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Abstract

This study aims to investigate the feasibility of identifying a new quantitative imaging marker 

based on false-positives generated by computer-aided detection (CAD) scheme to help predict 

short-term breast cancer risk. An image dataset including four view mammograms acquired from 

1,044 women was retrospectively assembled. All mammograms were originally interpreted as 

negative by radiologists. In the next subsequent mammography screening, 402 women were 

diagnosed with breast cancer and 642 remained negative. An existing CAD scheme was applied 

“as is” to process each image. From CAD-generated results, 4 detection features including the 

total number of (1) initial detection seeds and (2) the final detected false-positive regions, (3) 

average and (4) sum of detection scores, were computed from each image. Then, by combining the 

features computed from two bilateral images of left and right breasts from either craniocaudal or 

mediolateral oblique view, two logistic regression models were trained and tested using a leave-

one-case-out cross-validation method to predict the likelihood of each testing case being positive 

in the next subsequent screening. The new prediction model yielded the maximum prediction 

accuracy with an area under a ROC curve of AUC=0.65±0.017 and the maximum adjusted odds 

ratio of 4.49 with a 95% confidence interval of [2.95, 6.83]. The results also showed an increasing 

trend in the adjusted odds ratio and risk prediction scores (p<0.01). Thus, this study demonstrated 

that CAD-generated false-positives might include valuable information, which needs to be further 

explored for identifying and/or developing more effective imaging markers for predicting short-

term breast cancer risk.

Index Terms

Computer-aided detection (CAD); Quantitative imaging marker; Breast cancer screening; 
Prediction of short-term cancer risk; False-positive detection; Mammography screening

I. INTRODUCTION

Mammography is the most commonly used imaging modality in the population-based breast 

cancer screening to date. However, the efficacy of screening mammography is controversial 

(Berlin et al 2010) due to the relatively lower detection sensitivity (in particular among 
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women with dense breasts or younger than 50 years old) (Carney et al 2003) and higher 

false-positive recall rates (Hubbard et al 2011) with the potential long-term psychosocial 

consequences (Brodersen et al 2013). In order to improve the efficacy of breast cancer 

screening, developing a new and more effective personalized breast cancer screening 

paradigm has been recently attracting extensive research interest (Brawley et al 2012). A 

prerequisite for realizing an optimal personalized screening is to identify more effective 

breast cancer risk factors and/or develop more accurate risk prediction models to stratify 

women into two groups with a higher and lower risk of having or developing breast cancer 

in a short-term (i.e., < 1 to 3 years). As a result, using these risk factors or prediction models 

may assist clinicians and/or the individual patient to better decide whether she should 

currently have more frequent screening (e.g., annually) or if she can be screened at longer 

interval until her short-term risk significantly increases in future reassessments.

Although many epidemiological studies based on breast cancer risk prediction models have 

been previously developed and applied to identify high-risk women (Amir et al 2010) the 

models have not provided a reliable way to determine who should or should not be screened 

in the short-term to improve the efficacy of breast cancer screening. To illustrate, these 

models primarily predict long-term risk of subgroups of women compared to the general 

population, resulting in low discriminatory power. (Gail et al 2010). As a result, identifying 

new breast cancer risk factors and developing new breast cancer risk prediction models 

remain crucial and challenging tasks (Hollingsworth et al 2014), which still attracts great 

research interest and effort. In this research field, many researchers believe that 

mammograms contain important phenotype markers that can be quantified and used to help 

improve prediction of breast cancer risk (Wei et al 2011). In our previous studies (Zheng et 
al 2012b, Tan et al 2016), a new quantitative imaging marker based on the computed 

bilateral asymmetry of mammographic density features between the left and right breasts 

was identified. The study demonstrated that higher discriminatory power or an increasing 

trend in predicting short-term risk or the likelihood of women having or developing 

mammography-detectable cancers on the next subsequent mammographic screening.

During our studies of exploring new quantitative imaging markers, we recently recognized a 

potential new approach. In order to assist radiologists reading and interpreting 

mammograms, computer-aided detection (CAD) schemes of mammograms have been 

installed and used as “the second reader” in a large number of breast imaging facilities or 

clinics since early 2000 (Astley et al 2004). Whether or not using CAD can help increase the 

accuracy of radiologists in breast cancer detection is also controversial, primarily due to the 

high false-positive detection rates generated by CAD schemes of mammograms (Nishikawa 

et al 2014). However, whether we can use the quantitative image feature analysis and 

detection scores on the CAD-generated false-positive regions to help predict short-term 

breast cancer risk has not been previously investigated. Thus, we proposed a hypothesis. 

Since previous studies have demonstrated that CAD enabled to detect more early 

abnormalities that were missed or overlooked by radiologists and later became image-

detectable cancer (Birdwell et al 2001, Zheng et al 2003), the CAD-generated false-positives 

on the negative images may not be totally harmful or useless. In fact, the CAD-generated 

false-positives might contain valuable information as quantitative imaging markers to help 

predict short-term breast cancer risk. The objective of this study is to test our hypothesis 
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using a relatively large and diverse image dataset of 1,044 negative mammography screening 

cases. After utilizing a CAD scheme to process these negative images, we applied a machine 

learning method to develop a new quantitative imaging marker for predicting the risk of 

having mammography-detectable cancer at the next subsequent screening (12 to 18 months 

later).

II. MATERIALS AND METHOD

In this study, we used full-field digital mammography (FFDM) images selected from the 

preexisting image dataset in our laboratory, which has been retrospectively collected and 

assembled in our previous studies to develop CAD schemes of mammograms (Zheng et al 
2010, Zheng et al 2012a) and quantitative imaging markers for prediction of breast cancer 

risk (Zheng et al 2012b, Tan et al 2016). In brief, by excluding the interval cancer cases and 

the cases without four images of both craniocaudal (CC) and mediolateral oblique (MLO) 

views of the left and right breasts, the dataset used in this study includes FFDM images 

acquired from 1,044 women who participated in routine annual mammography screenings. 

Each case had at least two or more subsequent FFDM screenings of 4 view images of both 

breasts. The latest screening is named “current” screening, which can be either positive or 

negative. All “prior” screenings are negative as reported by radiologists in the original image 

reading and interpretation, which may include a small fraction of “false-negative” cases in 

which the “early suspicious tumors” may be considered detectable in the retrospective 

review (Zheng et al 2010). However, since these “suspicious tumors” were missed or 

overlooked by the radiologists in the original screening, the prior images of these cases are 

classified as negative images in the clinical database. Thus, the negative images used in this 

study are determined by the clinical record generated from the real mammography 

screening.

From this dataset, we selected images acquired from the first “prior” mammography 

screening, which was taken 12 to 18 months prior to the “current” mammography screening. 

In the “current” screening, 402 cases were positive in which cancer was detected from 

mammograms and verified by biopsy, while the rest of 642 cases remained negative (cancer-

free) in the “current” screenings. Thus, these 1,044 “prior” negative screenings were divided 

into two groups or classes of the high and low-risk cases. Table 1 summarizes the basic 

characteristics of the cases involved in our dataset.

Next, as shown in the flowchart of Figure 1, we took the following steps to process each 

image, compute CAD-generated features, and build a machine learning classifier to predict 

cancer risk. First, an existing CAD scheme of mammograms (Zheng et al 1995) was used. 

The previous study showed that performance of this CAD scheme was quite comparable to 

two leading commercialized CAD schemes in detecting malignant breast lesions using an 

independent testing image dataset to all 3 CAD schemes under comparison (Gur et al 2004). 

In brief, CAD scheme applies three steps to detect suspicious mass regions depicted in an 

image. First, a Gaussian bandpass filter is applied to detect initially suspicious seeds (i.e., 

typically 10 to 50 per image depending on the complexity of breast tissue structure). Second, 

an adaptive multi-layer topographic region growing algorithm is applied to segment each 

suspicious region. Based on the set of region growing criteria, this step typically results in 
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discarding more than 50% of suspicious regions initially detected in step one. Third, a multi-

feature based artificial neural network (ANN) is applied to process each remaining 

suspicious region and generate a detection score, which indicates the likelihood of the 

detected region associating with a malignant lesion. In this study, we applied this CAD 

scheme of mammograms “as is” to process each FFDM image of all study cases in our 

dataset.

Second, we summarized CAD-generated detection results and scores on all detected 

suspicious regions on each image. First, four features were computed, which are (1) the 

number of initial suspicious seeds detected by the first step of CAD scheme, (2) the number 

of final suspicious mass regions detected by the second step of the CAD scheme, (3) total 

(summation) score of all detected suspicious mass regions, and (4) average score of all 

detected suspicious mass regions. Second, we computed bilateral summation between two 

left and right (CC or MLO view) images. In this way, we generated a total of 8 features, 

namely 4 for the CC view and 4 for the MLO view images. Third, we computed the mean 

value (μ) and standard deviation (σ) of each feature computed from all 1044 testing cases. 

Each feature was then normalized to a range from 0 to 1 (within μ ± 2σ). All outliers were 

assigned to either 0 or 1 depending on whether their actual value are smaller than zero or 

greater than one.

Third, since a mammogram is a two-dimensional projection image overlapped with fibro-

glandular tissues along the projection direction, mammographic tissue patterns or image 

features computed from CC and MLO view of one breast may vary significantly. Thus, we 

separately built two classifiers that combine the four bilateral summation features computed 

from either CC or MLO view images to stratify the testing cases into the high and low-risk 

classes of having mammography-detectable cancers in subsequent mammography screening. 

Despite the fact that many different machine learning classifiers can be used for this 

purpose, we selected a multinomial logistic regression model based classifier because it is 

inherently simple, low variance, fast in training and has a lower probability in overfitting.

Fourth, in order to build the classifier, we used a Weka data mining and machine learning 

software platform (Witten et al 2011), which has been successfully applied and tested in a 

number of our previous studies in developing multi-feature fusion based machine learning 

classifiers to predict cancer risk and prognosis (Emaminejad et al 2016, Danal et al 2017, 

Heidari et al 2018). In order to minimize the case selection or partition bias, we applied a 

leave-one-case-out (LOCO) based cross-validation method to train and test the classifier (Li 

2006) in which a classifier was trained using 1,043 cases and tested using one remaining 

case. Thus, through 1,044 training and testing iterations for each classifier, each case (either 

two bilateral CC view or MLO view images) had a CAD-generated independent 

classification score ranging from 0 to 1. The higher score indicates the higher risk or 

likelihood of the study case having or developing mammography-detectable cancer in a 

short-term, defined as occurring 12 to 16 months later.

Last, we conducted the following data analysis tasks to assess the performance of using the 

new risk prediction models for case stratification. We used a receiver operating characteristic 

(ROC) based data analysis method. A maximum likelihood-based ROC curve fitting 
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program (ROCKIT, http://xray.bsd.uchicago.edu/krl/roc_soft.htm) was used to generate 

ROC curve and compute the area under the curve (AUC). We also applied an operating 

threshold (T = 0.5) on the classification scores to divide the cases into two groups and 

generated the corresponding confusion matrix. We then computed odds ratio (OR) from the 

confusion matrix. The adjusted odds ratios and their increasing trend were also computed 

and analyzed using a statistical software package (R version 2.1.1, http://www.r-project.org). 

The data analysis results were tabulated and compared.

III. RESULTS

Figure 2 shows an example of applying our CAD scheme to process 4 bilateral CC and 

MLO view images of a “prior” mammography screening case. Table 2 summarizes the 

computed 4 features and detection scores for all suspicious regions detected by the CAD 

scheme on 4 view images of this testing case. In this case, CAD initially detected 81 

(ranging from 14 to 23) seeds for the suspicious lesions in the first step. After applying the 

second step of region growing algorithms, the numbers of the suspicious mass reduced to 32 

suspicious regions detected in 4 images. In the third step of the CAD scheme, an artificial 

neural network based classifier generated a detection score for each of 32 regions, which 

indicates the likelihood of the region associated with a positive mass. Thus, unlike a 

conventional CAD cueing method used in clinical practice, which only cues the regions with 

detection scores greater than a predetermined threshold, all 32 suspicious regions are cued in 

Figure 2 and all detection scores reported in Table 2 were extracted and used to build the 

prediction model. All 32 CAD-generated cueing markers were discarded as false-positives 

and the case was classified as the negative case. In the subsequent mammography screening, 

a malignant mass-type lesion was detected by the radiologists as shown in Figure 3. 

Comparing images in Figures 2 and 3, we observed that the lesion detected in “current” 

images are not “visible” in the “prior” images. However, CAD has two cueing markers with 

detection scores of 0.56 and 0.65 (as shown in Table 2) on the left MLO view “prior” images 

(Figure 2), which seem to match with the region that has a malignant mass detected in the 

“current” left MLO image (Figure 3).

Two logistic regression model based classifiers trained using CC and MLO view images 

yielded areas under ROC curves, AUC=0.652±0.017 and AUC= 0.652±0.017 to predict 

cancer risk, respectively. The results show that using CAD-generated detection results or 

features computed from bilateral MLO view images yielded higher prediction performance 

than using bilateral CC view images (p < 0.05). Figure 4 shows the ROC curve of applying 

the logistic regression model based classifier to MLO view images.

Tables 3 shows a confusion matrix of using CAD-generated detection scores on the bilateral 

MLO view images, which was generated by applying an operation threshold of T=0.5 on the 

risk prediction score. Using this operation score, the risk prediction sensitivity is 27.6% and 

the specificity is 88.0%. Table 4 summarizes the corresponding computed odds ratio and risk 

ratio with their 95% confidence intervals. Table 5 reports the adjusted odds ratios, which 

were computed after applying a set of thresholds to automatically divide 1,044 cases into 5 

subgroups with an approximately equal case number. The risk prediction scores gradually 

increase from subgroup 1 to 5. By using subgroup 1 as a reference (baseline) with 208 cases, 
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the adjusted odds ratios and 95% confidence intervals for subgroups 2 to 5 with 209 cases 

were computed. The maximum adjusted odds in subgroup 5’s ratio is 4.49 with a 95% 

confidence interval of [2.95, 6.83]. Using a regression analysis, the slope of the regression 

line generated from the adjusted odds ratios is significantly different from the zero slope (p 
< 0.01), which indicates an increasing trend of the adjusted odds ratios with an increase of 

risk prediction scores.

IV. DISCUSSION

The impact of false-positives on the subsequent risk of breast cancer has been previously 

investigated. For example, one study reported that women undergoing false-positive 

mammography at the first screening were less likely to participate in subsequent screenings, 

yet were more likely to develop interval cancers or cancers at subsequent screening 

(McCann et al 2002). Another study reported that women having false-positives involving a 

fine-needle aspiration cytology or a biopsy had a higher breast cancer detection risk than 

those involving additional imaging procedures alone in subsequent screening participants 

over a 17-year period. The odds ratios ranged from 1.81 to 2.69 (Casells et al 2013). This 

study provided new evidence and experimental data regarding the possible association 

between false-positives and risk of cancer detection in the subsequent screenings. Unlike 

previous studies of using qualitative assessment, our approach aims to explore, identify 

and/or develop a new quantitative imaging marker based on CAD-generated false-positive 

detection results to help predict short-term breast cancer risk.

Since CAD schemes of mammograms are currently available and used in clinical practice, 

extracting a new quantitative imaging marker from CAD findings in the “current” negative 

images is a more efficient and cost-effective approach to help predict short-term risk of 

breast cancer detection in the subsequent screenings, which does not require additional 

imaging or genomics tests. Since the dataset used in this study was originally assembled for 

developing CAD schemes, it is not an age-matched dataset (as shown in Table 1) and thus 

includes a large fraction of difficult negative cases of younger women with dense breasts 

(Zheng et al 2010, Zheng et al 2012b). Thus, applying CAD scheme to this dataset tends to 

produce more false-positive detections as indicated in the previous study (Gur et al 2004). 

However, despite using this relatively difficult dataset, the result of the risk prediction in this 

study is encouraging, which yielded an odds ratio of 2.80 (as shown in Table 4) or the 

maximum adjusted odds ratio of 4.49 (as shown in Table 5). The odds ratio is higher than or 

quite comparable to many existing risk factors reported in previous breast cancer risk 

prediction studies (Amir et al 2010, McCann et al 2002, Casells et al 2013). Thus, this study 

identified a potentially new clinical application for CAD schemes of mammograms. Also, 

the study indicated that further exploration is worth to optimize this new CAD-based 

imaging marker in future studies.

In this study, we also had several specific observations. First, although CC and MLO view 

mammograms provide complementary information and reading mammograms of both views 

can help detect more cancers and reduce false-positive recalls (Giess et al 2014), CAD 

results on two bilateral CC and MLO view images were highly correlated. In this dataset, 

CAD results on MLO images yielded higher risk prediction performance. AUC value for 
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using CAD-generated results on MLO view images was 0.652±0.017 with 95% CI of 

[0.617, 0.686] while using CAD results on CC view images, AUC value was 0.586±0.018 

with 95% CI of [0.550, 0.621]. The computed correlation coefficients are 0.75 for all 

classification scores of 1,044 cases (or 0.76 and 0.73 for 402 high risk and 642 low-risk 

cases, respectively). Thus, due to the higher correlation coefficient of CAD-generated 

detection results between using bilateral CC and MLO view images, using the conventional 

fusion methods (Wang et al 2011, Tan et al 2015) was unable to further increase AUC value 

beyond that yielded using MLO view images. To clarify, using an average fusion method 

yielded AUC=0.631± 0.018.

Furthermore, previous studies have reported that in the retrospective review of the prior 

images of the positive cases, a large fraction of subtle or occult “early tumors” can be 

detected by radiologists. Thus, in developing the conventional CAD schemes of 

mammograms, these missed or overlooked “early tumors” by the radiologists in the real 

screening environment are typically considered as “false negative” cases and selected as 

positive training cases in order to increase CAD sensitivity to detect more subtle tumors. In 

this study, we also conducted a test by removing 53 cases in which the “early masses” were 

considered “visible” or detectable in our previous retrospective review (Zheng et al 2010). 

After removing these cases, the computed AUC value remained quite constant with only a 

slight change (or increase) from 0.652±0.017 to 0.659±0.018. The results suggest that unlike 

the task to develop the conventional CAD schemes of mammograms, for this new specific 

task of predicting risk of having mammography-detectable cancer in the subsequent (or 

annual) screening, the negative case group should include all cases that were determined as 

negative in the real mammography screening environment (include those potential “false 

negative” cases). More accurately predicting the risk of cancer detection in the next annual 

screening of these “false negative” cases can help prevent further delay of cancer detection.

Although this is a unique study, which has demonstrated the feasibility of a new concept 

with promising experimental results, the study also has a number of limitations. First, 

although we used a relatively large dataset involving 1,044 mammography screening cases, 

it has very high cancer prevalence ratio (402 vs. 642), which does not represent the cancer 

prevalence ratio in the real mammography screening environment. Instead, this is just a 

laboratory-based retrospective study. The potential clinical utility of this approach and/or 

new imaging marker need to be validated in future prospective studies. Second, this study 

only focuses on predicting the risk of having or developing mammography-detectable cancer 

in the subsequent screening. Although detection or distinction between invasive (or 

aggressive) and non-invasive cancer is an important clinical issue and research topic in 

reducing over-diagnosis and over-treatment, whether we can develop a new clinical marker 

or model based on CAD of mammograms to help solve this issue has not been investigated 

in this study. Third, we only extracted 4 simple features from the CAD-generated detection 

results and selected a simple multinomial logistic regression model. In order to further 

improve the performance of risk prediction, more studies are needed to continue exploring, 

identifying and/or developing more effective imaging markers from the CAD-generated 

detection results and their impact on future breast cancer risk.
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V. CONCLUSION

We investigated and demonstrated the feasibility of extracting a new quantitative 

mammographic imaging marker from the existing CAD-generated false-positives on the 

negative mammograms to help predict the risk of cancer detection in the next subsequent 

mammography screening. The discriminatory power of this new imaging marker or risk 

prediction model is higher than or quite comparable to many other breast cancer risk factors 

reported in the literature and/or used in many epidemiology studies based on breast cancer 

risk prediction models. In addition, since commercialized CAD schemes of mammograms 

are currently available and used in clinical practice, computing and utilizing this new 

imaging marker, if successful in the future validation of the prospective studies using the 

large and diverse databases, is a cost-effective approach to help improve the efficacy of 

breast cancer screening using mammography.
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Figure 1. 
Flowchart showing the steps of applying the proposed image processing and risk prediction 

scheme.
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Figure 2. 
An example showing CAD processing results in one testing case of 4 bilateral CC and MLO 

view images. The top row shows 4 original images and the bottom row shows images 

marked with CAD-detected suspicious mass regions. The CAD-generated detection scores 

are listed in Table 2.
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Figure 3. 
A malignant lesion was detected in the CC and MLO views of the left mammogram (as 

pointed by the arrow) in the next subsequent (“current”) screening of the same case as 

shown in Figure2.
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Figure 4. 
ROC curve for MLO view with AUC value of 0.652±0.017.
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Table 1

Distributions of women’s age and subjectively rated breast density (BIRADS), and family history of breast 

cancer in the two groups of high and low-risk cases.

Risk Factor Category High-Risk Cases Low-Risk Cases

Total Cases 402 642

Age (years old) < 45 29 (7%) 169 (26%)

45 – 55 93 (23%) 251 (39%)

55 – 65 148 (37%) 146 (23%)

> 65 132 (33%) 76 (12%)

Mean ± SD 60.88±11.10 52.48±10.52

Median 60 50

Density BIRADS Almost all fatty tissue 22 (5%) 40 (6%)

Scattered fibroglandular densities 153 (38%) 248 (39%)

Heterogeneously dense 217 (54%) 328 (51%)

Extremely dense 10 (2%) 26 (4%)

Family History No family history was known 149 (37%) 285 (44%)

Cancers in the 1st-degree relatives 48 (12%) 50 (9%)

Cancers in the 2nd-degree relatives 59 (15%) 83 (13%)

Cancers in the 3rd-degree relatives 3 (1%) 22 (3%)

other 143 (36%) 202 (31%)
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Table 2

Summary of CAD-detection result and computed 4 features from one example of mammography screening 

case.

Image View CC (left) CC (right) MLO (left) MLO (right)

Detected regions 8 8 8 8

Average score 0.47 0.38 0.48 0.38

Total score 3.74 3.01 3.82 3.05

Initial suspicious seeds 23 14 22 22

Detailed detected regions and their scores

1) 0.44 1) 0.41 1) 0.27 1) 0.34

2) 0.34 2) 0.39 2) 0.31 2) 0.31

3) 0.50 3) 0.66 3) 0.56 3) 0.54

4) 0.46 4) 0.27 4) 0.65 4) 0.19

5) 0.32 5) 0.34 5) 0.38 5) 0.41

6) 0.51 6) 0.31 6) 0.55 6) 0.26

7) 0.52 7) 0.28 7) 0.40 7) 0.44

8) 0.66 8) 0.37 8) 0.70 8) 0.58
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Table 3

Confusion matrix of using CAD generated detection results on bilateral MLO view images.

Actual Positive Actual Negative

Predicted Positive 111 77

Predicted Negative 291 565
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Table 4

Odds Ratio and Risk Ratio of using CAD generated detection results on bilateral MLO view images.

Significance Level 95%

Odds Ratio 2.03 < 2.80 < 3.87

Critical Odds Ratio (COR) 1.11

Risk Ratio 1.77 < 2.30 < 2.99
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Table 5

Adjusted Odds Ratio and 95% confidence interval using risk prediction scores computed from bilateral MLO 

view images.

Group Number High-risk cases Low-risk cases Adjusted Odds Ratio 95% Confidence interval

1 51 157 1 N/A

2 55 154 1.09 0.71 – 1.71

3 80 129 1.91 1.25 – 2.91

4 92 117 2.42 1.59 – 3.68

5 124 85 4.49 2.95 – 6.83
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