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Abstract

Unknown fifteen years ago, proprotein convertase subtilisin/kexin type 9 (PCSK9) is now common 

parlance amongst scientists and clinicians interested in prevention and treatment of atherosclerotic 

cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that 

it uncovered previously unknown biology, but rather that these important scientific insights have 

been translated into an effective medical therapy in record time. Indeed, the translation of this 

discovery to novel therapeutic serves as one of the best examples of how genetic insights can be 

leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far 

from complete. Here, we review major scientific understandings as they relate to the role of 

PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that 

therapies designed to inhibit its action are having in the clinical setting.
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Introduction

It has only been fifteen years since proprotein convertase subtilis/kexin type 9 (PCSK9) was 

identified as an important regulator of low-density lipoprotein (LDL) metabolism. As its 

name suggests, PCSK9 is the ninth member of the proprotein convertase family, a group of 

serine proteases that are characterized by their ability to hydrolyze peptide bonds in their 

cognate substrates for activation 1. Initial clues were provided by a French family with 

familial hypercholesterolemia in 2003 2. Abifadel et al. linked gain-of-function (GOF) 

mutations in PCSK9 with autosomal dominant hypercholesterolemia and ultimately 

uncovered a key new player in lipid metabolism. This seminal discovery led to a series of 

investigations that demonstrated that loss-of-function (LOF) mutations in PCSK9 associate 

with life-long low cholesterol levels and marked reductions in the risk of atherosclerotic 
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cardiovascular disease (ASCVD) 3-6. The very rare individuals with homozygous LOF 

mutations in PCSK9 (and no circulating protein) demonstrated extremely LDL-cholesterol 

(LDL-C) [≈15 mg/dL], normal health and reproductive capacity, and no evidence of 

neurological or cognitive dysfunction 5, 7. This complementary set of observations has been 

leveraged into the most important therapy for the treatment of hypercholesterolemia and 

ASCVD since the introduction of the statins over thirty years ago. Indeed, the so-called 

PCSK9 inhibitors, fully human monoclonal antibodies that bind PCSK9, reduce LDL-C by 

approximately 60% and risk of myocardial infarction (MI) and stroke by approximately 20% 

after over two years of treatment 8. Remarkably, these agents antagonizing PCSK9 action 

were approved by regulatory agencies spanning the globe only a decade after its discovery. 

While the scientific and medical communities have swiftly uncovered many facets of 

PCSK9 biology, there is still much to learn. Here we survey the most salient aspects of 

PCSK9 biology and therapeutic modulation as it relates to lipoprotein metabolism, 

atherosclerosis, and prevention of atherosclerotic cardiovascular events.

A new player in cholesterol homeostasis

Much of the excitement surrounding the discovery of PCSK9 relates to revelations in 

lipoprotein metabolism, necessitating a reworking of models previously held for decades. In 

the pre-PCSK9 era, it was thought that all regulatory systems of cholesterol homeostasis 

were strictly intracellular 9, with the role played by extracellular proteins limited to 

modulation of packaging, processing, and clearance of plasma lipoproteins. Remarkably, 

PCSK9 impacts lipoprotein metabolism both within (prior to secretion) and outside (after 

secretion into the circulation) of the cell 10. Plasma cholesterol is mostly manufactured, 

exported, and eventually recaptured by hepatocytes. Cholesterol synthesis is a complex, 

multistep, and highly regulated pathway, and 3-hydroxy-3-methylglutaryl coenzyme A 

reductase (HMG CoA-R) is its key rate-limiting enzyme. Statins antagonize the activity of 

HMG CoA-R, reduce hepatic cholesterol synthesis, and up-regulate the transcription of the 

LDL receptor (LDLR) gene via a sensing mechanism operated by the sterol regulatory 

element binding protein (SREBP) pathway 11. Each cell in the body must maintain 

membrane cholesterol at a critical concentration in order to ensure proper membrane 

function. It is thus evident that the cell uses a series of regulatory and counter- regulatory 

steps to respond to increases and decreases in membrane cholesterol straying from the 

critical value range. These include synthetic, assembly, secretory, and re-uptake activities. 

The lipid cargo, mostly triglycerides and cholesterol, is packaged within apolipoprotein B 

(apoB)-containing very low-density lipoproteins (VLDL), the intravascular precursors of 

LDL, which primarily transport triglycerides from the liver to peripheral tissues, with 

cholesterol packaged to enhance stability.

The mechanism by which LDLR internalize LDL was described by Goldstein and Brown in 

the early 1970s 12, leading to one of the most exciting series of discoveries in the history of 

medicine and the cataloguing of a critical aspect of cellular life, the sensing and regulation 

of membrane cholesterol levels. Receptor mediated endocytosis is facilitated by the binding 

of apoB on the LDL particle to the LDLR and coordinated by an adaptor protein (LDLRAP) 

that positions LDLR on the sinusoidal side of the polarized hepatocyte, clustered in coated 

pits 13. The LDL/LDLR complex then gets internalized within coated vesicles and expands 
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to join the endosomal compartment, where it eventually merges with the lysosome. The pH 

gradient in the descent toward the lysosome induces dissociation between receptor and 

cargo. In the lysosome, the LDL particle is digested and the cholesterol and triglycerides are 

de-esterified for transport into the cytosol, where they can take on myriad fates. On the other 

hand, the LDLR is recycled back to the hepatocyte surface to participate for many more 

rounds of LDL binding and endocytosis 14, 15. LDLR recycles every 10 minutes with a life 

span of 20 hours. This process allows a single LDLR to internalize hundreds of LDL 

particles during its lifespan. For decades, it was assumed that a generic ubiquitin-related 

sorting of altered molecules eventually terminated this recycling process. The discovery of 

PCSK9 heralded a new era of understanding; this low abundance circulating protein binds 

cell-surface LDLR on coated pits and triggers the internalization of the receptor. The 

interaction between PCSK9 and LDLR locks the receptor in its “open” conformation in the 

endosome and routes the ligand-receptor pair to the lysosomal compartment for degradation, 

thus inhibiting the LDLR recycling that follows internalization of ligands such apoB on 

LDL and apoE on remnants 16-19. In other words, the normal recycling loop is short-

circuited as PCSK9 disables the LDLR from escaping lysosomal digestion, thereby reducing 

cell surface receptor density and resulting in raised plasma LDL-C.

It must be noted that up to half of plasma PCSK9 is associated with the LDL particle, for a 

frequency of one PCSK9 molecule for every 500–1000 LDL particles 20, 21. This introduces 

the intriguing possibility that the carefully orchestrated cellular regulation of cholesterol 

concentration is ultimately under the control of a stochastic extracellular system, where 

every few hundred encounters with canonical LDL, the LDLR meets its fate by interacting 

with a PCSK9-carrying LDL that terminates its life cycle (Figure 1).

PCSK9 biology

Structure

PCSK9 is synthesized predominantly in the liver as a 75 kDa proprotein. Based on its 

protein structure 22-24, removal of the signal peptide (amino acids 1-30) produces a secreted 

heterodimer protein with three domains:

• A pro-domain (amino acids 31-152), which undergoes autocatalytic cleavage but 

continues to associate with the rest of the protein.

• A catalytic domain (amino acids 153-454), which contains a proteolytic active 

site (catalytic triad amino acids 186, 226, and 386) inactivated by the associated 

pro-domain. The proteolytic active site is only required for the autocatalytic 

cleavage, has no other known targets, and is not related to the LDLR reducing 

activity of PCSK9 25, 26. The LDLR degradation capacity of PCSK9 is based on 

a protein-protein interaction between the epidermal growth factor-like A domain 

of the LDLR and amino acids 367-380 in the catalytic domain region of PCSK9 

independent of the proteolytic active site.

• A C-terminal domain (residues 455-692), which consists of three similar 

modules. Most of the N-terminal residues and some of the C-terminal residues 

are not visible in the proposed crystal structures due to poor electron density.
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LDLR degradation and PCSK9 kinetics

The kinetics of PCSK9 binding to cell surface LDLR exhibit Kd values that range from 90 

to 840 nM at neutral pH. Its affinity for the LDLR is increased by two orders of magnitude 

at lower pH with Kd values ranging from 1 to 8 nM 22, 24, 27, 28. The increased affinity at 

acidic pH facilitates PCSK9 capture of the LDLR in the late endosome and ensures that the 

PCSK9-LDLR complex will be targeted to the lysosome for degradation 29. PCSK9 binding 

to LDLR occurs in two phases:

• Rapid-phase binding - accounts for one-third of overall equilibrium binding and 

is characterized by a binding half-time of 5-10 minutes and half-time 

dissociation of 20 minutes 30.

• Slow-phase binding - accounts for two-thirds of overall equilibrium binding and 

is characterized by a binding half-time of ~1.5 hours and half-time dissociation 

of ~5 hours 30.

Although PCSK9-LDLR binding, internalization, and lysosomal shuttling occurs within 2-3 

hours from initial contact 31, PCSK9-mediated degradation of LDLR in vitro is only evident 

12-24 hours after adding PCSK9 to cultured cells 32, 33. In mice, PCSK9 remains intact in 

the liver for at least 4 hours after its LDLR-mediated internalization 20. Therapeutic PCSK9 

inhibition in humans only significantly reduces LDL-C levels after 2-3 days from start of 

therapy34. Based on these observations, it is clear that there is a delay between the first 

PCSK9 interaction with the LDLR and the eventual loss of LDLR. In contemplating this 

apparent paradox, there are several possibilities to consider. First, the PCSK9-LDLR 

interaction may not lead to immediate shuttling of both proteins to the lysosome for 

degradation and may require additional steps and interactions. Alternatively, intracellular 

LDLR concentrations may be in vast excess relative to cell-surface LDLR density 35, 36, so 

that the initial elimination of cell-surface LDLR by PCSK9 is rapidly replenished until 

intracellular stores are also depleted.

Upon synthesis, the PCSK9 proprotein is directed to the endoplasmic reticulum by a signal 

sequence, subsequently removed by a signal peptidase. The proprotein form then undergoes 

autocatalytic cleavage, forming a heterodimer (62+13 kDa). This form is then transported to 

the Golgi via a COPII complex involving Sec24a 37, leading to PCSK9 secretion into the 

blood stream. Even though PCSK9 and LDLR co-exist within the secretory pathway of 

hepatocytes and their co-localization was suggested to result in reduced LDLR levels, it was 

later demonstrated that the interaction does lead to LDLR degradation 38,39 40. Binding of 

PCSK9 to GRP94, an ER-resident protein expressed in hepatocytes, protects LDLR from 

degradation by preventing early binding of PCSK9 to LDLR within the ER 38. Several LOF 

mutations in PCSK9 are known to cause impaired processing (e.g., S386A) 41, trafficking 

(e.g. R46L) 42, or secretion (e.g. S462P) 43 of PCSK9, leading to low plasma PCSK9 levels 

and consequent hypocholesterolemia. Interestingly, some of the GOF mutations of PCSK9 

causing hyperlipidemia are also not secreted (e.g. S127R, D129G) 42. It is possible that these 

mutations are able to interact with LDLR in the secretory pathway leading the complex to 

degradation, bypassing GRP94 protection in the ER.
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Regulation of PCSK9 levels and function

As for all plasma proteins, PCSK9 levels represent the balance between production and 

clearance. Human PCSK9 is expressed in multiple tissues, with liver, small intestine, and 

kidney the major sources of its plasma levels 44. The human protein shares substantial 

homology with its murine counterpart, with 76.6% identity 45. The gene is found on 

chromosome 1 in humans and chromosome 4 in mice. PCSK9 is regulated by the SREBP 

through a sterol-regulatory element (SRE) motif in the promoter region 46, 47. In addition, an 

Sp1 motif also controls transcriptional regulation through the SREBP pathway 48. SREBP 

regulation of cholesterol synthesis, LDLR, and PCSK9 results in an apparently paradoxical 

scenario where depletion of intracellular cholesterol levels, leads to the simultaneous up-

regulation of both LDLR and PCSK9 expression 48, 49. This SRE-mediated up-regulation of 

PCSK9 attenuates the LDL-C lowering effect of medications such as statins and ezetimibe. 

The PCSK9 promoter also contains a hepatic nucleic factor 1 motif (between the SRE and 

Sp1 sites), which likely functions as a liver-specific regulatory sequence 50-52. Metabolic 

studies in humans have shown that the production rate of PCSK9 is ~20 µg/kg/day with a 

plasma pool size of ~1000 µg 53. Thus, given a blood pool of 5 liters, the average plasma 

concentration of PCSK9 is ~200 ng/ml in an average adult, and the plasma pool turns over 

very fast, by over 2 pools a day 53. For comparison, the production rate of VLDL-apoB is 

1000-fold higher (~20 mg/kg/day) 53.

At a high level, it would appear that the primary role of PCSK9 is to carry out a suicide 

mission that ultimately leads to the demise of the LDLR. However, careful study of PCSK9 

physiology shows a less threatening picture. PCSK9 is simply another ligand for the LDLR 

(just like apoB and apoE) and uses the LDLR to exit the plasma compartment. However, if 

PCSK9 uses LDLR as the main clearance route of elimination and at the same time it causes 

degradation of LDLR, then a reciprocal regulation between these two proteins controls 

plasma PCSK9 levels, hepatic LDLR expression, and plasma LDL-C levels 20, 54, rendering 

the evaluation of these inextricably linked processes at any given time in the steady state 

extremely difficult, as changes in production or efficiency in any of the two proteins will 

have consequences on the other and on LDL-C levels. In mice, plasma PCSK9 levels are 

highly regulated by LDLR expression 20, 55. In mice, complete removal of the LDLR results 

in a substantial increase in the plasma half-life of PCSK9 56 whereas overexpression of 

hepatic LDLR results in increased clearance of PCSK9 20. Humans with homozygous or 

heterozygous familial hypercholesterolemia (FH) manifest higher levels of plasma PCSK9 

compared to non-FH controls 54. Strangely, LDLR mutations in humans have a larger effect 

on LDL-C than on PCSK9 concentrations, while the opposite happens in mice 57. One 

possible explanation is the human LDLR mutations are classified as either receptor-defective 

or receptor-negative (<2% of normal LDL internalization ability), with receptor-defective 

(2-25% of normal LDL internalization ability) mutations being far more common 58, 59. 

Thus, the most human LDLR mutants have some residual activity toward binding both LDL 

and PCSK9, while studies mice are done in the context of a complete absence of the LDLR.

Plasma PCSK9 can be found in two main forms, an intact heterodimer (62+13 kDa), which 

is often considered the (more) active form (stronger binding to and degradation of LDLR), 

and a furin-cleaved heterodimer (55+13 kDa) 60, which binds the LDLR less avidly (two-
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fold reduced affinity) 61, and is thus considered the less active form61-63. In contrast, 

intracellular PCSK9 is only found in its proprotein form (75 kDa) or as an intact heterodimer 

ready to be secreted 64. These findings suggest that the cleavage of PCSK9 by furin occurs 

outside the cell, by interaction of PCSK9 with either membrane-bound or circulating furin. 

Although PCSK9 and furin co-exist in the Golgi, there is no clear evidence that furin is able 

to cleave PCSK9 intracellularly 60. Another direct regulator of PCSK9 function in plasma is 

the LDL particle itself 65, 66 It has been shown that PCSK9 associates with LDL with a Kd in 

the range of 160 to 320 nM 67, 68. PCSK9 association with LDL is thought to occur via apoB 

and requires the presence of the PCSK9 pro-domain 67. We also found that plasma PCSK9 

associates with Lp(a), although it does not bind to other apoB-containing lipoproteins such 

as VLDL or chylomicrons 69. The in vivo relevance of PCSK9 association with LDL and 

Lp(a) was first shown in patients undergoing lipoprotein apheresis, where together with a 

~70% reduction in LDL levels, plasma PCSK9 levels were also reduced by over 50% 70. 

Nevertheless, the physiologic role of PCSK9 binding to lipoproteins is not clear. In vivo data 

suggest that the PCSK9 species associated with LDL is primarily the intact heterodimer 

form, whereas the non-LDL-bound (free) PCSK9 is mainly found in the furin-cleaved 

conformation 70. Our in vivo and in vitro data further suggest that LDL “protects” PCSK9 

from furin cleavage and that LDL-bound PCSK9 has a two-fold stronger binding affinity for 

the LDLR compared with non-LDL-bound PCSK9 71. These observations support the notion 

that LDL-bound PCSK9 is the more functional form of this protein. Furthermore, the LDL-

PCSK9 interaction has therapeutic potential as its modulation may lead to increased 

proteolytic cleavage and reduced plasma PCSK9 activity. Compartmentalization of PCSK9 

and its effects on PCSK9 activity are summarized in Figure 2.

On the other hand, it was shown that adding LDL to recombinant PCSK9 in vitro leads to 

reduced affinity of PCSK9 for the LDLR, likely due to competition of LDL and PCSK9 for 

the LDLR 67, 71. Thus, it is possible that LDL-bound PCSK9 is a physiologically less 

functional fraction of plasma PCSK9 72. The importance of defining and elucidating the 

factors that govern the partitioning of plasma PCSK9 and understanding the physiological 

role of the LDL-bound PCSK9 cannot be overstated. Experimental and translational studies 

will ultimately determine whether this partitioning in general, and the LDL-PCSK9 

interaction in particular, can be exploited for therapeutic gains.

Receptors and other partner proteins

Immediately following the discovery of LDLR-mediated degradation by PCSK9, it was 

found that this protein interacts with other proteins in both hepatic and extra-hepatic tissues. 

Similar to its interaction with the LDLR, PCSK9 may engage other members of the LDLR 

family, such as the VLDL receptor 10, apoE receptor 2 (apoER2) 10, and LDLR-related 

protein 1 (LRP1) 73. However, it is possible that PCSK9 interaction with these receptors 

does not lead to their degradation, or at least not in all tissues 74, 75, and that, perhaps, its 

interaction with LRP1 and apoER2 leads to downstream signaling instead.

The surface scavenger receptor CD36 76 and the tetraspanin receptor CD81 77 were also 

proposed as possible targets of PCSK9. The nature of these interactions remains unknown, 

as these proteins do not share homology with the LDLR. CD36 is a scavenger receptor that 
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also plays a role in muscle lipid utilization, adipose energy storage, and hepatic triglyceride 

storage and secretion. Thus, systemic modulation of its levels by PCSK9 may have 

implications on basic human physiology. CD81 plays a role in the regulation of cell 

development, activation, growth and motility and also serves as an important receptor for 

hepatitis C virus entry to the cell.

PCSK9 has also been reported to interact with proteins other than receptors, as it reduces 

levels of beta-secretase 1 78, an aspartic-acid protease responsible for the proteolytic 

processing of the amyloid precursor protein, and endothelial sodium channel 79, a 

membrane-bound ion channel that plays a major role in determining extracellular fluid 

osmolality. Amyloid-like protein 2 80 and Annexin A2 81 may affect the formation and 

processing of the PCSK9-LDLR complex though interaction with the C-terminal domain of 

PCSK9. In addition, it was shown that the adrenal cells are insensitive to LDLR-mediated 

degradation by PCSK9 independently of Annexin A2 levels 20.

Heparan sulfate proteoglycans (HSPG) play an important role in hepatic metabolism through 

several mechanisms including endocytosis of lipoproteins 82. It was recently suggested that 

HSPG lining the hepatocyte surface capture PCSK9 bound to the LDLR and heparin 

mimetics appear to have PCSK9 inhibitor activity 82. In order to understand the potential 

role of HSPG on PCSK9, it remains to be determined whether HSPG knock down in vivo 
(e.g through hepatic Ndst1 knockout 83) affects PCSK9-mediated LDLR degradation, 

PCSK9 turnover, and/or PCSK9 levels.

PCSK9 as a biomarker to predict ASCVD risk

PCSK9 and Atherosclerosis Imaging

Since PCSK9 is a circulating protein, it could have direct effects on the plaque beyond its 

ability to regulate hepatic LDLR levels. Several lines of investigation have also explored the 

relationship between plasma PCSK9 and subclinical atherosclerosis. Chan et al. performed 

carotid intima-media wall thickness (CIMT) measurements in 295 asymptomatic subjects 

and found a significant and direct relationship between PCSK9 levels and carotid thickness 
84. These findings corroborated earlier studies on the correlation between PCSK9 and CIMT 
85-87. However, a sub-analysis of the FATE (Firefighters and Their Endothelium) study 

found no relationship between PCSK9 levels and measures of subclinical atherosclerosis 

(CIMT and flow-mediated dilation) in 1,527 middle-aged men free of vascular disease 88. 

The utility of serial CIMT as a means to evaluate the association of serum PCSK9 with 

progression of carotid plaque is limited. However, Xie et al. performed serial studies in 643 

Chinese healthy participants from the general population as part of the Chinese Multi-

provincial Cohort Study 89 and found a statistically significant relationship between plasma 

PCSK9 concentration and progression of atherosclerosis as reflected by total plaque area, 

independent of plasma LDL-C concentration.

The coronary artery calcium (CAC) score has also been utilized as a means to investigate the 

relationship of PCSK9 to coronary atherosclerosis. Alonso et al. evaluated 161 genetically 

confirmed FH patients who underwent CAC scoring 90 and found that serum PCSK9 

concentrations independently predicted the extent of CAC. Importantly, after full 
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adjustment, only PCSK9 and apolipoprotein(a) [apo(a)] remained predictive of CAC in this 

cohort of asymptomatic FH patients. Similarly, Zhao et al. evaluated the association of 

plasma PCSK9 concentrations and CAC in 403 untreated patients presenting with chest pain 

and found that PCSK9 was independently associated with CAC 91.

The relationship of circulating PCSK9 concentration to atherosclerosis has also been 

explored in the context of invasive diagnostic imaging as well. Cheng et al. utilized 

intravascular ultrasound (IVUS) virtual histology to evaluate the association of serum 

PCSK9 levels and necrotic core within coronary atherosclerotic lesions in subjects with 

known CAD confirmed at the time of angiography 92. The results demonstrated a direct 

linear relationship between plasma PCSK9 and the necrotic core fraction in coronary plaque. 

Importantly, this endpoint remained significant in all subgroups, independently of LDL-C 

levels and use of statins. These observational studies cannot provide insight into the 

directionality of the association; thus, many questions remain. Can plasma PCSK9 influence 

atherogenesis through direct effect on endothelial cells or by direct transit into the 

subendothelial space? Does PCSK9 production within the plaque ultimately influence 

plasma levels? Or, is the association of these two factors mediated through other pathways 

entirely?

Epidemiologic studies

Beyond evaluations of the relationship between PCSK9 and subclinical atherosclerosis, a 

number of clinical investigations have explored PCSK9 as a biomarker of atherosclerotic 

risk in both primary and secondary prevention. Four major studies in primary prevention 

examined this issue. In the FATE study, 1,527 middle aged firefighters who were free of 

vascular disease at baseline were followed longitudinally for a mean of 7.2 ± 1.7 years 88. 

While plasma PCSK9 concentration correlated with LDL-C, insulin, and triglyceride levels, 

it did not correlate with cardiovascular events. As a sub-analysis of the Women’s Health 

Study, Ridker et al. performed a nested case–control evaluation from a prospective cohort of 

28,000 initially healthy American women over the age of 45 years old and not on statin 

therapy 93. Plasma PCSK9 was measured at baseline among 358 cases (MI, ischemic stroke, 

CV death) and 358 controls matched for age, smoking, and hormone replacement therapy 

(women who remained free of cardiovascular disease during 17 years of follow-up). While 

there was a modest, positive association between PCSK9 level and apoB and triglycerides, 

no difference was seen in median PCSK9 concentrations in cases vs. controls (304.4 ng/mL 

vs. 299.7 ng/mL). Moreover, baseline apoB levels predicted incident cardiovascular events 

but baseline PCSK9 levels did not. Leander et al. prospectively evaluated 4,232 apparently 

healthy 60-year-old men and women living in Stockholm County to investigate the 

correlation between PCSK9 and future cardiovascular events (composite primary outcome of 

fatal or non-fatal MI, angina, chronic ischemic heart disease, sudden cardiac death, and fatal 

or non-fatal ischemic stroke) 94. During the 15 years of follow-up, the cumulative incidence 

of the primary outcome was 13%. Consistent with other studies, they noted a modest 

relationship between plasma PCSK9 and LDL-C (r=0.18, p<0.0001) and triglyceride levels 

(r=0.12, p<0.0001). Unlike the Ridker study, they observed a significant direct relationship 

between quartiles of PCSK9 concentration and incident cardiovascular events. However, 

incorporation of plasma PCSK9 levels into their clinical risk prediction model did not lead 
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to significant improvement in discrimination or net reclassification, metrics that relate to 

clinical utility. A provocative sub-analysis suggested that subjects with discordant PCSK9 

and LDL-C levels (i.e., high PCSK9 – low LDL-C) had the highest future hazard of the 

primary outcome, even compared to those with high PCSK9 – high LDL-C 94. More 

recently, Laugsand et al. evaluated the utility of PCSK9 as a circulating biomarker for 

prediction of incident MI in a nested case–control evaluation from a prospective cohort of a 

general population sample in Norway (1,488 cases vs. 3,1819 controls, 11.1 years of follow-

up) 95. Risk of MI was 47% higher in those subjects in the highest quartile of PCSK9 

relative to those in the lowest quartile after adjustment for age and sex. However, when 

adjusting for LDL-C, the relationship no longer remained significant.

Results from secondary prevention studies are equally non-definitive. Werner et al. 
prospectively tested whether fasting serum PCSK9 concentration predict cardiovascular 

events in 504 patients with stable coronary artery disease on background statin therapy with 

well-controlled LDL-C levels 96. Although serum PCSK9 levels predicted atherosclerotic 

events the association was lost when adjusting for fasting triglyceride levels. Similarly, Li et 
al. followed 616 Chinese subjects with stable coronary artery disease for 17 months to assess 

the relationship between PCSK9 levels and atherosclerotic cardiovascular disease 97. An 

association was found between PCSK9 concentrations and the severity of coronary artery 

disease by SYNTAX score. Additionally, at 17 months, cardiovascular event rates were 

higher in those with higher PCSK9 levels, though this relationship was noted only amongst 

those subjects who did not receive coronary revascularization. Finally, Gencer et al. 
evaluated this issue in an acute coronary syndrome (ACS) cohort. They assayed plasma 

PCSK9 in 2,030 individuals presenting with ACS and undergoing coronary angiography 98. 

Plasma PCSK9 levels correlated with measures of inflammation, lipid-lowering therapy, and 

the clinical onset of ACS, but did not predict mortality at one year.

Based on the above observational trials in primary and secondary prevention, no firm 

conclusions regarding plasma measures of PCSK9 as a predictor of future cardiovascular 

events can be drawn. On that basis, a number of systematic reviews and meta-analysis have 

been performed in the hopes of shedding further light on this relationship 99-101. In three 

meta-analyses, when PCSK9 concentration was considered as a categorical value, the 

highest category of PCSK9 was associated with cardiovascular outcomes. However, when 

treated as a continuous variable, disparate results emerge. Part of the challenge in evaluating 

this issue has to do with differences in study design, clinical outcomes, and measurement 

methods for PCSK9. Based on the available data, clinical measurement of plasma PCSK9 

for CVD risk prediction or for prognostic assessment is not recommended.

As discussed earlier in this review, experimental evidence demonstrates that PCSK9 is 

compartmentalized within the plasma, with approximately 40% of PCSK9 bound to LDL 

and lipoprotein(a) [Lp(a)] particles, and the remainder not associated with apoB-lipoproteins 
20, 21, 70, 102. Given the stoichiometry between LDL and PCSK9 in plasma, approximately 

only 1 LDL particle in every 500-1000 carries at least one molecule of PCSK9. If, as we 

speculate, LDL-bound PCSK9 is the biologically more active from, future analyses should 

evaluate the separate association of LDL-bound and free PCSK9 with atherosclerotic events. 

We are currently developing a practical and reproducible assay to quantify PCSK9 in its two 
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major compartments, which may elevate the status of plasma PCSK9 as a viable clinical 

biomarker.

Why would PCSK9 predict CVD independently of LDL?

While experimental work supports a critical role of PCSK9 in atherosclerosis, the value of 

circulating PCSK9 as a biomarker for ASCVD risk assessment in patients remains unclear. 

Since there is an inextricable link between PCSK9 and LDL-C, one would not necessarily 

expect plasma PCSK9 concentrations to predict risk above and beyond LDL-C unless 

PCSK9 has pleiotropic vascular effects.

Mendelian randomization analyses have demonstrated a common theme – genetic variants 

that are associated with lower LDL-C (including variants in PCSK9) also associate with a 

lower risk of ASCVD 103, 104. Furthermore, the magnitude of genetically mediated LDL-C 

reduction relates linearly to the magnitude of ASCVD risk reduction, irrespective of the 

gene under study 103, 105, 106. The results of these Mendelian randomization analyses are 

strikingly similar to those seen in randomized controlled clinical trials testing statins, 

ezetimibe, and, more recently, PCSK9 inhibitors 107. The major difference in genetically vs. 

pharmacologically mediated LDL-C lowering relates to a larger magnitude of risk reduction 

observed in the genetic analyses, given the lifetime exposure of lower LDL-C. If PCSK9, 

and its pharmacologic inhibition, manifest clinically important pleiotropic effects on 

atherosclerotic events beyond LDL-C lowering, there should be differences in the magnitude 

of CVD risk reduction in analyses of PCSK9 variants and in the randomized controlled trials 

testing PCSK9 inhibitors compared with other gene variants and drugs that target LDL-C 

lowering. However, the perfectly consistent linear relationship between magnitude of LDL-C 

reduction and magnitude of ASCVD risk reduction 108, irrespective of gene or drug, implies 

the theoretical pleiotropic effects of PCSK9 are likely not clinically significant.

Therapeutic approaches to inhibit PCSK9 and lower plasma lipids

LDL causes atherosclerosis

The importance of atherogenic lipoproteins as the central actors in the development of 

ASCVD is now readily accepted 109. The development and clinical testing of the statins with 

corresponding significant reductions in atherosclerotic events has been one of the great 

triumphs of medicine in the 20th century and has provided the key line of evidence in 

support of the “cholesterol hypothesis.” The Cholesterol Treatment Trialists’ Collaborators 

(CTTC) produced an authoritative meta-analysis that included >170,000 participants in 26 

randomized controlled trials testing statins. The bottom line: reducing LDL-C by 39 mg/dL 

yielded a 22% reduction in the risk of major vascular events and 10% reduction in all-cause 

mortality over 5 years and independently of baseline LDL-C 108. Despite the outstanding 

efficacy of the statins, we must recognize that two thirds of the expected ASCVD events in 

statin-treated patients cannot be prevented. In addition, additional LDL-C cholesterol 

lowering interventions are needed for patients who cannot tolerate statin therapy or fail to 

attain adequate LDL-C lowering.
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The IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) 

study demonstrated that the addition of ezetimibe, a cholesterol absorption inhibitor, on top 

of simvastatin to patients right after an acute coronary event provided a statistically 

significant, though clinically modest additional 2% absolute risk reduction in major adverse 

cardiovascular events, without a change in mortality 110. Interestingly, this incremental event 

reduction is precisely what the CTTC meta-analysis regression line predicts, e.g., the 

magnitude of LDL-C reduction is directly and linearly related to the magnitude of event 

reduction. The results of IMPROVE-IT suggest that statins are not unique in their ability to 

reduce ASCVD events, and that LDL-C lowering is the reason for improved outcomes. The 

results of this trial also undid the notion of statin exceptionalism, provided the basis to 

pursue development of additional LDL-C lowering agents, and ushered in the era of PCSK9 

inhibitors 111.

The action of PCSK9 on LDLR can be antagonized in different ways, to include monoclonal 

antibodies (mAbs), small interfering RNAs (siRNA), antisense oligonucleotides (ASO), 

adnectins, mimetic peptides, and vaccination strategies. While small molecule inhibitors 

typically are the favored first approach, their development has been challenging given the 

flat–surface interaction between PCSK9 and LDLR 112. Thus far, targeting plasma 

(extracellular) PCSK9 with mAbs is the farthest along with two different fully human mAbs 

approved for clinical use by regulatory agencies around the world.

Therapeutic monoclonal antibodies

Since 2012, many clinical trials have been performed to evaluate the LDL-C lowering 

efficacy of anti-PCSK9 monoclonal antibodies in subjects with different levels of CVD risk, 

alone or combination therapy (statin or ezetimibe), in statin-intolerant patients, and in both 

heterozygous (HeFH) and homozygous (HoFH) familial hypercholesterolemia. The mAbs 

have consistently demonstrated remarkable efficacy in reducing LDL-C (≈50% as 

monotherapy and ≈70% reduction in combination with a statin) with a good short-term 

safety and tolerability profile 113. Thus far, three mAbs to PCSK9 (PCSK9 inhibitors) have 

been tested, with two of them (alirocumab and evolocumab) approved by the U.S. FDA for 

the management of patients with either FH or ASCVD who require additional LDL-C 

lowering as an adjunct to diet and maximally tolerated statin therapy. Alirocumab and 

evolocumab are fully human antibodies and have been in the US market now for nearly 3 

years, whereas the third (bococizumab, now abandoned)) was a humanized antibody which 

retains ~3% of murine protein sequence and for this reason induced immune responses 

limiting its effectiveness (neutralizing antibodies, discussed below) 114. It is interesting to 

note that the FDA approved the two fully human mAbs (alirocumab and evolocumab) on the 

basis of their LDL-C lowering efficacy, prior to the results of randomized controlled 

cardiovascular outcome trials.

As discussed earlier, the measurement of total plasma PCSK9 concentration is not likely to 

be useful in risk prediction models. However, we recently proposed that measurement of 

total plasma PCSK9 levels in patients on PCSK9 inhibitor therapy may become useful as a 

diagnostic tool 115. We demonstrated that patients treated with PCSK9 mAb exhibit an ~7-

fold increase in total plasma PCSK9 levels relative to pretreatment levels. The change in 
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total plasma PCSK9 levels is likely due to delayed clearance of the antibody-PCSK9 

complex from the circulation and/or due to an increase in hepatic PCSK9 production, though 

it is not clear at present which of these mechanisms is quantitatively more important. From a 

clinical perspective, the change in plasma PCSK9 levels can be used to confirm adherence to 

therapy and/or optimal injection technique in patients that do not show the expected LDL-C 

lowering response to PCSK9 inhibitor therapy.

Silencing RNA

Whereas mAbs targeting PCSK9 only antagonize plasma PCSK9, siRNA interferes with its 

intracellular production, e.g., the translation of PCSK9 mRNA to protein. The siRNA 

selectively and catalytically silences the translation of their complementary target mRNA in 

a sequence-specific manner through the formation of effector RNA induced silencing 

complexes 116, 117. A phase I trial of the siRNA against PCSK9 named inclisiran, revealed 

similar LDL-C lowering efficacy as the PCSK9 mAbs 118. Interestingly, while the mAbs are 

dosed every two weeks (or once a month at a larger dose), inclisiran has a more durable 

effect with sustained lowering of LDL-C by an average of 53% and up to 81% at day 180, 

with a time-adjusted mean of greater than 50% through day 270 after a single injection. The 

phase II trial of inclisiran, ORION-1 (Trial to Evaluate the Effect of ALN-PCSSC Treatment 

on Low Density Lipoprotein Cholesterol) enrolled 501 subjects at high ASCVD risk with 

hypercholesterolemia despite maximally tolerated statin therapy 119. Subjects randomized to 

inclisiran sustained dose-dependent reductions in PCSK9 and LDL-C levels. LDL-C was 

reduced to the greatest extent (53%) in those who received the highest dose (two 300-mg 

injections) regimen of inclisiran. Changes in other plasma lipids and lipoproteins (including 

Lp(a) levels) with inclisiran were also similar to those seen with the anti-PCSK9 monoclonal 

antibodies.

Inclisiran distinguishes itself from mAbs to PCSK9 in several major ways. First, its extended 

duration of action may hold significant advantages. Should this sustained LDL-C lowering 

efficacy be realized, leveraging this therapeutic approach to PCSK9 inhibition may also help 

overcome issues related to medication adherence. Second, whereas the mAbs block only 

plasma PCSK9, the siRNA approach also reduces hepatocellular levels of PCSK9. Whether 

this intracellular approach has additional effects remains to be determined. Third, the 

lowering of plasma PCSK9 with siRNA truly reflects reduced levels of the circulating 

protein, which is similar to that seem in some PCSK9 LOF, whereas mAbs cause a 

significant accumulation of PCSK9 bound to the antibody 115. Fourth, the siRNA approach 

does not affect extrahepatic production of PCSK9 120, and thus the concentration of PCSK9 

in the atheroma will be higher than for subjects treated with mAbs. Phase III studies with 

inclisiran are planned.

Vaccination

Vaccination represents an orthogonal approach to PCSK9 inhibition. A vaccine, AT04A, is 

in development as an agent to induce an antibody response to PCSK9 121. In one study, 

APOE*3Leiden/CETP mice vaccinated with AT04A developed elevated and persistent levels 

of antibody against PCSK9, with marked reductions in plasma total (-53%, p<0.001) and 

LDL-C levels compared with controls 121. Additionally, biochemical measures of 
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inflammation were significantly reduced in vaccinated animals. Total atherosclerotic lesion 

area was reduced by 64% (p=0.004). Interestingly, antibody concentrations remained high at 

the end of the study, which may translate to continued reductions in atherogenic lipoprotein 

concentrations for some time afterwards, resulting in a long-lasting effect. A phase I study 

with AT04A is ongoing (NCT02508896).

More recently, another group has developed a virus like particle – PCSK9 (PCSK9Qβ-003) 

vaccine and tested it in both Balb/c mice and LDLR+/− mice 122. Vaccination resulted in 

significant reductions in total cholesterol and plasma PCSK9 expression. Additionally, the 

injected animals were found to have significant up-regulation of hepatic LDLR, SREBP-2, 

hepatocyte nuclear factor 1α, and HMG CoA-R. Positive developments in this area may lead 

to a viable approach to immunize humans against PCSK9, hindering the development of 

hypercholesterolemia and atherosclerosis. If the vaccination approach pans out, it could 

prove more affordable than mAbs, especially because the vaccine would be given once per 

year, versus once or twice a month. In addition, the vaccination strategy would have the 

advantage of use in younger patients, and the possibility of truly preventing atheroma 

formation rather than stabilizing preexisting plaques. The value of life-long exposure to low 

cholesterol has been proven over and over in natural randomization studies 103, 104.

Beyond these approaches to therapeutic antagonism of PCSK9, other novel methods are 

being pursued. Recently, a novel targetable pocket in the catalytic subunit of PCSK9 was 

identified. This structural identification may allow development of oral small molecule 

inhibitors to antagonize the action of PCSK9 123, 124. There is also interest in pursuing in 
vivo based editing of PCSK9 using CRISPR/Cas9 125, another approach that could have an 

application in younger subjects for true primary prevention purposes.

PCSK9 inhibition: Effects on other lipid parameters

Lipoprotein(a)

Lp(a) is an atherogenic LDL-like particle with its apoB covalently bound to apo(a) by a 

disulfide bond. Its plasma levels are largely genetically determined 126. Observational and 

genetic epidemiology data provide compelling evidence that Lp(a) has a causal role in 

atherosclerosis 127. The regulation of its production and clearance is poorly understood, and 

no effective targeted therapies exist. Interestingly, PCSK9 inhibitors have demonstrated 

unexpected reductions in Lp(a), on the order of 25-30% 128, 129. While the potent reduction 

in LDL-C achieved by PCSK9 inhibition is mediated through its profound effect on LDLR 

preservation, the mechanism by which they lower Lp(a) is unknown. Some suggest that the 

Lp(a) reduction achieved with PCSK9 inhibition is also secondary to the profound increase 

in LDLR expression, though that notion poses substantial challenges, as: 1) Lp(a) is not an 

avid ligand for the LDLR 130; 2) Lp(a) metabolism in FH subjects is similar to that non-FH 

subjects 131; 3) Lp(a) levels do not change with statin treatment, which also upregulates 

LDLR 132; 4) PCSK9 inhibition in two subjects with homozygous LDLR-null FH lowered 

Lp(a) but failed to reduce LDL-C levels 133; 5) loss-of-function PCSK9 mutation carriers do 

not demonstrate significantly different Lp(a) levels compared to controls 3, 134, 135; and 6) 

epidemiological studies do not consistently demonstrate a correlation between plasma 

PCSK9 and Lp(a) concentrations 84, 90, 93, 94, 136. On average, the lowering effect of PCSK9 
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inhibitors on Lp(a) is about half of that on LDL-C. The modest correlation between LDL-C 

and Lp(a) lowering with PCSK9 inhibition is tempered by significant discordance in the 

reduction of these two lipid fractions in approximately 40% of treated individuals, who show 

a robust LDL-C with minimal Lp(a) response 137. This observation suggests that PCSK9 

inhibition activates alternative mechanisms beyond the LDLR and that additional factors 

ultimately determine the degree to which Lp(a) levels are reduced. It is likely that Lp(a) 

binds to and is cleared by the LDLR, at least to some extent, as its lowering by PCSK9 

inhibitors is inversely related to plasma LDL-C levels 130. Additionally, Lp(a) clearance may 

also be determined by the length of the apo(a) isoform. It is possible that some Lp(a) 

isoforms may be cleared through LRP1 138 or CD36 139, two receptors that are also 

influenced by PCSK9 inhibition 73, 76. Other data suggest that PCSK9 does not affect Lp(a) 

catabolism, but rather enhances apo(a) secretion and Lp(a) assembly through unknown 

mechanisms 140. Potential mechanisms underlying the impact of PCSK9 inhibition on 

plasma Lp(a) concentration are summarized in Figure 3.

Triglyceride-Rich Lipoproteins

Studies suggest a role for PCSK9 in triglyceride-rich lipoprotein (TRL) metabolism through 

LDLR-mediated clearance and possibly through an effect on hepatic and intestinal apoB-

lipoprotein production 66, 141, 142. Animal models have shown both LDLR-dependent and 

independent roles for PCSK9 on TRL metabolism in the liver 143, 144 and small intestine 
145, 146, while individuals with the GOF PCSK9 mutation S127R have a three-fold elevation 

in apoB100 production rates compared with noncarriers 147. However, the effect of PCSK9 

inhibition on plasma triglyceride levels is not clear, as most studies only show a modest 

reduction that does not always reach statistical significance 148-152. Although the absolute 

changes in triglyceride levels are similar to what is seen with statin therapy (average 

reduction of ~15%), the effect of PCSK9 inhibition on triglyceride levels is dwarfed by its 

impact on LDL-C reduction. Metabolic studies in humans have failed to demonstrate an 

effect of PCSK9 inhibition on VLDL-apoB and VLDL-triglyceride production rate but show 

an increased fractional catabolic rate for both VLDL-apoB and VLDL-triglycerides, 

suggesting that PCSK9 does not impact TRL production but only its clearance 153. PCSK9 

inhibition also did not influence post-prandial triglyceride or apoB48 levels, consistent with 

the notion that PCSK9 is not directly involved in TRL production in the small intestine in 

humans 153.

High-Density Lipoprotein

Studies in mice support a direct relationship between high-density lipoprotein (HDL)-

cholesterol (HDL-C) levels, as deletion of the PCSK9 gene 154, injection of PCSK9 blocking 

antibodies 155, or administration of antisense oligonucleotides against PCSK9 156 all led to 

reductions in HDL-C levels by 30%-50%. In contrast, PCSK9 transgenic animals exhibit a 

mild increase in HDL-C levels 20. In contrast, clinical trials with PCSK9 inhibitors 

demonstrate a modest (<10%) increase in HDL-C and apoAI levels 157. The absolutes 

changes in HDL-C levels are similar to what is observed after treatment with statins 158. A 

critical difference from humans is that HDL in mice is rich in apoE, which makes it a good 

target for LDLR-mediated clearance. Thus, the effect of PCSK9 on HDL-C metabolism in 

mice is directly linked to the effect of PCSK9 on the LDLR. To date, there is no clear 
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evidence that PCSK9 directly effects HDL production or clearance in humans. One 

possibility is that the rapid clearance of LDL due to PCSK9 impairs the CETP-mediated 

cholesterol exchange between HDL and LDL, leading to modestly increased HDL-C levels.

PCSK9 inhibition: Clinical Outcome studies

Cardiovascular outcomes

Prior to the results of the first dedicated randomized controlled cardiovascular outcome trial 

with PCSK9 inhibition, there were post-hoc analyses of the alirocumab and evolocumab 

clinical trial programs that suggested that these drugs may be of significant benefit for 

cardiovascular event reduction. The OSLER (Open-Label Study of Long-Term Evaluation 

Against LDL Cholesterol) trial examined the long-term effects of evolocumab as an 

extension of the open-label, randomized controlled OSLER 1 and 2 trials and included 4,465 

patients 159. The majority of patients (~80%) had other cardiovascular risk factors including 

hypertension, diabetes, metabolic syndrome, current cigarette use, or family history of 

premature coronary artery disease or of inherited hypercholesterolemia. The baseline LDL-C 

of 120 mg/dL was reduced by 61% to a mean of 48 mg/dL. In this post-hoc analysis, the 

incidence of cardiovascular events (death, MI, unstable angina requiring hospitalization, 

coronary revascularization, stroke, transient ischemic attack, and heart failure requiring 

hospitalization) occurred in 1% of the evolocumab group versus 2% of the standard therapy 

group (HR 0.47, p = 0.0003).

A similar investigation of the long-term safety, tolerability, and efficacy of alirocumab vs. 

placebo was conducted in patients at high cardiovascular risk from the ODYSSEY LONG 

TERM Study of 2,341 subjects. LDL-C levels were reduced by 61% in the alirocumab group 

to a mean of 48 mg/dL compared to an increase of 0.8% in the placebo group. The post-hoc 

analysis of cardiovascular events (composite of death from coronary heart disease, nonfatal 

MI, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization) again 

demonstrated much lower rates with alirocumab than with placebo (1.7% vs. 3.3%, HR 0.52, 

p = 0.02) 160. It is important to realize that these studies contained few events and were not 

adequately powered to address cardiovascular outcomes. Regardless, many predicted that the 

PCSK9 mAbs would yield extraordinary outcomes in the dedicated randomized controlled 

trials given the magnitude and consistency of suggested cardiovascular benefit from these 

two post-hoc analyses.

In the meantime, Ference et al. performed a Mendelian randomization analysis in an attempt 

to predict the results of the randomized controlled cardiovascular outcomes trials 104. The 

investigators used data from 112,772 individuals from 14 studies, with 14,120 

cardiovascular events and 10,635 cases of diabetes, to categorize individuals based on 

inheritance of the number of LDL–lowering alleles, either variants in the genes encoding 

PCSK9 and/or HMG CoA reductase (HMGCR), the target of statins. Long-term exposure to 

either PCSK9 variants or HMGCR variants was associated with a remarkably similar 

reduction in risk of cardiovascular events per unit reduction in LDL cholesterol (by 19% per 

10 mg/dl decrease in LDL-C). In combination, the effects of these variants were additive.
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Moreover, a detailed atherosclerosis imaging study reported on the impact of evolocumab on 

coronary plaque utilizing IVUS. Prior IVUS trials demonstrated statistically significant 

reductions in percent atheroma volume in individuals who were started on high-intensity 

statin therapy and achieved LDL-C levels <70 mg/dL 161. It was not clear if further lowering 

of LDL-C with PCSK9 inhibition might have more profound effects on plaque regression. 

The GLAGOV (Global Assessment of Plaque Regression With a PCSK9 Antibody as 

Measured by Intravascular Ultrasound) trial evaluated changes in coronary atherosclerosis 

using serial IVUS evaluations in subjects taking statins or statins plus evolocumab 152. 

Patients with angiographic coronary artery disease on baseline statin therapy were 

randomized to monthly evolocumab (n=484) or placebo (n=484). A greater decrease in 

percent atheroma volume (1% difference) at 76 weeks was seen among those who received 

evolocumab. Furthermore, more patients on evolocumab than on statin experienced plaque 

regression (64.3% vs. 47.3%; p<0.001). Several questions remained after GLAGOV; (1) will 

incremental plaque regression be associated with incremental cardiovascular event reduction 

as the prior statin monotherapy trials demonstrated, (2) if lowering LDL-C to unprecedented 

levels only regresses atheroma volume by 1%, have we reached the limits of what can be 

achieved by dramatic LDL-C lowering, and more fundamentally, (3) if attaining extreme 

hypocholesterolemia does not dramatically alter plaque, what other orthogonal approaches 

to ASCVD risk reduction need to be considered?

The FOURIER trial was the first of the randomized controlled cardiovascular outcomes 

trials with a PCSK9 inhibitor, evolocumab 107. The investigators randomized 27,564 patients 

with established ASCVD on optimized statin therapy to either evolocumab or placebo and 

monitored the rate of major cardiovascular events (cardiovascular death, MI, stroke, 

hospitalization for unstable angina, or coronary revascularization in the primary outcome 

measure). At 48 weeks, evolocumab therapy was associated with a 59% reduction in LDL-C 

from a median baseline of 92 mg/dL to 30 mg/dL. At a median follow-up of 26 months, 

evolocumab was associated with an absolute 1.5% reduction in the primary outcome, driven 

primarily by reductions in nonfatal MI, stroke, and revascularization. Effects of evolocumab 

were consistent regardless of baseline LDL-C level or intensity of background statin use. 

Evolocumab therapy, with its associated intense LDL-C reduction, did not decrease 

mortality, though the event curves between the evolocumab and placebo groups were still 

diverging at the time of trial termination. While there was no overall or cardiovascular-

specific mortality benefit with evolocumab, death from cardiovascular disease was 

remarkably low (< 2%) in both groups. Interestingly, the 7-year IMPROVE-IT trial of 

ezetimibe added to statin therapy also did not show a reduction in mortality 110. Other than a 

modest 2% incidence in injection-site reactions (which led to no excess drug 

discontinuations vs. placebo), there was no increase in key adverse events including new-

onset diabetes or neurocognitive effects in patients receiving evolocumab despite the 

dramatic LDL-C reduction.

Did FOURIER underperform or were the post-hoc analyses that preceded it simply way off? 

The landmark analysis presented in FOURIER demonstrated event reductions similar to 

those reported in years 0–2 of prior statin trials 162. An enthusiastic interpretation suggests 

that longer duration of therapy should be associated with greater reduction in major adverse 

cardiovascular events and perhaps a corresponding mortality reduction. Given the significant 
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cost of PCSK9 inhibitors and lack of established mortality benefit, their routine addition to 

standard-of-care statin therapy in patients with established ASCVD has thus far been 

reserved for those perceived to be at particularly high risk for cardiovascular events.

Subsequent analyses from FOURIER have been encouraging. One investigation assessed the 

efficacy and safety of evolocumab according to degree of LDL-C reduction at one month 
163. The primary composite outcome declined steadily as LDL-C levels decreased, with no 

association between LDL-C level and adverse events. A similar reduction was observed in 

the key secondary endpoint, with 2,669 subjects in the lowest LDL-C category (<20 mg/dL) 

at 4 weeks experiencing the lowest rate for cardiovascular death, or MI (adjusted hazard 

ratio 0.69, 95% CI 0.56-0.85, P=0.0001) compared to the group with highest LDL-C (>100 

mg/dL). Exploratory analyses in a subgroup of 504 patients with an LDL-C <10 mg/dL 

showed even further reduction in cardiovascular events with no increase in safety events. 

While it remains to be seen if prolonged treatment with a PCSK9 inhibitor with profound 

LDL-C lowering results in mortality benefit, at the very least this therapeutic approach and 

iatrogenic extreme hypocholesterolemia appear to be safe. In another FOURIER analysis 

that evaluated 22,351 subjects with a history of prior MI, those with recent MI, multiple 

prior MIs, and residual multi-vessel coronary artery disease had 34-90% greater risk for 

vascular events and enjoyed the greatest benefit from PCSK9 inhibition (absolute risk 

reduction of 2.6-3.4% over three years). 164. Given expense and barriers to access, this data 

may help to define appropriate allocation of PCSK9 inhibitors to those with established, 

high-risk ASCVD. Lastly, the FOURIER investigators evaluated the impact of evolocumab 

in patients with peripheral arterial disease (PAD) 165. This analysis of 3,642 patients with 

PAD demonstrated that evolocumab significantly reduced the primary composite endpoint. 

Evolocumab reduced the primary endpoint consistently in patients both with and without 

PAD, but the drop was numerically greater in the PAD patients. In patients with PAD the 

absolute risk reduction on evolocumab versus placebo was 3.5% (vs. 1.5% in the main 

FOURIER analysis) yielding an attractive number-needed-to-treat (NNT=29) over 2.5 years. 

In the no-PAD group, the absolute risk reduction was only 1.4%, for an NNT of 72. 

Interestingly, evolocumab also reduced the risk of major adverse limb events in all patients 

compared with placebo (HR 0.58; 95% CI 0.38-0.88), with consistent effects for those with 

and without PAD.

Bococizumab is the other PCSK9 mAb that has been evaluated in a randomized controlled 

cardiovascular outcome trials. In the SPIRE (Studies of PCSK9 Inhibition and the Reduction 

of vascular Events) trials, participants were randomly assigned to receive either 

bococizumab 150 mg subcutaneously every 2 weeks or placebo. The SPIRE program 

included six parallel, multinational studies designed to assess the variability and durability 

of the LDL-C-lowering efficacy of bococizumab and two dedicated cardiovascular outcome 

trials 114, 166. The lipid-lowering trials included 4,300 patients on background statin therapy 

who were followed up for 1 year. At 12 weeks, bococizumab treatment was associated with 

a reduction in LDL-C levels of 55% relative to placebo. However, treatment with 

bococizumab often led to the development of antidrug antibodies and specific neutralizing 

antibodies, which attenuated the LDL-C-lowering response (48% and 29% of patients at 1 

year, respectively) 166. In those who developed higher neutralizing antibody titers (upper 

tertile and top decile, respectively) in response to bococizumab, LDL-C concentration 
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decreased by only 31% and 12% from baseline. Not surprisingly, given its immunogenicity, 

bococizumab was also associated with significantly higher rates of injection-site reactions 

than placebo (10.4% versus 1.3%; P < 0.001).

The two dedicated CVOT in the SPIRE program included a total of 27,438 patients at high 

risk of ASCVD (93% receiving background statin therapy) and who had either a previous 

cardiovascular event or history of diabetes mellitus, chronic kidney disease, PAD, or familial 

hypercholesterolemia (high-risk, primary prevention cohort) 167. The primary end point 

included nonfatal MI, nonfatal stroke, hospitalization for unstable angina requiring urgent 

revascularization, and cardiovascular death. The studies had a very short duration due the 

decision of the manufacturer to abandon the development of the drug. In the combined trials, 

those receiving bococizumab achieved the anticipated 56% mean reduction in LDL-C levels 
114. In the lower-risk subject SPIRE-1 trial (baseline LDL-C ≥70 mg/dl; median follow-up 7 

months), bococizumab did not reduce the incidence of the primary composite end point 

compared with placebo. In contrast, in the higher-risk subject SPIRE-2 trial (baseline LDL-

C ≥100 mg/dl; median follow-up 12 months), the rate of major cardiovascular events was 

significantly lowered by bococizumab (HR 0.79, 95% CI 0.65–0.97, P = 0.02). When the 

SPIRE-1 and SPIRE-2 data were pooled, the incidence of the composite primary end point 

was not significantly different between groups (median follow-up 10 months), although 

patients with the largest percent reduction in LDL-C levels had a 25% decrease in events 

(HR 0.75, 95% CI 0.61–0.92, P = 0.006), and those who had longer treatment duration 

(mean 13.6 months) had a 17% reduction in events (HR 0.83, 95% CI 0.70–0.98, P = 0.03).

Most recently, the ODYSSEY OUTCOMES trial was presented at the American College of 

Cardiology Meeting (Presented by Dr. Philippe Steg at the American College of Cardiology 

Annual Scientific Session (ACC 2018), Orlando, FL, March 10, 2018.). ODYSSEY 

OUTCOMES enrolled 18,924 subjects within 1-12 months after an index ACS after a run-in 

phase of 2-16 weeks on high intensity statin therapy. Individuals who demonstrated LDL-C 

≥70 mg/dL (or non-HDL-C ≥100 mg/dL or ApoB ≥80 mg/dL) despite high-intensity therapy 

were randomized to alirocumab every 2 weeks or placebo. Alirocumab was titrated between 

75 and 50 mg to target an LDL-C between 25-50 mg/dL, but above 15 mg/dL. The primary 

outcome was a composite endpoint including coronary heart disease death, MI, ischemic 

stroke, or unstable angina. Treatment with alirocumab (on-treatment analysis) was 

associated with a 54.7% reduction in LDL-C and an absolute risk reduction in the primary 

endpoint of 1.6%. Of note, alirocumab was discontinued in almost 8% of the treatment 

group due to two consecutive LDL-C measurements below the prespecified threshold of 15 

mg/dL. Several of the secondary outcomes favored treatment with alirocumab, though total 

mortality is to be considered only nominally significant given that the two proximal 

endpoints in the hierarchical analysis did not reach statistical significance. Nevertheless, the 

signal suggesting a reduction in total mortality is reassuring given that the opposite was 

noted in the FOURIER trial.

The three dedicated cardiovascular outcomes trials with therapeutic monoclonal antibodies 

targeting PCSK9 have taught us much about what can be expected from the provision of 

therapeutic monoclonal antibodies to high risk patients. First, the type of antibody used to 

inhibit PCSK9 matters greatly. Humanized antibodies against PCSK9 are immunogenic and 
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are associated with injection-site reactions, the development of neutralizing antibodies, and 

an attenuated LDL-C lowering effect. Second, consistent with the ‘lower is better for longer’ 

hypothesis, clinical benefits with bococizumab were greater and significant only for those 

patients who achieved and sustained large reductions in LDL-C. Third, while FOURIER 

pushed this hypothesis to ‘lowest-is-best’, the overall cardiovascular risk reduction afforded 

by the 60% reduction in LDL-C with evolocumab was modest. Fourth, and not surprisingly, 

the magnitude of absolute benefit is greatest amongst the highest risk patients and 

maximized with longer exposure to drug.

Even when considering the PCSK9 monoclonal antibodies in the most positive light, 

questions remain with regards to the cost-effectiveness of this therapeutic approach. 

Extrapolation of the clinical trial results reveals a NNT of 74 for 2 years of treatment in 

FOURIER and NNT of 64 over the duration of ODYSSEY Outcomes. Is this tenable for a 

drug that is priced at ~$14,000 per year, or almost $1,000,000 to prevent one event? This 

question is at the center of a debate amongst all stakeholders and remains unresolved.

Safety outcomes

In early 2014, the FDA directed developers of PCSK9 inhibitors to monitor neurocognitive 

adverse effects given concerns over putative cognitive impairment due to extreme LDL-C 

lowering. EBBINGHAUS (Evaluating PCSK9 Binding Antibody influence on Cognitive 

Health in High Cardiovascular Risk Subjects), a substudy of FOURIER, evaluated 

longitudinal neurocognitive changes in patients receiving a combination of evolocumab plus 

statin vs. statin alone 168. Before that, a Mendelian randomization study evaluated the 

association between low LDL-C and risk of dementia using genetic variation in HMGCR 
and PCSK9 as instrumental variables 127, and found no increased risk of dementia, 

Parkinson’s disease, or epilepsy. More recently an analysis from REGARDS (The Reasons 

for Geographic and Racial Differences in Stroke) study recapitulated these findings. The 

investigators evaluated the association between PCSK9 LOF variants and neurocognitive 

impairment and decline among participants in REGARDS in study participants with (n=241) 

and without (n=10,454) C697X or Y142X LOF variants of PCSK9, using a comprehensive 

battery of neurocognitive tests. They found no differences in neurocognitive decline between 

the two groups, again suggesting that life-long exposure to low LDL-C is not associated with 

cognitive dysfunction 169.

In EBBINGHAUS, a total of 1,204 patients with both baseline and follow-up cognitive 

testing were evaluated 159. Patient baseline characteristics were consistent with those 

enrolled in FOURIER, with a mean age of 63 years, 72% male and 20% with a prior stroke. 

Cognitive function was assessed using a standardized, well-validated computer tablet-based 

testing platform (Cambridge Neuropsychological Test Automated Battery, or CANTAB), 

which evaluates spatial working memory strategy index of executive function (primary 

endpoint), as well as other memory assessments, including survey of everyday cognition and 

investigator-initiated reports of neurocognitive adverse effects. Over a median follow-up of 

19.8 months, there was no difference between patients in the evolocumab or placebo 

treatment groups, with respect to either primary or secondary endpoints. There was also no 

Shapiro et al. Page 19

Circ Res. Author manuscript; available in PMC 2019 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evidence to suggest differences in cognitive tests in patients attaining very low LDL 

cholesterol levels, including those with levels <25 mg/dL.

More recently, a group of investigators assessed the incidence of adverse neurocognitive 

adverse events amongst participants from fourteen phase II and III trials testing alirocumab 
170. Neurocognitive events were reported by 22 (0.9%) alirocumab-treated patients vs. 9 

(0.7%) with placebo in placebo-controlled trials [hazard ratio (HR) 1.24, 95% confidence 

interval (CI) 0.57–2.68] and 10 (1.2%) with alirocumab vs. 8 (1.3%) with ezetimibe in 

ezetimibe-controlled trials (HR 0.81, 95% CI 0.32–2.08). Rates of neurocognitive events 

were similar in patients with LDL-C levels <25 mg/dL (n = 5/839; 0.6%; 0.5/100 patient-

years) vs. ≥25 mg/dL (n = 26/2501; 1.0%; 0.8/100 patient-years).

Of course, the last word has not been spoken on this issue. What are the consequences of 

longer-term therapeutic reductions in LDL-C? Besides the informative genetic analyses, it is 

important to bear in mind that these PCSK9 mAbs do not cross the blood brain barrier and 

thus are unlikely to be associated with direct adverse effects on the central nervous system, 

whose lipid homeostasis is under separate regulation from the systemic one.

Another theoretical complication of PCSK9 inhibitor induced hypocholesterolemia is 

diabetes. The concern of drug induced diabetes stems from multiple lines of evidence that 

demonstrate that statins are associated with a modest risk of new-onset hyperglycemia, 

especially in patients susceptible to develop diabetes by standard markers 171-173. While this 

observation has been fairly consistent across trials, the mechanisms at play have not been 

elucidated. Clinical trials of PCSK9 inhibitors did not show a signal for new-onset diabetes, 

though these studies are of short duration 174, 175. Two Mendelian randomization analyses 

provide insight on this issue as well. In one, LOF variants of PCSK9 and HMGCR were 

associated with increased risk of diabetes (11% and 13%, respectively) 104. In another, using 

data from more than 550,000 individuals and 51,623 type 2 diabetics, long-term exposure to 

LOF variants of PCSK9 associated with lower LDL-C and higher fasting glucose 

concentration and waist-to-hip ratio, and increased risk of type 2 diabetes (odds ratio 1.29, 

95% CI 1.11 to 1.50) 176. Both of these Mendelian randomization studies therefore suggest 

that, like statins, long-term treatment with a PCSK9 inhibitor may predispose vulnerable 

patients to increased risk of type 2 diabetes. Again, the mechanism that underpins these 

observations is unknown, though if this relationship is real, it may be related to upregulation 

of the LDLR with increased lipid uptake by the pancreatic beta-cell. Although the 

FOURIER trial did not demonstrate an excess of diabetes in those treated with evolocumab 
107, the median duration of therapy was just over two years. It remains to be seen whether 

the Mendelian randomization analyses or the clinical trials with PCSK9 inhibitors correctly 

forecast the association between PCSK9 efficiency and diabetes.

Cost, cost-effectiveness, and barriers to access

The issue that has been at the center of the PCSK9 inhibitor debate relates to their cost and 

cost-effectiveness. With a wholesale acquisition cost of ~$14,000 and only modest 

reductions in non-fatal atherosclerotic events, stakeholders have wrestled with appropriate 

allocation and regulations to restrict and target access to these therapies. From the time that 
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PCSK9 mAbs received regulatory approval, payers have placed hurdles in front of patients 

and providers. A recent analysis identified five notable features of the prior authorization 

(PA) requirements for PCSK9 inhibitors, including: 1) a requirement to submit medical 

records along with PA forms; 2) requirements for data that may be challenging for providers 

to access (eg, adherence measures typically calculated from pharmacy claims, off-treatment 

LDL-C levels that may not be available); 3) restriction of approval to specialty prescribers 

(cardiologists, endocrinologists, lipidologists); 4) requirement for genetic testing even 

though the same insurers will not cover the cost of testing; and 5) requirement to try multiple 

lipid-lowering regimens 177.

Of course, the restricted access to PCSK9 inhibitors is a complicated issue. Several cost-

effectiveness analyses with these agents have been performed and demonstrate disparate 

results based on different modeling assumptions, though they all found that these drugs are 

not cost-effective at their current price 178-180. Clearly on the basis of these analyses, the 

economic proposition of the therapeutic mAbs is not viable, unless only the highest risk 

patients are allocated to therapy. It remains to be seen whether other approaches to PCSK9 

inhibition associated with longer duration of effect, such as siRNA and vaccination, may be 

more cost-effective.

Such barriers to access can be insurmountable for the many providers that do not have the 

resources to challenge an unjustified denial. In that regard, we recently presented the concept 

of the “PCSK9 Inhibitor Clinic”, a new model that streamlines and coordinates care delivery 

in an effort to improve approval/access to therapy 181. Now, with over 300 patients on 

therapy, our rate of approval for the PCSK9 mAbs exceeds 97%. This success is due to a 

combination of appropriate patient selection and a comprehensive, efficient, and consistent 

approach to the PA and appeal processes. While this model is successful, it may not be 

scalable, especially in community practices. Clearly, larger efforts led by the American 

Heart Association and the American College of Cardiology are necessary to engender policy 

change at the national level.

Conclusion

The discovery of PCSK9 has ushered in an exciting new era for cholesterol management and 

CVD risk reduction. Fundamental biological insights have provided a far clearer 

understanding of lipoprotein metabolism. Based on these understandings, we are no longer 

limited to the previously held view that cholesterol homeostasis is an intracellular affair, but 

rather appreciate a model whereby a secreted plasma protein, whose action can be easily 

inhibited, renders dominant control over lipoprotein metabolism. These findings have been 

translated into newly approved therapies, PCSK9 mAbs that dramatically reduce LDL-C and 

incrementally reduce atherosclerotic cardiovascular events, with additional therapeutic 

antagonists of PCSK9 likely on the way. The excitement surrounding the science and 

unprecedented efficiency in drug development is tempered by the practical realities of cost-

effectiveness and barriers to access - issues that must be resolved if the PCSK9 story is to 

reach its full potential. Given the prospect of PCSK9 modulators to dramatically alter 

approaches to cardiovascular disease prevention, all stakeholders (scientists, clinicians, 

guideline committees, payers, and patient advocacy groups) must work together to ensure 
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that therapies targeting PCSK9 are appropriately evaluated, endorsed, allocated, and 

reimbursed.
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Abbreviations

PCSK9 proprotein convertase subtilisin/kexin type 9

LDL low-density lipoprotein

LDLR low-density lipoprotein receptor

FH familial hypercholesterolemia

HeFH heterozygous familial hypercholesterolemia

HoFH homozygous familial hypercholesterolemia

GOF gain of function

LOF loss of function

ASCVD atherosclerotic cardiovascular disease

MI myocardial infarction

SRE sterol-regulatory element

SREBP sterol regulatory element binding protein

apoB apolipoprotein B

VLDL very low-density lipoproteins

LDLRAP low-density lipoprotein receptor adaptor protein

apoER2 apoE receptor 2

LRP1 LDLR-related protein 1

HSPG Heparan sulfate proteoglycans

CIMT carotid intima-media wall thickness

FATE Firefighters and Their Endothelium

CAC coronary artery calcium

apo(a) apolipoprotein(a)
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IVUS intravascular ultrasound

ACS acute coronary syndrome

Lp(a) lipoprotein(a)

CTTC Cholesterol Treatment Trialists’ Collaborators

IMPROVE-IT Improved Reduction of Outcomes: Vytorin Efficacy 

International Trial

mAbs monoclonal antibodies

siRNA small interfering RNAs

ASO antisense oligonucleotides

ORION-1 Trial to Evaluate the Effect of ALN-PCSSC Treatment on 

Low Density Lipoprotein Cholesterol

TRL triglyceride-rich lipoprotein

HDL-C high-density lipoprotein-cholesterol

OSLER Open-Label Study of Long-Term Evaluation Against LDL 

Cholesterol

HMGCR HMG CoA reductase

GLAGOV Global Assessment of Plaque Regression With a PCSK9 

Antibody as Measured by Intravascular Ultrasound

PAD peripheral arterial disease

SPIRE Studies of PCSK9 Inhibition and the Reduction of vascular 

Events

EBBINGHAUS Evaluating PCSK9 Binding Antibody influence on 

Cognitive Health in High Cardiovascular Risk Subjects

REGARDS The Reasons for Geographic and Racial Differences in 

Stroke

PA prior authorization
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Figure 1. Stochastic interaction between the LDLR and LDL-bound PCSK9 terminate the 
receptor life
Before the discovery of PCSK9 it was understood that the LDLR can recycle hundreds of 

time in its ~20-hours life span. Since PCSK9 is found on one in every 500-1000 LDL 

particle, one can envision a scenario where one in every 500 encounters, an LDLR binds to 

an LDL particle harboring a molecule of PCSK9. Such a stochastic interaction will then lead 

to the degradation of the receptor rather to its recycling, explaining, at least in part, why 

LDLR recycle hundreds of times.

LDLR = low-density lipoprotein receptor; LDL = low-density lipoprotein; PCSK9 = 

proprotein convertase subtilisin/kexin type 9
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Figure 2. PCSK9 compartmentalization and function in plasma
(A) PCSK9 is found in plasma in primarily two monomeric forms; an active form 

representing the full-length plasma protein and an inactive/less-active shorter fragment, 

which is a cleavage product of the full length protein by the protease furin. The active 
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PCSK9 is found predominantly on LDL and Lp(a) particles, but not on VLDL or 

chylomicron remnants. In contrast, the furin-cleaved PCSK9 is not found in association with 

these apoB-lipoproteins. While it is not clear whether PCSK9 (active or furin cleaved) is 

found in association with HDL, it was suggested the HDL can inhibit PCSK9 function. (B) 

PCSK9 is secreted as an active form representing the full-length plasma protein. Upon 

secretion, PCSK9 can take on one of two fates, which ultimately determines its function. (i) 
PCSK9 can interact with an LDL particle, which protects PCSK9 from being cleaved by 

furin and leaves the protein bound to the particle in its active form, or alternatively, (ii) 
PCSK9 can interact with furin, which leads to the formation of a shorter fragment of PCSK9 

that exhibits at least two-fold lower affinity to LDLR with limited ability/inability to degrade 

it.

PCSK9 = proprotein convertase subtilisin/kexin type 9; LDL = low-density lipoprotein; 

Lp(a) = lipoprotein(a); VLDL = very low-density lipoprotein; apoB = apolipoprotein B; 

HDL = high-density lipoprotein; LDLR = low-density lipoprotein receptor
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Figure 3. Possible effects of PCSK9 inhibition on Lp(a) metabolism
(i) Therapeutic PCSK9 inhibition prevents PCSK9 interaction with the LDLR, therefore 

facilitating continued recycling of the receptor and efficient clearance of Lp(a) particles; (ii 
and iii) PCSK9 inhibition affects LRP1 and CD36 levels or function, which results in 

increased Lp(a) clearance through these receptors; (iv) PCSK9 directly regulates apo(a) 

secretion, and the inhibition of PCSK9 prevents this process.

PCSK9 = proprotein convertase subtilisin/kexin type 9; Lp(a) = lipoprotein(a); LRP1 = low- 

density lipoprotein receptor-related protein 1; CD36 = cluster of differentiation 36; apo(a) = 

apolipoprotein(a)
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