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MIG-6 suppresses endometrial epithelial
cell proliferation by inhibiting phospho-AKT
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Abstract

Background: Aberrant hyperactivation of epithelial proliferation, AKT signaling, and association with unopposed
estrogen (E2) exposure is the most common endometrial cancer dysfunction. In the normal uterus, progesterone
(P4) inhibits proliferation by coordinating stromal-epithelial cross-talk, which we previously showed is mediated by
the function of Mitogen-inducible gene 6 (Mig-6). Despite their attractive characteristics, non-surgical conservative
therapies based on progesterone alone have not been universally successful. One barrier to this success has been
the lack of understanding of the P4 effect on endometrial cells.

Method: To further understand the role of Mig-6 and P4 in controlling uterine proliferation, we developed a Sprr2f-cre
driven mouse model where Mig-6 is specifically ablated only in the epithelial cells of the uterus (Sprr2fcre+Mig-6f/f). We
examined P4 effect and regulation of AKT signaling in the endometrium of mutant mice.

Results: Sprr2fcre+Mig-6f/f mice developed endometrial hyperplasia. P4 treatment abated the development of
endometrial hyperplasia and restored morphological and histological characteristics of the uterus. P4 treatment
reduced cell proliferation which was accompanied by decreased AKT signaling and the restoration of stromal PGR and
ESR1 expression. Furthermore, our in vitro studies revealed an inhibitory effect of MIG-6 on AKT phosphorylation as well
as MIG-6 and AKT protein interactions.

Conclusions: These data suggest that endometrial epithelial cell proliferation is regulated by P4 mediated Mig-6
inhibition of AKT phosphorylation, uncovering new mechanisms of P4 action. This information may help guide more
effective non-surgical interventions in the future.
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Background
Endometrial cancer is the most common gynecologic
malignancy in the United States, and in the last several
decades the incidence of new cases each year has in-
creased [1]. Endometrioid endometrial cancer, the most
common type of endometrial cancer (80–85%), is associ-
ated with or preceded by abnormal multiplication of
endometrial epithelial cells, known as complex atypical
hyperplasia [2–4]. The main treatment for endometrial
cancer is hysterectomy [5, 6]. Although most

endometrial cancer diagnoses are in post-menopausal
women, 5% of cases are diagnosed before age 40 and
20~ 25% before menopause [7]. Moreover, the incidence
of endometrial cancer diagnoses in younger patients is
likely to increase going forward due to increases in obes-
ity, hypertension, diabetes mellitus, and other known
endometrial cancer risk factors [8–10]. Therefore, the
demand for non-surgical approaches to endometrial can-
cer is increasing, especially for women of reproductive
age with complex atypical hyperplasia and early-stage
endometrioid endometrial cancer who wish to preserve
their fertility beyond treatment [8, 10].
Although hysterectomy is a key therapy for endomet-

rial cancer [5, 6], recent intrauterine progestin therapies
such as a levonorgestrel-releasing intrauterine system
have been used for reproductive-aged women with
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complex atypical hyperplasia and early-stage endometrial
cancer in cases when there is a desire to preserve fertility
or when comorbidities exclude the possibility of surgery.
In addition, progestin therapy is also considered for re-
current endometrial cancer because it is less toxic than
chemotherapies; however, though the response rate of
endometrial hyperplasia to progestin treatment is higher
than that of endometrial adenocarcinoma, the response
to progestin in cancer recurrence is worst of all. Proges-
tin therapies used in the clinic are effective for some pa-
tients but not all cases of endometrial hyperplasia and
well-differentiated endometrioid endometrial cancer.
Another major limitation of progestin therapy is the lack
of a clinical standard protocol for the type, dose, and
duration of treatment [11–13]. The molecular mecha-
nisms underlying progesterone (P4) resistance in endo-
metrial cancer have not been fully understood.
Loss of control over uterine epithelial cell proliferation

and apoptosis by ovarian steroid hormones is the major
underlying pathogenesis of endometrial cancer [14–17].
Progesterone therapy can prevent this process by block-
ing actions of unopposed estrogen (E2) [18]. Nonethe-
less, several studies indicate that P4 therapy has low and
unpredictable response rates in women with endometrial
cancer, therefore limiting its potential use [19–23]. Re-
sistance to P4 treatment due to loss of either progester-
one receptor (PGR) itself or its signaling pathways
causes significant difficulty in the treatment of advanced
and recurrent endometrial cancer [24]. Identifying mo-
lecular mechanisms involved in P4 resistance is critical
to effective and personalized treatment. Unfortunately,
further translational research of endometrial cancer is
inhibited by the lack of sufficient pre-clinical animal
models.
Sequencing analysis of endometrial cancers in the

Cancer Genome Atlas has revealed that upwards of 90%
of cases of endometrioid endometrial cancer have some
genetic aberration in the PTEN/PI3K pathway, which re-
sults in increased AKT activity [25]. In addition, the
AKT signaling pathway can be activated by E2 [26] en-
hancing cell proliferation [27]. Therefore, an under-
standing of the molecular mechanisms between steroid
hormone and PTEN/PI3K/AKT signaling will allow us
to be in a much better position to develop new conser-
vative therapies based on P4 function.
The protein structure of AKT consists of a PH do-

main, a linker region, a kinase domain, and a regulator
domain [28]. These domains undergo various protein
modifications including phosphorylation, acetylation,
ubiquitylation, methylation, hydroxylation, glycosylation,
and SUMOylation which help regulate the proteins ac-
tivity [29]. AKT regulates different pathways that aid in
the promotion of cellular survival and inhibition of
apoptosis through its serine/threonine kinase activity

[30, 31]. Inappropriately elevated expression of AKT
phosphorylation is related to poor prognosis of endo-
metrial cancer patients [32]. Furthermore, inhibition of
the AKT pathway combined with P4 decreases angio-
genesis and proliferation in vivo, indicating that regula-
tion of the AKT pathway may play an important
therapeutic role [33].
Mitogen-inducible gene 6 (MIG-6) functions to sup-

press endometrial cancer in the human and mouse
uterus [34, 35]. Mig-6 is an important mediator of P4
signaling in that it inhibits E2-mediated epithelial prolif-
eration in the uterus [35, 36]. MIG-6 loss is uniquely asso-
ciated with infertility and endometrial cancer [35, 37–39],
but the effects of MIG-6 loss have not been specifically in-
vestigated in regulation of epithelial proliferation of endo-
metrial cancer. In this study, we demonstrate that Mig-6 is
pivotal in the suppression of epithelial proliferation through
its inhibition of AKT activation. Specifically, we show that
P4 inhibition of endometrial tumorigenesis is mediated by
MIG-6 inhibition of AKT phosphorylation.

Methods
Animals and treatments
Mice were maintained for and used in the designated
animal care facility according to the Michigan State Uni-
versity institutional guidelines. All animal procedures
were approved by the Institutional Animal Care and Use
Committee of Michigan State University. Mice were
housed in standard cages (up to 5 animals per cage) in
rooms with 12 h light/dark cycle, controlled temperature
and humidity under specific pathogen-free conditions.
Campus Animal Resources at Michigan State University
provides veterinary care, daily husbandry and health
checks, procurement, and other administrative support
for research in biomedical housing facilities and assists
with animal health. Animals are observed daily by ani-
mal care staff that have additional training in laboratory
animal sciences and species-specific handling and
husbandry.
To generate uterine epithelial specific Mig-6 knockout

mice, Mig-6f/f mice were crossed with Sprr2fcre/+ mice
[40]. Control (Mig-6f/f ) and endometrial epithelial
cell-specific Mig-6 knockout mice (Sprr2fcre/+Mig-6f/f;
Mig-6 d/d) [41] were used to investigate the effect of epi-
thelial Mig-6 ablation on the uterus.
Vehicle (beeswax) or P4 (40 mg/pellet) pellets were

placed subcutaneously into control (Mig-6f/f ) and
Sprr2fcre+Mig-6f/f mice respectively at 10 weeks of age
for 1 week (n = 6/treatment/genotype). To avoid any
possibility of pain and/or distress to the animal, all surgi-
cal procedures were performed under anesthesia. Mice
were anesthetized with isoflurane (3% isoflurane in oxy-
gen by inhalation). All surgeries were conducted in dedi-
cated surgical suites using aseptic procedures.
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Recuperating animals, under close supervision, were
kept warm until full postoperative recovery is achieved.
Animals were under anesthetic for a maximum of
20 min, and recovery from surgery normally occurs
within 30 min as evidence by sternal recumbency,
followed by normal ambulation, grooming and feeding.
If discomfort is observed, the animals were provided
Ketoprofen at a dose of 5 mg/kg as an analgesic. At the
end of a given study, all mice were humanely euthanized
by cervical dislocation under isoflurane anesthesia or by
carbon dioxide asphyxiation and then the uteri from
control and Sprr2fcre+Mig-6f/f mice were collected to in-
vestigate the effect of P4 on the development of endo-
metrial hyperplasia.

Immunohistochemistry and analysis
Immunohistochemistry analysis was performed as previ-
ously described [41]. Briefly, uterine sections were
pre-incubated with 10% normal goat serum in PBS prior
to exposure to anti-PGR (SC-538; Santa Cruz Biotech-
nology, Dallas, TX), anti-ESR1 (SC-543; Santa Cruz Bio-
technology, Dallas, TX), anti-AKT (CS-4691; Cell
Signaling, Danvers, MA), anti-pAKT (CS-4060; Cell Sig-
naling, Danvers, MA), and anti-Ki67 (BD5506090; BD
Biosciences, San Jose, CA) as appropriate primary anti-
bodies. Positive signaling was detected with the DAB
Peroxidase Substrate Kit (SK-4100; Vector Laboratories,
Burlingame, CA). The H-score was calculated as previ-
ously reported [42]. The overall H-score ranged from 0
to 300.

Cell culture and transient transfection
Ishikawa (99,040,201; Sigma–Aldrich, St. Louis, MO)
and HEC1A (HTB-112; ATCC, Manassas, VA) Cell lines
are maintained in Dulbecco’s modified Eagle’s medium/
Nutrient Mixture F-12 (DMEM/F12; Gibco BRL, Gai-
thersburg, MD) with 10% (v/v) fetal bovine serum (FBS;
Gibco BRL, Gaithersburg, MD), and 1% (v/v) penicillin
streptomycin (P/S; Gibco BRL, Gaithersburg, MD) at
37 °C under 5% CO2. FLAG-tagging MIG-6 expression
vectors were transfected using Lipofectamine 2000 re-
agent (Invitrogen Crop., Carlsbad, CA) according to the
manufacturer’s instructions.

Immunoprecipitation
Immunoprecipitation was performed as described previ-
ously [38]. Briefly, Ishikawa and HEC1A cells were trans-
fected with the FLAG-MIG-6 expression vectors.
Immunoprecipitation was performed with Flag antibody
(F1804; Sigma–Aldrich, St. Louis, MO). Protein interac-
tions were examined by Western blot analysis.

Western blot analysis
Western blot analysis was performed as previously de-
scribed [41]. Membrane was blocked with Casein (0.5%
v/v) prior to exposure to anti-AKT (CS-4691; Cell Sig-
naling, Danvers, MA), anti-pAKT (CS-4060; Cell Signal-
ing, Danvers, MA), and anti-Flag (F1804; Sigma-Aldrich,
St. Louis, MO) antibodies. Anti-actin (SC-1615, Santa
Cruz Biotechnology, Dallas, TX) was used for loading
control.

Statistical analysis
For data with only two groups, Student’s t-test was used.
For data containing more than two groups, an analysis
of variance (ANOVA) test was used, followed by Tukey
or Bonferroni test for pairwise t-tests. All statistical ana-
lyses were performed using the Instat package from
GraphPad (San Diego, CA, USA).

Results
A decrease of stromal PGR and ESR1 expression in
Sprr2fcre+Mig-6f/f mice
Previously, we reported that the hyperplastic phenotype
of endometrial epithelial cell specific Mig-6 knockout
(Sprr2fcre+Mig-6f/f; Mig-6d/d) mice were observed at
10 weeks of age [43]. Endometrial cancer displays an im-
balance in steroid hormone action [14–17]. PGR expres-
sion has been shown to be a prognostic factor for
endometrial cancer [44–46]. Therefore, we first exam-
ined expression of PGR and ESR1 in Mig-6d/d mice. Im-
munohistochemical analysis indicated that levels of PGR
and ESR1 were significantly decreased in the stromal
cells of Mig-6d/d mice compared to control (Mig-6f/f )
mice at 10 weeks of age (n = 6/genotype). However, the
expression of PGR and ESR1 in the epithelium were not
changed in the uteri of Mig-6d/d mice as compared to
control (Fig. 1). These data suggest that dysregulation of
PGR and ESR1 expression in the stroma may play an
important role for the development of endometrial
hyperplasia.

Aberrant activation of AKT signaling in Sprr2fcre+Mig-6f/f

mice
AKT is frequently hyperactivated in human cancers [47].
To determine if the observed hyperplastic phenotype
was due to activated AKT signaling, we examined the
expression of total AKT, phospho-AKT (pAKT), and
phospho-S6 (pS6), a downstream marker of active AKT
signaling in the uteri of control and Mig-6d/d mice. First,
we examined cell proliferation by Ki67 staining (n = 6/
genotype). The IHC results revealed a significant in-
crease of uterine epithelial proliferation in Mig-6d/d mice
(Fig. 2a-b). Interestingly, we found that pAKT and pS6
were highly elevated in the epithelial cells of Mig-6d/d

mice at 10 weeks of age as compared to control mice
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(Fig. 2). However, total AKT levels were not changed
among the genotypes (Additional file 1: Figure S1).
These data suggest that MIG-6 suppresses endometrial
epithelial proliferation via inhibition of AKT
phosphorylation.

The effect of P4 treatment on the development of
endometrial hyperplasia
Exposure to P4 is a negative risk factor for endometrial
cancer [48]. Additionally, it is well known that endomet-
rial cancer is E2-dependent and that progestin therapy
has been successful in slowing the growth of endomet-
rial tumors in women who are poor surgical candidates
and premenopausal women with complex atypical
hyperplasia and early-stage endometrioid endometrial
cancer who had a strong desire to preserve their fertility
[22, 23, 49–54]. To assess the effect of P4 treatment on
epithelial ablation of Mig-6, we placed P4 or vehicle

pellets into the control and Mig-6d/d mice subcutane-
ously at 10 weeks of age (n = 6/treatment/genotype).
After 1 week of the P4 treatment, Mig-6d/d mice exhib-
ited a significantly decreased uterine weight compared
to vehicle-treated Mig-6d/d mice (Fig. 3a and b). Histo-
logical analysis showed that the development of uterine
hyperplasia was not evident in Mig-6d/d mice after P4
treatment (Fig. 3c). P4 treatment also led to decreased
proliferation in the epithelial cells of Mig-6d/d mice as
compared to vehicle-treated Mig-6d/d mice (Fig. 3d).
These data suggest that the hyperplastic phenotype of
Mig-6d/d mice was responsive to P4 treatment, returning
the morphology to normal.

The recovery of steroid hormone and AKT signaling by P4
treatment in Sprr2fcre+Mig-6f/f mice
The expression of PGR and ESR1 is strongly correlated
with the prognosis of endometrial cancer [55].
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Therefore, we examined the expression of PGR and
ESR1 using immunohistochemistry (n = 6/treatment).
The expression of PGR and ESR1 were significantly in-
creased in the stroma of Mig-6d/d mice after P4 treat-
ment (Fig. 4). These data indicated that P4 treatment
activates nuclear receptors signaling at endometrial stro-
mal cells of Mig-6d/d mice.
Next, we examined the expression of total AKT, pAKT,

and pS6 using immunohistochemistry in the uteri of

control and Mig-6d/d mice after P4 treatment to investi-
gate whether the suppression of hyperplastic phenotype
observed was due to recovered AKT signaling. Total
AKT levels were not changed after P4 treatment
(Additional file 2: Figure S2). However, aberrant acti-
vation of AKT signaling was significantly decreased in
the uteri of P4-treated Mig-6d/d mice as compared to
vehicle-treated Mig-6d/d mice (Fig. 5). These data sug-
gest that P4 treatment suppresses aberrant activation
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of AKT signaling in endometrial hyperplasia of
Mig-6d/d mice.

MIG-6 regulates AKT phosphorylation dose-dependently
and interacts with AKT
In order to examine effects of MIG-6 on AKT, we per-
formed experiments on endometrial cancer cell lines,
Ishikawa and HEC1A cells. We transfected to Ishikawa
and HEC1A cells dose-dependently with FLAG-tagged
MIG-6 (FLAG-MIG-6). Following MIG-6 introduction
we examined levels of AKT and pAKT at 24-h. The
levels of AKT phosphorylation were highly decreased by
FLAG-MIG-6 in a dose dependent manner whereas
AKT levels were unchanged (Fig. 6a). We next examined
whether MIG-6 physically interacts with AKT. Ishikawa
cells were transfected with FLAG-MIG-6, and the lysates
were immunoprecipitated with FLAG antibody. FLAG
immunoprecipitates were then probed with AKT and
MIG-6 specific antibodies, indicating that MIG-6 physic-
ally interacts with AKT (Fig. 6b). These results suggest
that MIG-6 inhibits AKT phosphorylation through a
protein-protein interaction, highlighting its important
role in the regulation of epithelial proliferation.

Discussion
In this study, we evaluated whether MIG-6 suppresses
endometrial epithelial proliferation via inhibition of AKT
phosphorylation. P4 plays an inhibitory role on E2

stimulated proliferation of uterine epithelial cells [56].
Disruption of steroidal control results in unopposed E2,
leading to endometrial cancer [17]. Mig-6 is a target of
P4 and PGR, and its deletion in the uterus leads to en-
hanced epithelial proliferation [35]. The majority of
endometrial cancers exhibit actively proliferating epithe-
lial cells and increased AKT signaling [57–59]. The Can-
cer Genome Atlas analysis demonstrated an increased
AKT activity in endometrioid endometrial tumors [25].
Activated AKT signaling enhances cell proliferation as
well as cell survival through the inhibition of proapopto-
tic proteins [27]. Expression of PGR (PR-A and PR-B)
and ESRs (ESR1 and ESR2) has been reported as prog-
nostic factors for endometrial carcinoma [44–46]. We
evaluated that stromal PGR and ESR1 expression was
significantly decreased in the uteri of Mig-6d/d when
compared to control mice (Fig. 1). We showed elevated
phosphorylation of AKT resulting in enhanced epithelial
proliferation (Fig. 2). Stromal PGR and P4 signaling is
necessary and sufficient to mediate the antiproliferative
effects of P4 on E2-induced epithelial cell proliferation
[60, 61]. However, activation of AKT reduces PR-B tran-
scriptional activity in Ishikawa cells and Ptend/d condi-
tional mouse model of endometrioid endometrial cancer
[33]. AKT also reduces PGR expression levels in breast
cancer cells, endometrial cancer cells, and uterine stro-
mal cells affected by endometriosis [62–64]. However,
exactly how signaling occurs between AKT and P4 re-
sistance in endometrial epithelial and stromal interaction
is unclear. Filling this knowledge gap is critical to under-
standing P4 resistance.
P4 resistance is defined by the decreased responsive-

ness to bioavailable P4 of target tissue [65]. Lack of P4
activity contributes significantly to uterine pathophysi-
ology. P4 resistance is now considered a central element
in women’s diseases such as infertility, endometriosis,
and endometrial cancer [66–69], but the mechanism of
P4 resistance in women’s diseases remains unknown. We
have demonstrated that Mig-6d/d mice exhibiting normal
P4 responses and P4 treatment for 1 week is sufficient
to restore endometrial hyperplasia to normal (Fig. 3).
We treated the mice in the beginning of endometrial
hyperplasia and the data suggest P4 treatment at an
early time point can be one of the reasons to reverse
endometrial hyperplasia to normal. Therefore, further
study on the effects of P4 treatment on endometrial tur-
morigenesis associated with its development and pro-
gression are required.
Determining the molecular mechanisms by which steroid

hormones control the physiology of the uterus is of utmost
importance to understanding and overcoming P4 resist-
ance. However, resistance to P4 treatment has led to limit-
ing the use of P4 therapy in endometrial cancer due to its
low response rates [19–23]. The optimal method for
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treating and surveilling patients with conservatively treated
endometrial cancer is not known. Therefore, the identifica-
tion of the molecular pathways that link P4 resistance to
endometrial cancer development can potentially provide
novel targets for the prevention or treatment of this malig-
nancy. We showed that AKT signaling is down-regulated
after P4 treatment inMig-6d/d mice (Fig. 5). These data sug-
gest that treatment with an AKT inhibitor could be a viable
alternative for overcoming the P4-resistant endometrial
hyperplasia and cancer.
We found that MIG-6 decreased AKT phosphorylation

in Ishikawa and HEC1A cell lines in a dose-dependent
manner. Immunoprecipitation showed that there is protein
interaction between MIG-6 and AKT, suggesting that
MIG-6 suppresses E2-induced epithelial cell proliferation
through AKT interactions (Fig. 6). However, the exact mo-
lecular mechanism by which interaction regulates the phos-
phorylation of AKT is not clear. Further studies will be
required to determine exact molecular mechanism.
We have shown the prevention effect of P4 with

Mig-6d/d mice [43]. We treated Mig-6d/d mice with P4
before developing endometrial hyperplasia and found
that P4 prevented the development of endometrial
hyperplasia by inhibiting epithelial STAT3 phosphoryl-
ation, resulting in a decrease of epithelial proliferation.
The molecular mechanisms in the regulation of epithe-
lial proliferation by AKT and STAT3 as well as steroid
hormone signaling remains to be further studied during
endometrial tumorigenesis. Our data support that the
activation of stromal signaling by P4 treatment can con-
tribute to the development of endometrial hyperplasia
and the cross-talk between AKT/STAT3 and PGR/ESR1
is critical to inhibit the endometrial hyperplasia.

Conclusions
Overall, our study suggests that the negative regulation of
AKT phosphorylation by activated stroma signaling in-
cluding Mig-6 has an important role in the regulation of
epithelial cell proliferation during endometrial hyperplasia
development and progression. Our results contribute to
the understanding of the etiological and molecular mecha-
nisms of epithelial cell proliferation and to the develop-
ment of new therapeutic approaches for treating
endometrial hyperplasia and cancer.
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vehicle and P4 treated Mig-6d/d mice. (PPTX 407 kb)
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