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Abstract

Investigators from a large consortium of scientists recently performed a multi-year study in which 

they replicated 100 psychology experiments. Although statistically significant results were 

reported in 97% of the original studies, statistical significance was achieved in only 36% of the 

replicated studies. This article presents a reanalysis of these data based on a formal statistical 

model that accounts for publication bias by treating outcomes from unpublished studies as missing 

data, while simultaneously estimating the distribution of effect sizes for those studies that tested 

nonnull effects. The resulting model suggests that more than 90% of tests performed in eligible 

psychology experiments tested negligible effects, and that publication biases based on p-values 

caused the observed rates of nonreproducibility. The results of this reanalysis provide a compelling 

argument for both increasing the threshold required for declaring scientific discoveries and for 

adopting statistical summaries of evidence that account for the high proportion of tested 

hypotheses that are false. Supplementary materials for this article are available online.
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1. Introduction

Reproducibility of experimental research is essential to the progress of science, but there is 

growing concern over the failure of scientific studies to replicate (e.g., Ioannidis 2005; Prinz 

et al. 2011; Begley and Ellis 2012; Pashler and Wagenmakers 2012; McNutt 2014). This 

concern has become particularly acute in the social sciences, where the effects of publication 

bias and other sources of nonreproducibility are now widely recognized, and a number of 

researchers have gone as far as to propose new methods for detecting irregularities in 

reported test results (Francis 2013; Simonsohn et al. 2014). Motivated by this concern, the 
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Open Science Collaboration (OSC) recently undertook a multi-year study that replicated 100 

scientific studies selected from three prominent psychology journals: Psychological Science, 

Journal of Personality and Social Psychology, and Journal of Experimental Psychology: 
Learning, Memory, and Cognition (OSC 2015). The goal of their project was to assess the 

reproducibility of studies in psychology and to potentially identify factors that were 

associated with low reproducibility rates. The OSC concluded that “replication effects were 

half the magnitude of original effects” and that while 97% of the original studies had 

statistically significant results, only 36% of replications did.

To conduct their study, the OSC developed a comprehensive protocol for selecting the 

psychology experiments that were subsequently replicated. This protocol specified “the 

process of selecting the study and key effect from the available articles, contacting the 

original authors for study materials, preparing a study protocol and analysis plan, obtaining 

review of the protocol by the original authors and other members within the present project, 

registering the protocol publicly, conducting the replication, writing the final report, and 

auditing the process and analysis for quality control” (OSC 2015, aac4716-1). Full details 

regarding the selection of articles from which experiments were selected for replication, 

along with the procedures used to replicate and report results from these experiments, can be 

found in the original OSC article.

The essential feature of the OSC study is that it provides an approximately representative 

sample of psychology experiments that led to successful publication in one of three leading 

psychology journals in which the same effects were measured twice in independent 

replications. As we demonstrate below, these replications make it possible to estimate the 

effect size of each study even after accounting for publication bias. We exploit this feature of 

the OSC study to describe a statistical model that provides a quantitative explanation for the 

low reproducibility rates observed in the OSC article. We also estimate several quantities 

needed to compute the posterior probabilities of hypotheses tested in those and future 

studies. In particular, we use the OSC data to estimate the distribution of effect sizes across 

psychology studies, as well as the proportion of hypotheses tested in psychology that are 

true.

Our analyses suggest that the proportion of experimental hypotheses tested in psychology 

that are false likely exceeds 90%. In other words, if one implicitly accounts for the number 

of statistical analyses that are conducted, the number of statistical tests that are performed, 

the choice of which test statistics are actually calculated and the filtering out of 

nonsignificant p-values in the publication process, then the observed replication rates in 

psychology can be well explained by assuming that 90% or more of statistical hypothesis 

tests test null hypotheses that are true. When evaluating a published p-value that is 0.05, this 

means that the probability that the tested null hypothesis was actually true likely exceeds 

0.90 (based on the distribution of effect sizes estimated from the OSC data). That is, the 

false positive rate for p = 0.05 discoveries is also over 90%. This fact has important 

ramifications for the interpretation of p-values derived from experiments conducted in 

psychology, and likely in many other fields as well.
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2. Subset Selection and Publication Bias

While the authors of OSC (2015) replicated 100 psychology experiments, many of their 

findings were based on a subset of these experiments in which it was possible to transform 

observed effect sizes to the correlation scale. Their rationale for analyzing correlation 

coefficients was based on the easy interpretation of correlation coefficients and the fact that, 

after application of Fisher’s z-transformation (Fisher 1915), the approximate standard errors 

of the transformed coefficients were a function only of the study sample size. The subset of 

OSC data for which Fisher’s transformation provided both a transformed correlation 

coefficient and a standard error for this coefficient was labeled the Meta-Analytic (MA) 

subset. The MA subset included studies that based their primary findings on the report of t 
statistics, F statistics with one degree of freedom in the numerator, and correlation 

coefficients. There were 73 studies in the MA subset. The data and code for the OSC study 

are available at https://osf.io/ezcuj (z-transformed correlation coefficients are stored in R 

variables final$fis.o and final$fis.r, which are created by the source file 

masterscript.R).

Recall that for a sample correlation coefficient r based on a bivariate normal sample of size n 
having population correlation coefficient ρ, the sampling distribution of

z = 1
2 ln 1 + r

1 − r (1)

is approximately normally distributed with mean

ζ = 1
2 ln 1 + ρ

1 − ρ (2)

and variance 1/(n − 3) (Fisher 1915).

As in the OSC study, analyzing z-transformed correlation coefficients also simplifies our 

model for effect sizes across studies. For this reason, we too restrict attention to the MA 

subset of studies in the analyses that follow. Although this decision results in some loss of 

efficiency, our decision to restrict attention to the MA subset of studies, which is based 

solely on the type of test statistic used to summarize results in the original studies, does not 

introduce any obvious biases in the estimation of our primary quantity of interest, the 

proportion of tested psychology hypotheses that are true. It also facilitates our examination 

of the statistical properties of the distribution of nonnull effect sizes on a common scale.

Publication bias (the tendency to select test statistics that are statistically significant and to 

then publish only positive findings) is now generally regarded as a primary cause of non-

reproducibility of scientific findings. We note that publication bias played a prominent role 

in the American Statistical Association’s recent statement on statistical significance and p-

values (Wasserstein and Lazar 2016), and alarm over its effects on the reproducibility of 

science is increasing (e.g., Fanelli 2010; Franco et al. 2014; Peplow 2014). Hence, another 

important decision that affects the formulation of our statistical model involves the manner 
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in which we model publication bias. As noted previously, 97% of the studies included in the 

OSC experiment originally reported statistically significant findings. This pattern is also 

exhibited in the MA subset of studies, in which 70 out of 73 (96%) studies reported 

statistically significant findings. (We note that among the original 100 studies, four p-values 

between 0.050 and 0.052 were deemed significant; three of these “significant” p-values are 

included in the MA subset.)

The high proportion of studies that reported statistically significant findings suggests a 

severe publication bias in the hypothesis tests that were reported. We adopt a missing data 

framework (e.g., Tanner and Wong 1987; Little and Rubin 2014) to account for this bias, and 

explicitly assume the existence of an unobserved population of hypothesis tests and test 

statistics that were calculated in the OSC sampling frame. This population of hypothesis 

tests includes tests that resulted in (a) test statistics derived from experiments that obtained 

statistically significant findings and were published, (b) test statistics that would have been 

published had they obtained statistical significance but did not, and (c) test statistics that 

were published even though they did not obtain statistically significant findings. In stating 

these assumptions we have intentionally emphasized the distinction between an 

experimental outcome and the report of a test statistic. We have made this distinction to 

emphasize the fact that researchers often have the choice of reporting numerous test statistics 

based on the same experiment, and that in practice they often choose to report only test 

statistics that yield significant p-values (Simmons et al. 2011).

Because we have restricted our attention to the MA subset of studies, we also restrict our 

hypothetical population of hypothesis tests to tests that based their primary outcome on a t, 
F1,ν, or correlation statistic. The unknown size of this population is denoted by M. A 

primary goal of our analysis is to estimate the proportion of studies in this population that 

tested true null hypotheses, as well as the distribution of effect sizes among studies for 

which the null hypothesis was false.

3. A Statistical Model for the OSC Data

The assumptions and notation underlying our statistical model for the OSC replication data 

can now be stated more precisely as follows:

1. The 73 z-transformed correlation coefficients reported in the MA subset of 

studies represent a sample from a larger population of M hypothesis tests that 

would have been published had they either obtained a statistically significant 

result or had been unique in some other way.

2. Within this population of M hypothesis tests, a test that produced a statistically 

“significant” finding was always published. To account for the fact that three 

studies were deemed significant for p-values that were slightly above 0.05, in the 

analyses that follow we define a “significant” p-value to be a value less than 

0.052. The conclusions of our analyses are unaffected by this assumption and it 

simplifies exposition of our statistical model.
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3. Tests that resulted in an insignificant p-value were published with probability α. 

Conversely, tests that produced an insignificant p-value were not published with 

probability (1 − α).

4. Test statistics obtained from different tests are statistically independent. Of 

course, this assumption is only an approximation to reality and is unlikely to 

apply to the multitude of tests that a researcher might calculate from the same set 

of data. To the extent that there is dependence within this population of test 

statistics, we adjust our interpretation of M as being the “effective sample size” 

or effective number of independent tests that were conducted.

5. The distribution of transformed effect sizes among those experiments that tested 

a false null hypothesis (i.e., that had nonzero effect sizes) is described by either 

(i) a (normal) moment density function indexed by a parameter τ (Johnson and 

Rossell 2010), or (ii) a mean zero normal density function with variance τ. The 

moment density function can be expressed as density function with variance τ. 

The moment density function can be expressed as

f (ζ |τ) = ζ2

2πτ3exp − ζ2
2τ , (3)

where ζ denotes the transformed population correlation coefficient from (2). The 

normal prior density function for the transformed effect sizes is parameterized as

f (ζ |τ) = 1
2πτ exp − ζ2

2τ . (4)

6. We adopt the common convention used by the original authors of the MA studies 

and approximate “small interval” hypotheses (e.g., (−ε, ε), ε ≪ 1) by point null 

hypotheses. A discussion of the implications and adequacy of this approximation 

for various values of ε are discussed in, for example, Berger and Delampady 

(1987, sec. 2). For a specified test statistic T (X), theynote that the adequacy of 

the small interval approximation to a point null hypothesis depends only on the 

adequacy of

Pθ0
( |T(X) | ≥ | t | )

in approximating

sup
θ: |θ − θ0 | ≤ ε

Pθ( |T(X) | ≥ | t | ) .

We assume this approximation is adequate for the studies included the MA 

subset.
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The proportion of the M studies that tested true null hypotheses (i.e., had effect sizes that 

were negligible) is denoted by π0.

In the fifth assumption, two models have been specified for the prior distribution on the 

effect sizes under the alternative hypotheses. The moment density explicitly parameterizes 

the assumption that effect sizes under alternative hypotheses cannot be equal or be too close 

to 0. The use of the moment prior density may thus alleviate concerns regarding the 

approximation of small interval null hypotheses by point null hypotheses. This feature of the 

moment prior is illustrated in Figure 1, where it is seen that the moment prior density is 

identically equal to 0 when ζ = 0. The moment prior is a special case of a nonlocal 

alternative prior density.

The normal prior density described in assumption 5 is proposed as a contrast to the moment 

prior. The shape of this density embodies the belief that the nonnull effect sizes are likely to 

concentrate near 0 even when the alternative hypothesis is true. The normal prior is an 

example of a local alternative prior density.

In Section 5, we compare the adequacy of these two models in fitting the transformed 

correlation coefficients obtained from the MA subset of studies. Using a Bayesian chi-

squared statistic to assess model fit (Johnson 2004), we find that the moment prior density 

provides an adequate model for the transformed population coefficients, whereas the normal 

prior does not. Nonetheless, parameter estimates obtained under the normal model provide 

an indication of the sensitivity of our conclusions to prior assumptions regarding the 

distribution of nonnull effect sizes, and so we describe methodology and results for both 

models below.

For a given value of M, we let zM = {zi j
M} denote the transformed sample correlation 

coefficient (1) for test i (i = 1,…, M), replication j (1 = original test, 2 = replicated test), and 

let nM = {ni j
M} denote the corresponding sample sizes. The vector ζM = {ζi

M} denotes the z-

transformed population correlations for each test i, and RM = {Ri
M} denotes a vector of 

indicators of whether the original test statistic i was published (1 if yes, 0 if no). For i = 1, 

…, 73, it follows that Ri
M = 1; for i = 74, …, M it follows that Ri

M = 0. Similarly, we let 

SM = {Si
M} denote a vector of indicators of whether the original studies resulted in 

statistically significant results (i.e., p < 0.052). By assumption, P(Ri
M = 1|Si

M = 0) = α, and 

P(Ri
M = 1|Si

M = 1) = 1.

To simplify notation, we suppress the dependence of z, ζ, R, S, and n on M in what follows. 

We also let ϕ(x | μ, σ2) denote the value of a Gaussian (normal) density function with mean μ 

and variance σ2 evaluated at x, and denote the variance of zij by σi j
2 = 1/(ni j − 3). The generic 

symbols for a density function and conditional density function are f (·) and f (· |·), 
respectively.
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Given this notation, the (marginal) sampling density for a z-transformed correlation in study 

(i, j) is ϕ[zi j |ζi, σi j
2 ]. The joint sampling density for various values of zij, Ri, and Si can be 

specified as follows:

1. For Ri = 1, Si = 1, j = 1,

f (zi1, Ri = 1, Si = 1|ζi) = ϕ[zi1 |ζi, σi j
2 ]Ind( | zi1 | > bi),

where bi = qγ σij and qγ is the γ = 0.974 quantile from a standard normal density 

(γ = 0.974 is used instead of γ = 0.975 to account for the fact that p-values of 

0.052 were considered to be significant in the OSC data).

2. For Ri = 1, Si = 0, j = 1,

f (zi1, Ri = 1, Si = 0|ζi) = αϕ[zi1 | zi1, σi j
2 ]Ind( | zi1 | ≤ bi) .

3. For Ri = 0, Si = 0, j = 1,

f (zi1, Ri = 0, Si = 0|ζi)

= (1 − α)ϕ[zi1 |ζi, σi j
2 ]Ind( | zi1 | ≤ bi),

where the value of zi1 is regarded as missing data for i > 73 (Tanner and Wong 

1987; Little and Rubin 2014).

4. For replicated studies (j = 2), the sampling density of a transformed correlation is 

simply

f (zi2 |ζi) = ϕ zi2 |ζi, σi j
2 ,

independently of (Ri, Si). For i > 73, the value of zi2 is regarded as missing data.

To specify the prior density on the effect sizes, we introduce a vector of variables W = {Wi} 

(again suppressing dependence on M) whose components equal 0 if ζi = 0 (i.e., the null 

hypothesis of no effect pertains) and equal 1 if ζi is drawn from either a moment distribution 

or a normal distribution. A priori, we assume Wi is Bernoulli with success probability 1 − 

π0, reflecting the fact that the marginal probability of the null hypothesis is π0. Under the 

moment prior model, the prior density on ζi, i = 1, …, M, given Wi and τ can be expressed 

as

f (ζi |τ, W i) = (1 − W i)δ0 + W i
ζi
2

τ3/2 2π
exp −

ζi
2

2τ , (5)
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where δ0 denotes a unit mass at 0. Similarly, under the normal prior model, the prior density 

on ζi, i = 1, …, M, given Wi and τ can be expressed as

f (ζi |τ, W i) = (1 − W i)δ0 + W i
1
2πτ exp −

ζi
2

2τ . (6)

A parametric model is not specified for the unobserved sample size vectors for unpublished 

studies. Instead, pairs of values of (ni1, ni2) were sampled with replacement from the 

empirically observed distribution of sample sizes from the metaanalysis (MA) subset within 

a given Markov chain Monte Carlo (MCMC) run, and results from several runs of the 

MCMC algorithm were combined to obtain samples from the joint distribution on all 

parameters of interest. A Jeffreys’ prior for a Bernoulli success probability was assumed for 

α and π0, and a prior proportional to 1/τ was assumed for τ (this is the noninformative prior 

for τ under both the moment and normal prior model). Finally, we assume that the prior on 

M is proportional to M−2 for M = 1, 2, ….

Given these model assumptions, it follows that the joint posterior distribution can be 

expressed as

f (z, ζ, W, M, π0, τ, α |D)

∝ M
70 3 ∏

Ri = 1

Si = 1

j = 1, 2

f (zi j, Ri, Si |ζi)

(7)

× ∏
Ri = 1

Si = 1

j = 1, 2

f (zi j, Ri, Si |ζi) (8)

× ∏
Ri = 0

Si = 0

j = 1, 2

f (zi j, Ri, Si |ζi) (9)
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× ∏
i = 1

M
f (ζi |τ, W i)π0

1 − Wi(1 − π0)
Wi (10)

× 1
τM2 (π0α)

− 1
2(1 − π0)

− 1
2(1 − α)

− 1
2 , (11)

where D represents {zij}, Ri = 1, and Si for i = 1, …, 73. For i > 73, it follows from model 

assumptions that Ri = Si = 0. The combinatorial term at the beginning of the right-hand 

product is necessary to account for the number of ways that the 70 published studies with 

significant test statistics, three published studies with insignificant test statistics, and M − 73 

unpublished studies with insignificant test statistics could have occurred among the 

collection of M studies performed. The density in line (10) refers to either the moment 

density from (5) or the normal density from (6), depending on the model that is being 

applied.

The joint posterior density function described in (7)–(11) describes a density function on a 

high-dimensional parameter space in which the dimensions of several model parameters 

vary with M. However, our primary interest lies in performing inference on the parameters 

(M, π0, α, τ). To simplify this task, we now describe the marginal distribution on the 

parameters of interest, obtained by marginalizing over the nuisance parameters z, ζ, and W. 

The following lemmas are useful in describing this marginal posterior density function.

Lemma 1

Assume that the nonnull effect sizes are drawn from the moment prior density given in (5). 

For a given value of M and i ≤ 73, define

Ai(α, π0, τ) = ∫ f (ζi |τ, Wi)π0
1 − Wi(1 − π0)

Wi

× ∏
j = 1

2
f (zi j, Ri, Si |ζi)dζidWi,

and let

a = 1
2πσi1σi2τ3/2 , w = 1

σi1
2 + 1

σi2
2 + 1

τ

b = aexp −0.5
zi1
2

σi1
2 +

zi1
2

σi1
2 − 1

w

zi1
σi1

2 +
zi2
σi2

2

2
.

Then
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Ai(α, π0, τ) = π0α
1 − Si ∏

j = 1

2
ϕ zi j | 0, σi j

2

+ (1 − π0)α
1 − Sibw−3/2 1 + 1

w

zi1
σi1

2 +
zi2
σi2

2

2
.

(12)

Lemma 2

Assume that the nonnull effect sizes are drawn from the moment prior density given in (5), 

suppose tests are conducted at the 2 − 2γ level of significance, and that qγ is the γ quantile 

from a standard normal density function. Let Φ(·) denote the standard normal distribution 

function. For a given value of M and i > 73, define

Bi(α, π0, τ) = ∫ f (ζi |τ, Wi)π0
1 − Wi(1 − π0)

Wi

× ∏
j = 1

2
f (zi j, Ri, Si |ζi)dzi1dzi2dζidWi,

and let

c = 1
σi1

2 + 1
τ , d = 1

σi1
2 − 1

cσi1
4 ,

f = dqγ, g = Φ( f ) − Φ( − f ),

and

h = 1
σi1 τ3dc3

1
cdσi1

4 g − 2
π f exp − f 2

2 + g .

Then

Bi(α, π0, τ) = (1 − α)[(1 − π0)h + π0(2γ − 1)] . (13)

Lemma 3

Assume that the nonnull effect sizes are drawn from the normal prior density given in (6). 

For a given value of M and i ≤ 73, define Ai (α, π0, τ) according to
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Ai(α, π0, τ) = ∫ f (ζi |τ, Wi)π0
1 − Wi(1 − π0)

Wi

× ∏
j = 1

2
f (zi j, Ri, Si |ζi)dζidWi,

and let

a∗ = 1
2πσi1σi2τ1/2 , w2 = 1

σi1
2 + 1

σi2
2 + 1

τ ,

and

b∗ = a∗exp −0.5
zi1
2

σi1
2 +

zi2
2

σi2
2 − 1

w∗
zi1
σi1

2 +
zi2
σi2

2

2

Then

Ai(α, π0, τ) = π0α
1 − Si ∏

j = 1

2
ϕ[zi j | 0, σi j

2 ]

+ (1 − π0)α
1 − Sib∗w ∗ − 1/2 .

Lemma 4

Assume that the nonnull effect sizes are drawn from the normal prior density given in (6). 

For a given value of M and i ≥ 73, define Bi(α, π0, τ) according to

Bi(α, π0, τ) = ∫ f (ζi |τ, Wi)π0
1 − Wi(1 − π0)

Wi

× ∏
j = 1

2
f (zi j, Ri, Si |ζi)dzi1dzi2dζidWi .

Let

c∗ = 1
σi1

2 + 1
τ , d∗ = 1

σi1
2 − 1

c∗σi1
4 ,

f ∗ = d∗bi = d∗qγσi1, g∗ = Φ( f ∗) − Φ( − f ∗),

and
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h∗ = g∗

τc∗d∗σi1
.

Then

Bi(α, π0, τ) = (1 − α)[(1 − π0)h∗ + π0(2γ − 1)] .

Proofs of the Lemmas 1 and 2 appear in the Supplementary Material; the proofs of Lemmas 

3 and 4 are similar to their moment analogs.

Based on these lemmas, it follows that the marginal posterior distribution on (M, α, π0, τ) 

can be expressed as

f (M, α, π0, τ |D)

∝ M
70 3 ∏

i = 1

73
Ai(α, π0, τ) ∏

i = 74

M
Bi(α, π0, τ)

× 1
τM2 (π0α)

− 1
2(1 − π0)

− 1
2(1 − α)

− 1
2 ,

(14)

where the values of Ai and Bi are defined in Lemmas 1 and 2 for the moment prior models, 

and Lemmas 3 and 4 for the normal prior model on nonnull effect sizes.

The form of the marginal posterior distribution on (M, α, π0, τ) does not permit explicit 

calculation of the marginal posterior densities on individual parameters. However, 

implementing a Markov chain Monte Carlo algorithm to probe this four-dimensional 

posterior distribution is straightforward.

4. Parameter Estimation

Posterior means and 95% credible intervals for the parameters of interest (M, α, π0, τ) are 

provided in Table 1. From this table, we see that the posterior mean of π0 was approximately 

93% under the moment model, while the posterior mean of M was 706. The posterior mean 

of τ was 0.088. For the normal prior model, the posterior mean of π0 was slightly smaller—

about—89%, as was the posterior mean of M. Qualitatively, the parameter estimates 

obtained from the two models are very similar. Nonetheless, it is important to examine the 

extent to which these models fit the distribution of nonnull effect sizes before using them to 

make inferences about the more general population studies conducted in the field of 

experimental psychology.
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5. Model Assessment and Comparison

Model assessment in Bayesian hierarchical models can be performed conveniently using 

pivotal quantities. For our purposes, a pivotal quantity d(y, θ) is a function of the data and 

model parameters whose distribution does not depend on unknown parameters. For example, 

if the components of y = (y1, …, yn) are normally distributed with mean μ0 and variance σ0
2, 

where μ0 and σ0
2 are the data-generating (i.e., “true”) parameters, then

d1[y, (μ0, σ0
2)] = ∑

i = 1

n yi − μ0
σ0

2
(15)

is a pivotal quantity since it has a χn
2 distribution. Johnson (2007) demonstrated that the 

distribution of a pivotal quantity involving the data y remains unchanged if a sample from 

the posterior distribution, say θ∼, replaces the data-generating value θ0 in the definition of the 

pivotal quantity; Yuan and Johnson (2011) extended this result to pivotal quantities that 

involve only parameter values.

To assess the adequacy of the moment and normal prior distributions on the nonnull effect 

sizes, we use pivotal discrepancy measures based on Pearson’s chi-squared goodness-of-fit 

statistic (Johnson 2004). To this end we partitioned the space of the standardized, 

transformed population correlations coefficients ζ into three equiprobable, symmetric sets 

based on the sextiles of the prior distribution on the nonnull effect sizes. This partitioning is 

illustrated in Figure 2 for both the moment and normal distributions. The choice of cells 

illustrated in the figure highlights the difference between the moment and normal priors on 

the transformed correlation coefficients. In particular, cell C encompasses the mode of the 

normal distribution where the moment prior is 0; the width of this cell is thus much narrower 

for the normal distribution than it is for the moment distribution. Note that the signs of the 

transformed sample coefficients were arbitrarily assigned in the OSC data, which motivated 

the selection of partitioning elements that were symmetric around 0.

Next, for each posterior sample of (M, π0, α, τ) and for each model, we drew a value ζ∼ and 

W∼  from their full conditional distributions. For observations i judged to be from the 

alternative hypotheses (i.e., W∼i = 1), we assigned ζ
∼

i/ τ to one of the three cells (A,B,C) 

depicted in Figure 2. We then constructed Pearson’s chi-squared goodness-of-fit statistic 

based on the |W | = ∑W∼i counts assigned to the equiprobable cells. If the assumed model is 

true, then the resulting statistic is approximately distributed as a chi-squared random variable 

on 2 degrees of freedom.

The preceding procedure provides a recipe for generating goodness-of-fit statistics that are 

nominally distributed as χ2
2 random variables. However, statistics based on independent 

draws of ζ∼ and W∼  from the same posterior distribution are correlated since they are based on 

the same data. This complicates the calculation of a Bayesian p-value for model adequacy. 
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Instead, it is easier to simply compare the histogram of test statistics produced by repeatedly 

sampling ζ∼ and W∼  from the posterior distribution, and comparing the resulting pivotal 

quantities to their nominal distribution. Such a plot is provided in Figure 3. This plot clearly 

indicates that the Bayesian chi-squared statistics for the moment model are consistent with 

their nominal χ2
2 distribution, whereas the statistics generated from the normal model are 

not. This plot provides clear evidence that the normal model is not an appropriate model for 

the nonnull effect sizes, a result that would likely extend also to other unimodal, local prior 

densities centered on the null value of 0.

Although computing an exact value for a Bayesian p-value for lack-of-fit based on these 

pivotal quantities would require extensive numerical simulation, we note that bounds on the 

Bayesian p-value for lack-of-fit can be obtained for the normal model using results in 

Caraux and Gascuel (1992); Johnson (2007). For the normal model, this p-value is less than 

0.005. The corresponding bound for the moment model is not useful (i.e., p ≤ 1).

Aside from the prior assumptions made regarding the distribution of nonnull effect sizes, 

“noninformative” priors were assigned to π0, α, and τ under both the moment and normal 

models. For π0 and α, these priors were Beta(0.5, 0.5) densities. With approximately 40 true 

positives estimated for the OSC data, the prior density assigned to π0 likely does not have a 

significant impact on the marginal posterior distribution for this parameter. Similar 

posteriors are obtained for other beta prior densities of the form Beta(c, d) for π0, provided 

that c + d ≈ 1. In contrast, the posterior distribution on α is sensitive to its Beta(0.5, 0.5) 

prior. However, the posterior distribution on α continues to concentrate its mass near 0 for 

other beta densities whenever c + d ≈ 1, and in this case the marginal posterior distributions 

for other model parameters is not significantly affected by the marginal posterior distribution 

on α. Since α is not a parameter of interest, we do not regard this sensitivity as being 

problematic.

The marginal posterior densities on π0 and M are insensitive to the choice of prior densities 

on τ within the class of inverse gamma priors, provided that the parameters of the inverse 

gamma density are not large.

Evaluating the sensitivity of the posterior distribution to the choice of the prior distribution 

on M is somewhat more difficult. We assume that the prior density for M is a proper prior 

proportional to M−2. The posterior distribution on π0 (assuming propriety) is relatively 

unaffected by the prior density on M if this prior is instead assumed to be proportional to 

1/M (and therefore improper). For example, the posterior mean of π0 under the moment 

model increases only from 0.930 to 0.932. The posterior distribution on π0 would, however, 

be significantly affected if an informative prior with exponentially decreasing tails was 

instead specified.

6. Interpretation of Model Estimates

Results from our statistical model for the OSC data can be used to make inferences 

regarding a variety of quantities that affect scientific reproducibility. For example, the 

posterior distribution on nonnull effect sizes and π0 can be used to estimate Bayes factors 
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and posterior probabilities of hypotheses in future psychology experiments that test for the 

significance of a sample correlation r. Letting n denote the sample size in such an 

experiment and assuming that one wishes to test the null hypothesis that population 

correlation is 0, then the Bayes factor in favor of the alternative hypothesis can be expressed 

as

BF10(r) = 1
d1τ3exp(d1d2

2/2) 1
d1

+ d2
2 ,

where

d1 = n − 3 + 1
τ , and d2 = z(n − 3)

d1
,

and z again denotes Fisher’s z-transformation of r. Based on π0 and this Bayes factor, the 

posterior probability of the null hypothesis can be expressed as

P(H0 |r, π0) =
π0

π0 + (1 − π0)BF10(r) .

This Bayes factor and posterior probability can be approximated by setting τ and π0 equal to 

their posterior means as reported in Table 1, or by averaging over their posterior distributions 

using output from an MCMC algorithm.

Based on these expressions, it is possible to calculate the posterior probability that the null 

hypothesis is true for the broader population of psychology studies and to compare these 

probabilities to p-values. Figure 4 displays such comparisons for Bayes factors based on the 

moment prior model. Clearly, results in this figure raise concerns over the use of marginally 

significant p-values to reject null hypotheses.

To highlight the implications of this figure, consider the curve corresponding to a sample 

size of n = 10 when the p-value for testing the null hypothesis of no correlation is 0.05. 

Based on the analysis of the OSC data, the posterior probability that the null hypothesis is 

true for this value of the observed correlation coefficient is 0.842. Thus, the null hypothesis 

is rejected at the 5% level of significance when the probability that the null hypothesis is 

true is approximately 84%. Other curves in Figure 4 have a similar interpretation. In general, 

it is clear that p-values close to 0.05 provide strong evidence in favor of the null hypothesis 

of no correlation, and that genuinely small p-values can occur in small samples even when 

the posterior probability of the null hypothesis exceeds 10%.

For comparison, a similar plot of posterior probabilities for the null hypothesis versus p-

values based on fitting the normal model to the nonnull effect sizes is provided in Figure 5. 

Qualitatively, there appears to be little difference between Figures 4 and 5, suggesting that 

the relation between the posterior probabilities and p-values for the OSC data is not sensitive 

to the choice of the prior distribution chosen for the nonnull effect sizes.
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It is interesting to note that the posterior probabilities of null hypotheses reflected in Figure 

4 are generally consistent with the empirical results reported by the OSC. For example, the 

OSC stated that “almost two thirds (20 of 32, 63%) of original studies with p < 0.001 had a 

significant p value in the replication” (OSC 2015). From the figure, the posterior 

probabilities of the null hypothesis when p = 0.001, based on sample sizes of 10, 30, and 

100, were 0.403, 0.175, and 0.223, respectively. This suggests that approximately two-thirds 

of these studies report true positives and would likely replicate.

Even though it is possible to estimate the distribution of effect sizes under the alternative 

hypothesis using the OSC replication data, it is interesting to compare the curve labeled 

“UMPBT” with results that would be obtained if the distribution of effect sizes was instead 

generated under alternative hypotheses that produce the uniformly most powerful Bayesian 

tests (UMPBTs) (Johnson 2013b). The UMPBT, by definition, maximizes the probability 

that the Bayes factor in favor of the alternative hypothesis exceeds a given threshold. This 

test is anti-conservative in the sense that it is designed to make the posterior probability of 

the null hypothesis small so that the Bayes factor in favor the alternative hypothesis will 

exceed a specified threshold. That is, for a test of a given size, the UMPBT assigns 

minimum probability to the null hypothesis.

The posterior probabilities of null hypotheses depicted on the UMPBT curve correspond to 

UMPBT alternatives in which the evidence threshold was set so that the rejection region of 

the resulting test matched the rejection region of classical uniformly most powerful test of 

size 0.005.

The comparisons between p-values and posterior probabilities based on the UMPBT 

alternative hypotheses are qualitatively similar to the comparisons based on the distribution 

of effect sizes estimated from the OSC data. Both comparisons show that p-values less than 

0.001 are needed to provide even weak evidence against the null hypothesis.

7. Discussion

The reanalysis of the OSC data provides an interesting new perspective on the replication 

rates observed in OSC (2015). Our results suggest that an effective sample size of 

approximately 700 hypothesis tests were conducted to generate the 73 tests that were 

summarized in the MA subset of studies in the OSC article. If 93% of these tests involved 

true null hypotheses, and each of these tests were deemed statistically significant using a 

5.2% threshold, then on average these 700 tests would have generated 700 × .93 × 0 052 = 

34 false positives. Based on the distribution effect sizes estimated from the OSC data under 

the moment prior model, the average power in achieving statistical significance in 5% tests 

for the true alternative hypotheses was approximately 75%. On average, this implies that 

approximately 700 × 0.07 × 0.75 total = 37 true positives would also be detected, for a of 71 

positive findings. Recall that the MA dataset contained 73 studies, of which 70 originally 

reported statistically significant findings.

Of the 34 false positives that would, on average, be detected from this population of 700 

studies, on average only 34 × 0.052 = 2 would replicate. Among the 37 true positives, on 
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average 37 × 0.75 = 28 would. Thus, we would expect approximately to replicate. This is 

essentially what was observed in the OSC’s MA dataset. Of the 70 studies that originally 

reported significant findings, only 28 studies (40%) produced significant findings upon 

replication.

A primary conclusion that should be drawn from this reanalysis of the OSC data is that 

current statistical standards for declaring scientific discoveries are not sufficiently stringent 

to guarantee high rates of reproducibility. Indeed, p-values near 0.05 often provide 

substantial support in favor of a null hypothesis, and describing these values as “statistically 

significant” leads to unrealistic expectations regarding the likelihood that a discovery has 

been made. Indeed, our analysis suggests that “statistical significance” in psychology and 

many other social sciences should be redefined to correspond to p-values that are less than 

0.005 or even 0.001 (Johnson 2013a).

Revising the standards required to declare a scientific discovery will require corresponding 

changes to the way science in conducted and scientific reports are interpreted. Such changes 

include the adoption of sequential testing methods, which are already widely used in the 

pharmaceutical industry to reduce costs and to quickly terminate trials that are unlikely to be 

successful. Early termination of trials can dramatically reduce the number of subjects 

required to test a theory and thus allows many more trials to be conducted.

More generally, however, editorial policies and funding criteria must adapt to higher 

standards for discovery. Reviewers must be encouraged to accept manuscripts on the basis of 

the quality of the experiments conducted, the report of outcome data, and the importance of 

the hypotheses tested, rather than simply on whether the experimenter was able to generate a 

test statistic that achieved statistical significance. This will allow researchers to publish 

confirmatory or contradictory findings that can be combined in meta-analyses to establish 

discoveries at higher levels of statistical significance. In the long run, this will result in more 

efficient use of resources as fewer scientists pursue research programs based on false 

discoveries.

Finally, we note that an inherent drawback of p-values is their failure to reflect the marginal 

proportion (i.e., prior probability) of tested hypotheses that are true. For this reason, we 

recommend the report of Bayes factors and posterior model probabilities in place of or as a 

supplement to p-values. These quantities have the potential for more accurately reflecting 

the outcome of a hypothesis test, while at the same time accounting for the prior 

probabilities of the null and alternative hypotheses.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Normal moment prior. This density function is used to model the marginal distribution of z-

transformed effect sizes when the alternative hypothesis is true. The curves in blue, black, 

and red represent the moment priors corresponding to τ = 0.060, 0.088, and 0.125, 

respectively. These values correspond to the lower (blue) and upper (red) boundaries of the 

95% credible interval and posterior mean (black) for τ based on the OSC data.
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Figure 2. 
Cells used to compute Pearson’s chi-squared goodness-of-fit statistic. Left panel: Cells used 

for moment prior on nonnull effect sizes. Right panel: Cells used for normal prior on nonnull 

effect sizes. Under both models, the probability assigned to the cells A, B, and C is 1/3.
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Figure 3. 
Histogram of posterior samples of Pearson’s chi-squared test for goodness of fit under the 

moment (left panel) and normal prior (right panel) models for the nonnull effect sizes.
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Figure 4. 
Posterior probabilities of null hypotheses versus p-values based on the posterior means of 

the parameters π0 and τ estimated from the OSC data. Based on a moment prior model for 

the nonnull effect sizes. The sample sizes upon which the comparisons are based (n = 10, 30, 

or 100) are indicated in the plot. The curve labeled UMPBT was obtained by replacing the 

moment prior density on the nonnull effect sizes with the uniformly most powerful Bayesian 

test alternative that has the same rejection region as a frequentist test of size 0.005.
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Figure 5. 
Posterior probabilities of null hypotheses versus p-values based on the posterior means of 

the parameters π0 and τ estimated from the OSC data. Similar to Figure 4, except that a 

normal distribution was imposed on the distribution of the nonnull effect sizes.
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