve as precursors to TMAO (73). TMAO has been found to be a 

potential biomarker of meat intake, but it has also been reported as a biomarker of fish and 

seafood intake, and more recently, it has been reported to be related to plant foods like 

soybeans (71, 74, 75). Although certain microbial metabolites can be putative food 

biomarkers, there is a complex relation between the food sources, gut microbiota, and the 

food metabolites derived; thus, these biomarkers should be interpreted with caution.

Application of Metabolomics in the Field of Nutritional Epidemiology

Widely used dietary assessment methods such as diet records and FFQ have been 

instrumental in their ability to measure diet in large populations and in examining the role of 
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diet in human health (4). Because diet represents a complex set of exposures that are 

intercorrelated, and because foods are mixtures of known and unknown constituents, 

assessing dietary intakes in the context of relatively large within-individual variations is an 

ongoing challenge in nutritional epidemiology (76). The integration of metabolomics into 

traditional nutritional epidemiology can, to some extent, overcome the limitations of 

traditional dietary assessment methods and can provide important insights into mechanistic 

pathways. In Table 2, we briefly summarize and compare traditional dietary assessment 

methods with biomarkers of dietary intake. Traditional assessment methods are noninvasive 

and have the advantage of providing useful information on long-term dietary intake (FFQs 

and multiple-week diet records). FFQs are easy to administer with a low respondent burden; 

multiple-week records provide open-ended dietary data and do not rely on memory (4). 

Nevertheless, they are subject to some biases, such as recall errors, health consciousness 

bias, and errors in nutrient estimation from food composition diets. On the other hand, 

objective biomarkers, usually measured in serum, plasma, and urine, can objectively assess 

dietary intakes, represent the true “bioavailable” dose, and can serve as validation markers of 

other assessment methods. However, they may not be sensitive to intakes, can have low 

specificity, and are not available for many nutrients and foods. In addition, they are 

expensive, more invasive, and are subject to laboratory errors (4). Some examples of these 

biomarkers include urinary nitrogen for protein intake, 24-h urinary potassium and sodium, 

doubly labeled water for energy intake, plasma vitamin D, serum and plasma folate, 

essential fatty acids and other vitamins, trace minerals, and metabolite biomarkers.

Nutritional metabolomics holds considerable promise for the development of a more robust 

and unbiased strategy for measuring diet. However, there are important issues to consider. 

Certain metabolites have a short half-life and may, therefore, not represent usual intake, 

which is the most relevant exposure in nutritional epidemiology. Of note, a single 

measurement of metabolites is not sufficient to represent usual intake. For a metabolite to be 

a valid biomarker of dietary intake, it needs to be sensitive to intake and should be relatively 

easy to measure in biofluids.

So far, an extensive list of potential biomarkers related to the intake of nutrients, foods, and 

diets has been revealed by metabolomics. Compared with single biomarkers of food 

consumption, nutritional metabolomics is contributing to the discovery of biomarker 

patterns. Metabolomics can also generate biomarker patterns to evaluate the efficacy of 

nutritional interventions for maintaining and improving health at the individual level. 

However, it is unlikely that metabolomics biomarkers will replace traditional dietary 

assessments using self-reported methods because for most foods and nutrients, sensitive and 

specific biomarkers are not available or have not yet been identified. In addition, 

metabolomics assays are expensive, rendering them infeasible to assess dietary habits among 

hundreds and thousands of participants in large cohort studies. Therefore, biomarkers 

identified from metabolomics and traditional self-reported methods such as validated FFQs 

should be used in a complementary fashion. In the future, reproducible metabolomics 

biomarkers may be used to validate self-reported measurements of dietary intake, calibrate 

estimates of dietary intake, identify novel biomarkers of food consumption, and provide 

objective biomarkers of adherence to dietary interventions and dietary patterns. However, 
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more efforts are needed to develop, validate, and fine-tune assessment methods that can 

capture the multidimensional nature of diet.

From the standpoint of public health, the incorporation of nutritional metabolomics into 

traditional nutritional epidemiology can help to identify subgroups that differ in their 

response to specific dietary components so that interventions can be tailored to those who 

will benefit the most, reducing the cost and side effects for those who will not (77). 

However, before nutritional metabolomics can have a real impact on public health, there is 

an urgent need to establish reference intervals based on absolute metabolite concentrations 

in defined human bio-fluids, improve the specificity of metabolite biomarkers of certain 

foods, and to conduct studies with adequate statistical power with independent replications 

in diverse cohorts while considering ethnic and regional differences.

Finally, because recent metabolomics efforts have focused on the analysis of known 

metabolites, current efforts to characterize unknowns may enable more comprehensive 

investigations and the discovery of novel metabolic pathways. The field of nutritional 

epidemiology will greatly benefit from the integration of other -omics technologies, such as 

genomics, proteomics, epigenomics, and metagenomics. Global initiatives are needed to 

standardized data collection and analytic methods for metabolomics in human nutrition (3) 

and to create consortia of metabolomics studies including well-assessed dietary data across 

diverse populations in the world.
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Fig. 1. Example of scores (A) and loading plots (B) of O-PLS-DA
Data in this figure are hypothetical and used for the only purpose of illustrating scores and 

loading plots. (A) could represent O-PLS-DA of 1H NMR of urine data and dietary 

interventions. Blue dots represent control diet, and red triangles represent dietary pattern 

intervention. Component 1 and component 2 are extracted from O-PLS-DA analysis. 

Loading scatterplot (B) shows the individual compounds.
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Fig. 2. 
Work flow of nutritional metabolomics approaches.
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Table 2

Comparison of traditional dietary assessment methods and biomarkers.

Self-reported measures of diet Objective measures of diet

Validated FFQ Multiple-week diet records
Biomarkers identified through 
metabolomics approaches

Provides information on usual long-term 
intake

Detailed dietary data that do not rely on memory Objective assessment of intake and 
represents bioavailable dose

Estimating and recall errors Errors from incorrect estimate of portion size and 
omission of foods

Subject to laboratory errors

Easily administered and low respondent 
burden

Participant burden is high Can be measured in stored biospecimens

Least expensive method and noninvasive Noninvasive but expensive Expensive and more invasive

Can assess usual dietary intake Can assess usual dietary intake if measured 
multiple times over the course of a year

May not be time-integrated or represent 
usual long-term intake; may not be 
sensitive or specific to intakes

Health consciousness bias Health consciousness bias Not applicable

Errors in nutrition estimation from food 
composition tables

Errors in nutrition estimation from food 
composition tables

Biomarkers are not available for many 
nutrients and most foods

Culture and population specific Needs literate and motivated participants Biomarker variations may exist between 
cultures and populations

Association analyses in large 
epidemiologic studies

Validation of other methods and assess compliance Can be used to assess associations in 
cohort or nested case–control studies

Adapted with permission from Satija et al. (4).
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