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Abstract

Background: Thinning supplies of natural resources increase attention to sustainable microbial production of
bio-based fuels. The strain Clostridium beijerinckii NRRL B-598 is a relatively well-described butanol producer
regarding its genotype and phenotype under various conditions. However, a link between these two levels, lying in
the description of the gene regulation mechanisms, is missing for this strain, due to the lack of transcriptomic data.

Results: In this paper, we present a transcription profile of the strain over the whole fermentation using an
RNA-Seq dataset covering six time-points with the current highest dynamic range among solventogenic clostridia.
We investigated the accuracy of the genome sequence and particular genome elements, including pseudogenes
and prophages. While some pseudogenes were highly expressed, all three identified prophages remained silent.
Furthermore, we identified major changes in the transcriptional activity of genes using differential expression
analysis between adjacent time-points. We identified functional groups of these significantly regulated genes and
together with fermentation and cultivation kinetics captured using liquid chromatography and flow cytometry, we
identified basic changes in the metabolism of the strain during fermentation. Interestingly, C. beijerinckii NRRL B-598
demonstrated different behavior in comparison with the closely related strain C. beijerinckii NCIMB 8052 in the latter
phases of cultivation.

Conclusions: We provided a complex analysis of the C. beijerinckii NRRL B-598 fermentation profile using several
technologies, including RNA-Seq. We described the changes in the global metabolism of the strain and confirmed
the uniqueness of its behavior. The whole experiment demonstrated a good reproducibility. Therefore, we will be
able to repeat the experiment under selected conditions in order to investigate particular metabolic changes and
signaling pathways suitable for following targeted engineering.
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Background
While a less costly petroleum refinery still represents the
main source of fuels and chemicals, limited natural re-
sources and nature protection have increased attention
to sustainable production of bio-based products. These
trends make biorefinery the future lucrative producer of
renewable fuels and chemicals. Especially, the microbial
production of solvents such as acetone, butanol, and

ethanol (ABE) is currently of great interest [1]. Solvento-
genic Clostridia are widely studied for their ability to
produce biofuels from biomass in ABE fermentation [2].
Unfortunately, different genera or even strains of these
rod-shaped, gram-positive anaerobes show substantial
differences in phenotypic traits, i.e. the ability to utilize
different substrates and to produce different substances.
Thus, the findings acquired using model organisms such
as C. acetobutylicum ATCC 824 [3], C. pasteurianum
DSM 525 [4], or C. beijerinckii NCIMB 8052 [5] cannot
be applied in general. Fortunately, thanks to a massive
reduction in sequencing costs, a wide range of complete
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or at least draft genomes of solventogenic Clostridia are
now available. These include various strains of C. aceto-
butylicum, C. aurantibutyricum, C. beijerinckii, C. diolis,
C. felsineum, C. pasteurianum, C. puniceum, C. roseum,
C. saccharobutylicum, and C. saccharoperbutylacetoni-
cum [6]. C. beijerinckii strains, utilizing a wider range of
substrates for solvent production seem to be the most
robust, i.e. able to endure a wide range of environmental
conditions, among these [7].
However, the knowledge of the genomic sequence itself

does not provide any information regarding the gene regu-
lation, which is crucial to improvements of the strains for
industrial application. The study of gene expression is
therefore irreplaceable in genome engineering. Current
whole transcriptome sequencing technology, referred to
as RNA-Seq, allows the study of transcription on a
genome-wide scale with an unlimited dynamic range,
compared to the older microarrays, which only enabled
researchers to track preselected genes [8]. In this paper,
we present transcriptome dynamics during the cultivation
of the promising butanol producer, C. beijerinckii NRRL
B-598 [9] (formerly misidentified as C. pasteurianum
NRRL B-598 [10]) as a result of RNA-Seq profiling. Until
now, only the transcription of six selected genes involved
in sporulation and solvent production was studied for this
strain using RT-qPCR, yet the study supported the theory
that solventogenesis is not regulated in the same way in
all solventogenic clostridia [11]. Here, we further investi-
gate the specifics of the strain C. beijerinckii NRRL B-598.
The obtained transcriptome data includes the whole life
cycle of the strain and therefore covers changes in metab-
olism, i.e. acidogenesis, solventogenesis and their transi-
tion state. Together with the sporulation cycle and other
significant events such as changing motility and adapta-
tion to acid/solvent stress, the whole fermentation process
is reflected in this dataset. Flow cytometry, combined with
fluorescent staining [12], has enabled insights into popula-
tion heterogeneity and HPLC analysis of metabolites/sub-
strate; plus, growth curve data has allowed us to better
interpret the biological meaning. Moreover, the RNA-Seq
technology has allowed us to study not only the temporal
transcription of any gene but also to explore the accuracy
of the current genome annotation. Compared to the tran-
scription profiling of the strain C. beijerinckii NCIMB
8052, we reached a dynamic range that was approximately
10 times higher. To increase the robustness and validity of
the experiment, each of the time-points was represented
by three biological replicates rather, than verification using
qPCR [13].

Results
Cultivation and fermentation kinetics
The fermentation profile of C. beijerinckii NRRL
B-598 showed a typical two-stage course of

metabolites formation with acid production in the first
period followed by solvents formation (see Fig. 1a). Six
time-points (T1–T6) were selected for RNA-Seq analysis
to cover all metabolic stages within a period of 23 h. The
latter stages were not analyzed due to a high percentage of
dead and lysing cells (Fig. 1b) causing an insufficient qual-
ity of RNA samples for RNA-Seq. Individual sampling
points were selected based on the fermentation pattern,
which was monitored on-line as changes in a pH course
(Fig. 1c). The first sample was collected after an approxi-
mate five-fold increase in optical cell density (Fig. 1d)
while a sharp decrease in pH occurred, so only acidogenic,
non-sporulating and mostly motile cells were expected to
be present in the sample. The second time-point was pro-
posed to cover a transient physiological state between
acidogenesis and solventogenesis, which was indicated by
a pH breakpoint and corresponded to the highest concen-
tration of acids in media along with the onset of solvent
formation. No cell-thickening or pre-spore formation was
observed at this stage. The third sample set was with-
drawn during the period of the most progressive rise in
pH, suggesting a high rate of reutilization of the acids, to-
gether with solvent formation. Granulose accumulation
and early phases of sporulation were observed at this stage
(see Additional file 1). The second pH breakpoint was
covered by the fourth sample, where the rise in pH ceased
and pH again started to decline, indicating a change in
metabolism. However, there was no apparent increase in
the production of acids in the fermentation data. The
remaining two samples were taken at the regular
time-intervals, in order to cover all stages of ABE fermen-
tation as well as the sporulation cycle. Overall culture fit-
ness and spore formation was monitored by flow
cytometry (FC) and the combined staining of cell culture
by membrane disruption and enzyme activity indicators:
propidium iodide (PI) and carboxyfluorescein diacetate
(CFDA), respectively. A relatively high amount of
double-stained cells was present in the culture at all
stages. A previous study by Kolek et al. [12] considered
these double-stained cells as an active population consist-
ing of cell doublets and sporulating cells; therefore, only
PI-positive cells were counted as dead cells. The staining
pattern of the Clostridium culture at different time-points
revealed dynamic changes in proportion of active cells
within the first 13 h, with a detectable drop at the period
with the lowest pH (the sixth hour), thus supporting the
presumption that cells are highly-stressed by the presence
of organic acids together with a low pH (when values
slightly below pH 5 were reached). After the 13th hour,
viability gradually decreased and during the 23rd hour the
first mature spores, released from mother cells, were ob-
served. The FC data provided a better insight into viability
changes compared to sole OD measurements, according
to which the culture kept on growing steadily until the

Sedlar et al. BMC Genomics  (2018) 19:415 Page 2 of 13



18th hour. The only noticeable changes in the OD
measurements are the two slowdowns during the
acidogenesis/solventogenesis transient states. The FC
data clearly shows that culture viability had already
started to decline at around the 13th hour, which cor-
responds to the apparent decrease in the number of
regulated genes from that time.
A proportion of viable cells determined by FC was

used to calculate the specific glucose consumption rate
relating only to the active portion of clostridium culture
(see Table 1). The amount of glucose consumed per time
and biomass unit could help to elucidate the differences in
expressions of glycolysis-related genes. The highest num-
ber of 5.16 g of utilized glucose per gram of active biomass

and hour was reached at the very beginning. Surprisingly,
after a decrease in the acid/solvent switch, the glu-
cose consumption increased again and accompanied
the T3–T4 transition state with the highest number
of regulated genes.

Mapping statistics
The whole dataset covered three series of six samples
(six time-points), in which each series represented an in-
dependent biological replicate (A, B, and C). Although
series A consisted of reads that were 50 bp long and
series B and C consisted of reads that were 75 bp long,
the whole series could be processed in the same way.
The quality assessment after the first preprocessing steps
(demultiplexing, quality trimming, and adapter trim-
ming) confirmed an overall high-quality of sequences
(average Phred score Q ≈ 35) and no adapter content.
The only following sequence-filtering step was the re-
moval of the remaining residual rRNA contamination,
even after the rRNA depletion. The rRNA depletion was
performed prior to the library construction and the
non-captured rRNAs were apparent from the high GC
content in some reads. The amount of non-rRNA reads
ranged from 7.3 to 20.5 million (see Fig. 2a). Subsequently,
we mapped the cleansed reads to the C. beijerinckii NRRL
B-598 genome. Most reads mapped to the genome

Fig. 1 Cultivation and fermentation characteristics of Clostridium beijerinckii NRRL B-598. (a) The concentration of glucose, solvents and acids
during ABE fermentation. (b) Flow cytometry – the distribution of cells within the population according to their fluorescence pattern for
combined staining using PI and CFDA. (c) pH curve for respective cultivation. (d) Cell growth measured as optical density at 600 nm. Values
represent the mean of the biological replicates and error bars represent the standard deviations. Time-points (T1–T6) for samples subjected to
RNA expression analysis are indicated by red vertical dotted lines and/or by red text labels

Table 1 Specific rate of glucose utilization between time-points
chosen for RNA-seq analysis

Samples Time interval (h) Specific glucose consumption
rate (g.g-1a.h− 1)

T1-T2 3.5–6.0 5.16

T2-T3 6.0–8.5 2.20

T3-T4 8.5–13.0 2.71

T4-T5 13.0–18.0 2.50

T5-T6 18.0–23.0 1.59
aValues were calculated for the concentration of viable cells
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unambiguously, regardless of their different length in rep-
licates A and B, C (see Fig. 2b). Nevertheless, in order to
cover the expression of duplicated genes that were present
in the C. beijerinckii NRRL B-598 genome, the reads map-
ping to multiple loci were also included in the gene ex-
pression analysis (see Table 2). However, the contribution
of such reads was down-weighted in the expression ana-
lysis depending on the number of times they mapped to
the genome, so the sum of the total number of reads
stayed intact.
The reads mapping to more genomic objects were also

weighted. Such a phenomenon is caused by overlapping
genes. In the current RefSeq genome (NZ_CP011966.2),
285 out of the 5230 genes predicted by NCBI PGAP [14]
overlapped by at least one codon and another 66 neigh-
boring genes had no space between them. Although none
of the 198 pseudogenes overlapped with another pseudo-
gene, 18 pseudogenes overlapped with genes directly and
another 73 pseudogenes were at a distance from genes
that could be covered by a single read. These reasons
caused single read mapping onto two genomic objects. At
the same time, the transcriptome assembly contained
fewer transcripts compared to the number of genomic
elements with detectable transcription (precisely 4837
transcripts vs. 5418 genomic elements) because the over-
lapping and nearby genes, e.g. those in the same operon,
were covered by a single transcript. Due to this fact, tran-
scripts could not have been used to resolve overlapping
genes. On the other hand, their mapping to the genome
helped to confirm or disprove transcriptional activity of
pseudogenes and prophages.

Pseudogenes
Due to the high number of pseudogenes with detect-
able expression, we decided to further investigate
their coverage by RNA-Seq reads. Only a single
pseudogene remained completely silent when ambigu-
ously mapping reads were used, while 184 pseudo-
genes had RPKM > 1 (Reads Per Kilobase per Milion
mapped reads) in all six time-points. Using only
uniquely mapped reads, eight pseudogenes remained
completely silent and 178 were transcribed in every
time-point. Although the number of transcribed pseudo-
genes remained almost the same across the six
time-points, levels of their expression seemed to rise over
time. While pseudogenes formed approximately 2.8% of
C. beijerinckii NRRL B-598 genome, only 0.47% of all
reads in T1 mapped to pseudogenes. However, this num-
ber continuously rose over the time according to the
linear model %mapped = 0,1115 ∙ time - 0.0629 (with the
regression value 0.9575), resulting in 2.83% of reads to be
mapped onto pseudogenes in T6.
To further analyze the activity of pseudogenes, we de-

cided to evaluate the coverage of pseudogenes through
the use of transcripts assembled from all the reads in
our dataset. The accuracy of mapping transcripts to the
genome is higher thanks to their length (1057 bp on
average). The results are summarized in Table 3.
There are 24 pseudogenes that were not covered by any

transcript. These were probably completely silent (see
Additional file 2). The second group consisted of 78 pseu-
dogenes that were not covered in their whole length. In
most cases, there were only short overlaps with transcripts

Fig. 2 Quality of RNA-Seq reads. (a) The total number of reads in particular samples. The color of stacked bars distinguishes between non-rRNA
and rRNA reads. (b) Mapping statistics of reads – percentages of uniquely mapped, multi-mapped, and unmapped non-rRNA reads

Table 2 Transcriptional activity of genes and pseudogenes

Sample T1 (3.5 h) T2 (6 h) T3 (8.5 h) T4 (13 h) T5 (18 h) T6 (23 h) Total

No. of genes with RPKM>1a 5055 (4981) 5101 (5026) 5162 (5100) 5197 (5139) 5198 (5133) 5193 (5128) 5219 (5158)

No. of pseudogenes with RPKM>1a 188 (179) 186 (179) 190 (184) 196 (190) 195 (188) 194 (187) 197 (190)

Max. expression (RPKM) 4.0∙104 3.4∙104 3.4∙104 3.4∙104 3.4∙104 4.0∙104 4.0∙104

aValues in brackets apply to uniquely mapped reads only
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of active genes neighboring these pseudogenes. In some
cases, only part of a transcript was mapped to a pseudo-
gene sequence, suggesting that these are silenced duplica-
tions of an active gene. Although genes in the third group
were fully covered, this coverage consisted of two or more
overlapping transcripts. Therefore, the transcription in
both groups (partly covered and fully covered by overlap-
ping transcripts) was highly questionable. On the contrary,
pseudogenes within the fourth group were fully covered
by unique transcripts. This group consisted of pseudo-
genes that were transcribed and active genes that were
possibly misidentified as pseudogenes due to errors in the
genome assembly. In comparison with their transcripts,
23 out of 80 pseudogenes (see Additional file 3) in this
group were missing one nucleotide in homopolymers.
This could have been caused by previous sequencing er-
rors, as Roche 454 in combination with PacBio were used
for the genome assembly. Nevertheless, insertion of these
nucleotides was not detected in all reads mapping to these
positions; the figure ranged from 60% to almost 100%.

Transcription profiles and reproducibility
Only 11 genes were not transcribed at any of the six sam-
pling points. Moreover, seven out of those 11 genes were
related to 16S rRNA and these reads were filtered before
mapping. Therefore, only four genes (X276_RS15615,
X276_RS24570, X276_RS24585, X276_RS26445) demon-
strated no transcripts. On the other hand, 5024 genes out
of all 5219 transcribed genes (RPKM> 1) had detectable
transcription at all time-points. Nevertheless, it is difficult
to decide whether the expression of genes with low RPKM
values has biological meaning, due to a high bio-
logical noise. Analysis using assembled transcripts is
complicated, because most transcripts cover more
than one gene and transcripts overlap. Transcription
on a genome-wide scale (see Additional file 4) shows
a novel pattern. While the transcriptional profiles
from the first three time-points (T1, T2, and T3) cor-
respond to the transcription of the C. beijerinckii
NCIMB 8052 genome [5], the latter profiles do not.
Reproducibility of the experiment was verified using

three biological replicates and by checking the expres-
sion of six selected genes whose transcription profiles
were observed during a previous study by Kolek et al.
[11] (see Fig. 3a). The samples were visualized using the

t-Distributed Stochastic Neighbor Embedding (t-SNE)
[15] dimensionality reduction method on the normalized
expression data. This final 2D representation showed
that replicates (A, B, and C) were similar to each other
at particular sampling times (T1–T6), while replicates
sequenced using Illumina HiSeq (A) were slightly more
distant to samples from Illumina NextSeq (B and C), see
Fig. 3b. Overall, samples were divided into two clusters.
While one cluster contained samples corresponding to
the initial phase of fermentation (up to 8.5th hour), the
other cluster consisted of samples from the later fermen-
tation phase (from 13th up to 23rd hour).

Differential expression
We explored differential expression of all genes and
pseudogenes with detectable transcription among adja-
cent time-points, in order to analyze changes in the
transcription of particular genes over the whole fermen-
tation process (see Fig. 4). In total, transcription of 2260
annotated genomic objects, forming more than 41.5% of
all protein-coding elements, was regulated during the
fermentation process when the criterion of adjusted
p-value < 0.05 (Benjamini-Hochberg correction) was ap-
plied. While 474 genes were regulated more than once,
only 31 of them were regulated more than three times.
The single gene X276_RS14155 (PTS maltose trans-
porter subunit IIBC) was regulated four times. The ma-
jority of differentially expressed genes were covered by
at least 100 reads after the normalization of expression
data (see Additional file 5). In total 3168 genes had no
statistically significant regulations among adjacent
time-points and formed potential housekeeping genes.
The complete results of the differential expression ana-
lysis, including log2fold changes and adjusted p-values,
are available in Additional file 6.
A major change was detected between the third and the

fourth time-point when 1582 genes were regulated. While
835 out of these genes were up-regulated, 714 were
up-regulated only between these two time-points (see
Fig. 4b). Similarly, 666 out of the 747 down-regulated
genes were down-regulated uniquely between T3 and
T4 (see Fig. 4c). However, some of the uniquely
up-regulated genes were down-regulated between another
couple of time points and some of the uniquely
down-regulated genes were up-regulated during another

Table 3 Coverage of pseudogenes by transcripts

Not covered Partly covered Fully covered, overlapped transcripts Fully covered, single transcript

Frameshifted 7 45 10 33

Missing start and/or stop 15 23 3 37

Internal stop 2 6 0 8

Combined issues 0 4 3 2

Total 24 78 16 80
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transition. Therefore, the total number of uniquely
regulated genes between the T3 and T4 time-points was
1174. Every pair of adjacent time-points had uniquely reg-
ulated genes except for the last T5–T6 transition, when
regulation of only six already regulated genes was de-
tected. Nevertheless, previously up-regulated genes
X276_RS05345 (hypothetical protein) and X276_RS24350
(butyrate kinase) were down-regulated between these later
time-points. Both up-regulated genes during this transi-
tion, X276_RS08605 (tryptophan synthase subunit beta)
and X276_RS18605 (DUF4179 domain-containing pro-
tein), also had detectable growth in transcription between
previous time-points and were covered by more than
1000 and 2000 reads, respectively.

Transcription of phage DNA
We searched the C. beijerinckii NRRL B-598 genome for
phage sequences and found three prophages (see
Table 4). While two of these regions were relatively short
and phages were incomplete, the other phage was intact
and consisted of 35 genes coding known phage proteins
and six hypothetical protein-coding regions.
The expression within the first phage region corre-

sponding to an incomplete phage was low (averaging
RPKM = 47) with only two genes differentially expressed
during T3–T4 change. Six genes were carried by a posi-
tive and four by a negative strand. Only four genes were
fully covered by transcripts mapping to the region. The
transcription within the third phage region covering the

Fig. 3 Analysis of the transcriptome reproducibility. (a) Transcription profiles of six selected genes visualized on the heatmap using a Z-score
related to an average expression of each gene. (b) 2D representation of the normalized expression data after dimensionality reduction by t-SNE
to compare the samples collected at the six time-points (T1–T6) coded by different colors. Each point represented a sample with a text label
based on the biological replicate (A, B, and C) and the time-point from which it originated (T1–T6)

Fig. 4 Differential expression analysis. Venn diagrams showing the number of (a) all-regulated, (b) up-regulated, and (c) down-regulated genes
between adjacent time-points
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other incomplete phage was more active with average
RPKM = 86, but none of the genes were differentially
expressed during the fermentation. All genes were car-
ried by a negative strand and 14 out of the 17 genes
were covered by a single transcript, including one pseudo-
gene (X276_RS17860) with a missing stop codon. The
only region containing intact prophage consisted of 38
genes and three pseudogenes with a missing stop codon,
carried by a positive strand. The whole region began with
a pseudogene and had low transcription (averaging
RPKM= 21). Although six genes had statistically signifi-
cant differential expressions between T3 and T4, only
short transcripts mapped to the region and only partly
covered the genes. Thus, the phage remained silent.

Discussion
The fermentation data presented in Fig. 1 comply with
standard results usually achieved by using the same TYA
cultivation medium [11, 12]. Deeper insight into the
population is enabled by combination of double fluores-
cent staining and flow cytometry. Value of flow cytome-
try had already been confirmed for C. acetobutylicum
[16, 17]. Cytometric data enabled the calculation of a
specific rate of glucose consumption related to metabol-
ically active cells in the population during different time
periods of the cultivation, together with information
about the overall culture condition.
The high proportion of reads that mapped to the gen-

ome in particular samples unambiguously, suggested a
good quality of RNA-Seq data and successful alignment
even for shorter 50 bp reads in replicates A. Although
we presumed that utilization of longer 75 bp reads in
replicates B and C could reach even higher percentage
of unique mapping, the proportion remained similar (see
Fig. 2b). Nevertheless, the number of genes with detect-
able transcription slightly differed when reads mapping
to multiple loci were used. Although high sequencing
depth and rRNA depletion brought a noise to RNA-Seq
[18], in our case, this bias was caused by duplicated
genes rather than being a sequencing issue [19]. To pre-
vent omitting transcription of duplicated genes and
pseudogenes, we decided to include multi-mapping
reads into the analysis. The majority of reads mapped to
the genome without any mismatches and support an
overall high quality of the genome assembly. Neverthe-
less, 23 indels were detected in regions of frameshifted
pseudogenes.

Although pseudogenes, in bacteria defined as ‘genes si-
lenced by one or more deleterious mutations’ [20], could
still be transcribed [21], their number in C. beijerinckii
NRRL B-598 was rather high. For example, the reference
sequence for the closely related strain C. beijerinckii
NCIMB 8052 [13] (NC_009617.1) contained only 112
pseudogenes predicted by NCBI PGAP. While the num-
ber of pseudogenes with an incomplete coding region or
those containing internal stop was comparable for both
strains, the number of pseudogenes with frameshift was
almost twice as high in C. beijerinckii NRRL B-598 gen-
ome. Although the high number of frameshifted genes
could indicate an extraordinary number of frameshifted
duplicates of genes, all 23 indels were detected in homo-
polymers. Therefore, such pseudogenes could also be
misannotated genes due to pyrosequencing errors [22]
that were not filtered out using PacBio RSII sequencing
used for the complete genome assembly [9]. Neverthe-
less, 50 bp and 75 bp long reads were too short to
distinguish between a frameshifted duplicate and an as-
sembly error as no indels were present in 100% of reads
mapping to ambiguous positions. Eventually, the activity
of some pseudogenes was supported in differential
expression analysis, by high log2foldchange, excessing a
value of three.
The transcriptome of C. beijerinckii NRRL B-598 had

never been studied before so no correlation to the older
dataset could be carried out. However, the transcription
of the six selected genes under the same cultivation con-
ditions was monitored using qRT-PCR in study of C.
beijerinckii NRRL B-598 and its mutant strain overex-
pressing sporulation initiation factor spo0A [11]. In the
mentioned study by Kolek et al. [11], an increase in ex-
pression was observed in mid-cultivation for spoIIE and
sigG and in the second part of cultivation for spoVD. This
corresponded to the results of this study (see Fig. 3a).
Moreover, the expression profiles of the remaining genes
also showed the same pattern. Butyrate kinase (buk,
X276_RS1200) transcription was maximal at the begin-
ning of the cultivation, decreased in time, and rose slightly
at the end of cultivation. The expression of ald and spo0A
increased in the first third of cultivation and for ald also
at the end of cultivation. Moreover, the reproducibility of
the experiment was supported by utilization of three bio-
logical replicates and their high similarity in the sampling
points visualized using tSNE in Fig. 3. The tSNE coordi-
nates were obtained by comparing distances among

Table 4 Phage DNA within the C. beijerinckii NRRL B-598 genome

Region Position Length (bp) Status Total no. of proteins No. of phage proteins

1 996,985..1006473 9488 incomplete 10 8

2 2,920,342..2960012 39,670 intact 41 35

3 4,005,361..4018720 13,357 incomplete 17 15
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samples in the original high-dimensional space, i.e.
distances from the normalized expression profiles to the
distances of the samples in the reduced space, i.e. the visu-
alized points. The position of the samples in the 2D space
was then optimized until the samples with similar expres-
sion profiles were placed close to each other and samples
with very different expression profiles were at a further
distance from each other. Two main clusters, distinguish-
ing samples from the first and the second half of the
experiment, were present. While the similarity of the rep-
licates from the first cluster was supported mainly by the
first coordinate tSNE1, the similarity in the other cluster
was supported by the second coordinated tSNE2.
Wang et al. [13] observed similar clustering of

RNA-Seq samples of C. beijerinckii NCIMB 8052, in
which the first cluster was represented by samples from
exponential and transition phases and the other by sam-
ples from a stationary phase. On the other hand, tran-
scription profiles of C. beijerinckii NCIMB 8052 [5] and
C. beijerinckii NRRL B-598 (see Additional file 4) on the
genome-wide scale were different, especially in the later
phase of cultivation. This could have been caused by
structural reorganizations in the genomes of both strains
or by differences in gene regulatory mechanisms. Due to
the high similarity of both genomes (see Additional file 7),
the latter seemed more relevant. The explanation for dif-
ferences in transcription profiles of C. beijerinckii NRRL
B-598 and C. beijerinckii NCIMB 8052 in the later
phases could lie in the different phenotypic behavior of
both strains at this stage. Although strain NCIMB 8052
ceased growing together with the start of solventogenesis
[5, 13], strain NRRL B-598 continued growing until ap-
proximately half way through the solventogenic phase
(see Fig. 1d). Another apparent difference was an in-
creased number of mature spores formed by the NCIMB
8052 strain under similar cultivation conditions [12].
The genome of C. beijerinckii NRRL B-598 contained
two housekeeping regions with stable high level of tran-
scription activity that were not present in C. beijerinckii
NCIMB 8052 genome. This high activity was caused by
genes transcribing into cell wall binding proteins, in the
first region by the gene X276_RS24890 with average
RPKM 2.4∙104, while in the second region by the gene
X276_RS25120 with average RPKM 1.8∙104. The most
noticeable change in the transcription on the genome
wide scale was captured between T3 and T4 time-points
when the highest number of differentially expressed
genes was detected. Increased activity was visible espe-
cially within the region spanning the position from
176,588 to 208,581 containing 45 genes whose average
expression in RPKM rose from 1.9∙103 to 3.0∙103.
Thirty-seven out of those genes code proteins belonged
to the Clusters of Orthologous Groups of proteins
(COG) functional group J associated with translation.

The massive change in the gene expression, which can
be spotted in Fig. 4, was surprisingly not associated with
the acidogenesis/solventogenesis switch that occurred
earlier, mainly between the T2 and T3 time-points, nei-
ther with the sporulation initiation. Regarding the COG
assignment of 45 abovementioned genes to group J
(translation), it might be possible that at least a part of
these genes corresponded with spore coat formation
genes. Clostridial sporulation typically lasts 8–12 h and
therefore the T4 time-point might have coincided with
stage IV or V of a sporulation cycle in which formation
of spore coat proteins occurred [23]. In addition to the
coat proteins, a need for specific protein complexes in-
volved in spore structures assemblies could be respon-
sible for the increased protein formation demand.
Further transition between T4 and T5 could also show

an entry to the irreversible phase of sporulation, in
which two independent gene regulations were estab-
lished in the mother cell and pre-spore and sporulation
must be completed. Overall culture attenuation after T4
is apparent from both a decrease of specific glucose con-
sumption (Table 1) and from cytometric data that con-
firmed the gradual increase in the proportion of inactive
cells. An opposite phenomenon was observed between
T3 and T4. An increase in the specific rate of glucose
consumption, corresponding to highly regulated genes
coding for COG functional group C (energy production
and conversion) (see Additional file 8), was detected
together with an apparently improved viability.
Even though the massive change between T3 and T4

was obvious, searching within COG categories (see
Additional file 8) does not provide unambiguous clarifi-
cation for this phenomenon. Mostly the same categories
of regulated genes could be found between adjacent
time-points within the first 13 h of cultivation with both
down- and up-regulated representatives. After the 13th
hour COG D and COG L related to cell cycle control
and replication respectively were not differentially
expressed which was fully consistent with the decrease
in cell growth and declining culture viability supporting
a hypothesis of the switch of a highly proliferating cul-
ture into a new strategy, securing genus preservation via
ensuring a complete sporulation process. Simultaneously
COG F for nucleotide metabolism transport are
up-regulated within the first two compared time sets
and down-regulated in the latter two. These findings
were comparable to the transcriptional profile of C. acet-
obutylicum [24] unlike the category J which was in C.
acetobutylicum down-regulated in the stationary phase.
The same applied to the motility related genes (COG N)
that were in our study more down-regulated even within
the first measured interval and up-regulated in latter
stages between T4 and T5. This might seem confusing
as solventogenic clostridia are known to be motile within
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the exponential and acidogenic stage [25] and after the
switch to solventogenesis, motility is generally lost. C.
beijerinckii NRRL B-598 possessed such a change in mo-
tility as well but the first sample point T1 was already
characterized by highly motile cells and therefore a de-
crease in related genes expression copied the phenotypic
profile. On the other hand, an increase in the latter
stages is probably the result of culture phenotype
desynchronization when all the cell types are again
present, including motile cells. The predominant upreg-
ulation of COG O (post translational modification, pro-
tein turnover, chaperone function) between later stages
might relate to cell stress response to increasing solvent
concentrations [26].
Furthermore, some cells within the whole population

might have undergone a massive change in energy me-
tabolism and solvent production, which is associated
with the switch of different genes in the period of transi-
tion between T3 and T4 time-points. The solvent forma-
tion and acidogenesis/solventogenesis switch are usually
explained as a stress response induced by accumulation
of acids in the cultivation medium and pH decrease.
Low pH could cause depletion of ATP pool in cells be-
cause of active transport of H+ ions across cell mem-
brane. To prevent this event and to ensure population
survival, some cells initiated sporulation, while other
cells began converting acids into solvents. However, the
whole population situation was no longer critical at
time-point T4 and the lower concentration of acids in
the medium might have induced another metabolic
change, this time associated with the direct formation of
butanol/acetone from glucose. As this pathway gener-
ated only a half of ATP in comparison with acidogenesis,
its overall rate was probably higher. However, a signifi-
cant advantage of the reduced risk of low pH out-
weighed this discomfort. Moreover, this hypothesis was
supported by metabolites formations, glucose consump-
tion, and pH profile (see Fig. 1a, c) and by an increase in
specific glucose consumption. More than 20 years ago,
Dürre et al. [27] envisaged for C. acetobutylicum that
different genes are probably involved in early and late
solventogenesis. Population heterogeneity reflected by
FC and fluorescent staining (Fig. 1b) supports the
hypothesis that not all cells in the population exhibit the
same phenotype to cope with changing unfavorable
living conditions. The population might rather choose
the bet hedging strategy [28] to enable at least some
cells from the population to survive.
Many bacterial genomes contain prophages or at least

their remnants. Although they may represent large frac-
tion of the strain-specific DNA sequences [29], the strain
C. beijerinckii NRRL B-598 contained only three pro-
phage regions while only one was complete. This could
be the reason for a high genome sequence similarity

with the strain C. beijerinckii NCIMB 8052 as the
prophages are responsible for genome rearrangements
and inversions [30]. Even though the complete prophage
contained six differentially expressed genes between T3
and T4, their average transcription was very low suggest-
ing false positive detection. Due to the absence of tran-
scripts mapping to the prophage regions, all these three
regions seemed to be silent. During industrial cultivations
in the South Africa [31], there were several events mapped
in which bacteriophages caused total collapse or reduction
of solvents production due to lytic or lysogenic cycles,
respectively. Therefore, the detected prophages deserve
further experimental investigation.

Conclusions
Although the strain C. beijerinckii NRRL B-598 is a
promising butanol producer, we lack a precise descrip-
tion of mechanisms within its fermentation metabolism,
which prevent us from further modifications of the
strain for industrial applications. Moreover, these mech-
anisms seems to be unique and different from other
clostridia, including a closely related strain C. beijerinckii
NCIMB 8052. In this study, we provided a complex ana-
lysis of its fermentation profile using HLPC, FC, and
RNA-Seq technologies. Six time-points were selected to
study its transcription profile, while the whole experiment
was repeated in order to get three biological replicates (A,
B, and C) for each time-point. This allowed us to verify
the reproducibility of the experiment and to gather the
RNA-Seq dataset with the currently highest dynamic
range available among solventogenic clostridia. We
analyzed the latest RefSeq annotation of the genome and
confirmed its high accuracy. Nevertheless, through the
analysis of single nucleotide variants, several putative
missing nucleotides were found within the regions of
frameshifted pseudogenes. Transcription regulations
identified by differential expression analysis of adjacent
time-points showed the greatest changes between T3 and
T4 time-points. Surprisingly, this change was not directly
connected to the acidogenic/solventogenic change, nor
the sporulation initiation but rather to a massive change
in the energy metabolism and solvent production in a part
of cell population as we discuss based on auxiliary HLPC
and FC data.
Furthermore, we discovered three prophage regions

within the genome, which demonstrated low or no
transcription activity. Nevertheless, these regions are
important for further experimental investigation. The
experimental design and the gathered data proved good
reproducibility, therefore, repeating the experiment
under different conditions will also allow us to explore
gene regulatory mechanisms and signaling pathways
within the strain.
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Methods
Bacterial culture and fermentation experiment
The strain C. beijerinckii NRRL B-598 was maintained in
a form of spore suspension. TYA broth, prepared ac-
cording to Kolek et al. (2017) [11], containing: 50 g/l
glucose, 6 g/l tryptone (Sigma Aldrich), 2 g/l yeast ex-
tract (Merck), 3 g/l ammonium acetate, 0.5 g/l KH2PO4,
0.3 g/l MgSO4∙7H2O, and 0.01 g/l FeSO4, was used for
the fermentation experiment. Multiforce 1 l bioreactors
(Infors HT) with 630 ml TYA broth and agitation at
200 rpm were used for batch cultivation of the strain at
37 °C. Oxygen was removed from bioreactors by bub-
bling with N2 prior to fermentation. pH was adjusted to
6.3 by 10% NaOH and all bioreactors were inoculated
with 70 ml of inoculum that was cultured previously in
an anaerobic chamber overnight (Concept 400; Ruskinn
Technology) under an anaerobic atmosphere (90% N2,
10% H2). The whole experiment was repeated during
different weeks to obtain three biological replicates.
Samples were taken at specific times and processed for

cell concentration determination, HPLC analysis, mi-
croscopy, flow cytometry, and RNA isolation. Samples
for RNA isolation were taken at 3.5, 6, 8.5, 13, 18, and
23 h of cultivation.

Culture growth and HPLC analysis
Cell concentration was determined by the optical density
(OD) measurement at 600 nm with Spectrophotometer
(Varian Cary 50 UV-VIS spectrophotometer, Varian)
against TYA broth. For calculations of a specific glucose
consumption rate, dry weight of biomass (CDW) was
used. CDW was determined after drying biomass until
constant weight at 105 °C. The equation was following:

qp ¼
ciþ1−ci

CDWi;iþ1 � Xi;iþ1 � tiþ1−tið Þ

where qp is a specific substrate consumption rate related
to a number of viable cells (g.g− 1.h− 1), c is concentration
of glucose (g/L), CDW is cell dry weight (g/L), x is a pro-
portion of viable cells in population and t is time (h). Sym-
bols i and i + 1 indicate two adjacent sampling time points.
Concentrations of glucose and fermentation products

(lactic acid, acetic acid, butyric acid, ethanol, acetone, and
butanol) were measured by HPLC with refractive index
detection (Agilent Series 1200 HPLC; Agilent) in microfil-
tered samples of culture broths. An IEX H+ polymer col-
umn (Watrex) was used for the separation. Conditions of
analysis were as follows: isocratic elution, 5 mM H2SO4 as
a mobile phase with flow rate of 0.5 ml min− 1, column
temperature 60 °C, injection sample volume 20 μl. The
chromatograms were processed by ChemStation for LC
systems software using a set of standard samples with
known concentrations to elaborate calibration curves.

Microscopy, fluorescent staining, and flow cytometry
Phase contrast microscopy (Olympus BX51; Olympus)
with × 400 and × 1000 magnifications was used to deter-
mine the morphological status of cells. Population viability
and heterogeneity was evaluated using flow cytometry
(BD Accuri C6) in combination with fluorescent staining.
A combination of propidium iodide PI (Sigma Aldrich)
and carboxyfluorescein diacetate CFDA (Sigma Aldrich)
was employed for the differentiation of active and dam-
aged cells and detection of spores according to Kolek et al.
(2016) [12].

RNA isolation and sequencing
Cell samples for isolation of total RNA were collected
from 3 ml of culture broth (OD600 0.9–1.0) by centrifu-
gation at 10000 rpm for two minutes, washed with
RNase free water and cell pellets were immediately
stored at − 70 °C. RNA from the cell pellet was isolated
using High Pure RNA Isolation Kit (Roche). Isolated
total RNA was stored frozen at − 70 °C. The total RNA
concentration was determined on DS-11 FX+ Spectro-
photometer (DeNovix). Quality and integrity of the
samples were assessed using the Agilent RNA 6000
Nano Kit (Agilent) with the Agilent 2100 Bioanalyzer
(Agilent). RNA integrity number was measured using
2100 Bioanalyzer Expert software.
Frozen total RNA samples were thawed on ice and an

aliquot of each sample containing 10 μg of RNA was
taken for 16S and 23S ribosomal RNAs removal using
The MICROBExpress™ Bacterial mRNA Enrichment Kit
(Ambion). Efficiency of ribosomal RNA depletion and
concentration of RNA samples were checked on the
Agilent 2100 Bioanalyzer (Agilent) with the Agilent
RNA 6000 Nano Kit (Agilent). Library construction and
sequencing of samples from the first replicate on
Illumina HiSeq 4000, single-end, 50 bp, was performed
by BGI Europe A/S (Copenhagen, Denmark). Library
construction and sequencing of samples from two
remaining replicates were performed by CEITEC Gen-
omics core facility (Brno, Czechia) on Illumina NextSeq,
single-end, 75 bp.

Bioinformatics analysis
The quality assessment after steps of the RNA-Seq reads
processing was done using FastQC in combination with
MultiQC to summarize the reports across all samples
[32]. Reads representing 16S and 23S rRNA regions were
filtered out using SortMeRNA [33] with SILVA database
of known bacterial 16S and 23S rRNA genes [34] to
simplify the following mapping of reads. Clean reads
were mapped to the reference genome of C. beijerinckii
NRRL B-598 (NZ_CP011966.2) using STAR [35]. Result-
ing SAM (Sequence Read Alignment/Map) files were
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indexed and transformed into more compact BAM (Bin-
ary Read Alignment/Map) format using SAMtools [36].
Transcripts were assembled de novo from a whole data-

set of 18 samples using Trinity v2.4.0 [37]. Transcripts
were mapped to C. beijerinckii NRRL B-598 reference
genome (NZ_CP011966.2) with BLAST+ v2.7.1 [38].
Mapped reads and transcripts were visualized as a graph
of sequence read coverage across the genome and further
explored in Integrative Genomics Viewer (IGV) v 2.4.3
[39] to capture variable regions, including identification of
putative missing nucleotides in pseudogene region in the
current genome assembly. On the other hand,
genome-wide coverage plots were reconstructed with
SAMtools using sorted reads and visualized as circular
representations of genome with DNAplotter [40] inte-
grated in Artemis [41]. Dotplot for visual comparison of
C. beijerinckii NRRL B-598 and C. beijerinckii NCIMB
8052 genomes was produced in YASS genomic similarity
search tool [42]. Phage regions in the C. beijerinckii NRRL
B-598 genome were predicted with PHASTER [43] and
PhiSpy [44]. In PhiSpy both available clostridial references
(C. perfringens and C. tetani) were used.
A count table was reconstructed using the R/Bio-

conductor featureCounts function included in the
Rsubread package [45] and RPKM were computed
using the R/Bioconductor edgeR package [46]. Differ-
ential analysis was performed on a raw count table with
R/Bioconductor DESeq2 package [47]. Data was normal-
ized using a built-in DESeq2 function. This normalization
used negative binomial distribution and handles both dif-
ferences in library sizes and differences in library compos-
ition. DESeq2 identified genes that were differentially
expressed in a time-dependent manner. Dimensionality
reduction and visualization of normalized samples was
produced with R Rtsne package using Barnes-Hut t-SNE
implementation [48] in combination with ggplot2 R pack-
age [49]. Venn diagrams and heatmaps representing tran-
scription of selected genes using Z score were generated
with R packages VennDiagram [50] and gplots, respect-
ively. Time series and bar plots were generated with
Matlab 2017b.
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