Skip to main content
. 2018 May 30;4(5):eaar3001. doi: 10.1126/sciadv.aar3001

Table 1. Variable weightings indicating the importance in final boosted regression tree models for tracking and observer data.

Bathymetry and temperature were reliably the two most important predictors in modeling habitat. Bold numbers highlight the three most important factors for each model. NA, not applicable.

Observer Tracking
Swordfish Blue shark Blue shark Leatherback Sea lion
Bottom depth 32.9 47.2 15.6 14.6 49.1
SST mean 18.0 8.0 49.3 34.7 14.3
SSHa 10.3 8.2 4.7 11.2 5.4
Chl-a 7.9 2.7 11.0 8.9 12.2
y-wind 5.7 3.7 4.4 6.1 1.9
Lunar phase 5.5 3.5 NA NA NA
Bottom roughness 5.4 5.5 4.2 11.4 3.0
SST SD 5.3 6.7 3.2 5.1 2.8
SSHa SD 5.1 10.2 4.3 NA 6.0
EKE 3.9 4.4 3.4 6.1 5.3