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Abstract

Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric 

disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been 

limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances 

in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain 

networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), 

diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity 

and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. 

We employed metrics that index overall connectivity strength, network integration (global 

efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and 

network-based statistical analysis to identify DMN regions of particular importance in PTSD. 

Finally, structural connectivity analyses were used to probe whether white matter abnormalities are 

associated with the identified functional DMN changes. We found decreased DMN functional 

connectivity strength to be associated with increased PTSD symptom severity. Further topological 

characterization suggests decreased functional integration and increased segregation in subjects 
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with severe PTSD. Modularity analysis suggest a spared connectivity in the posterior DMN 

community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened 

connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed 

a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall 

strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD 

symptoms are characterized by decreased overall interconnections. On a finer scale, we found a 

pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community 

and relative sparing of connectivity in this region. The DMN measures established in this study 

may serve as a biomarker of disease severity and could have potential utility in developing circuit-

based therapeutics.
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1. Introduction

Intrinsic connectivity networks (ICNs)—networks of functionally coupled regions with high 

spatial consistency—have been identified as organizational elements of the human brain 

(Damoiseaux et al., 2006; Laird et al., 2011). One of the most consistently identifiable ICN 

is known as the default mode network (DMN), comprising aspects of the ventromedial 

prefrontal cortex (vmPFC), dorsomedial PFC (dmPFC), posterior cingulate cortex (PCC), 

precuneus, medial temporal lobe, and medial and lateral parietal cortices (Andrews-Hanna et 

al., 2010; Buckner et al., 2008; Yeo et al., 2011).

Several groups have seeded known structures of the DMN (e.g., PCC) and found evidence of 

alterations in DMN functional connectivity in PTSD (Bluhm et al., 2009; Daniels et al., 

2011; DiGangi et al., 2016; Lanius et al., 2010; Miller et al., 2017a; Miller et al., 2017b; Qin 

et al., 2012; Shin et al., 2009; Sripada et al., 2012; Tursich et al., 2015; Wu et al., 2011; 

Zhou et al., 2012). While these studies generally have many strengths, when used for the 

purpose of assessing ICNs, seed-based methods suffer from the constraints of having a 

limited number of regions-of-interest (ROIs). With only a limited number of ROIs, such 

approaches may not yield an optimal representation of the connectivity in the DMN as a 

whole. Further, the obtained results may be more prone to noise, since the metrics would be 

derived from few ROIs/connections, which could lead to false negatives (e.g., by missing 

important connections) and false positives (due to conclusions being drawn from non-

representative connections). Heterogeneity in the choice of the seeds also limits comparison 

across studies. Although generalization is currently limited by such constraints, individuals 

with PTSD nonetheless appear to evidence decreased connectivity within the DMN (Akiki et 

al., 2017; Bluhm et al., 2009; DiGangi et al., 2016; Sripada et al., 2012; Tursich et al., 2015), 

though not without inconsistencies (Reuveni et al., 2016).

In addition to seed-based studies, our group and others have previously used network 

approaches to examine whole-brain functional connectivity, using voxel-based global brain 

connectivity (GBC), or other nodal metrics. These PTSD studies have sometimes identified 
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abnormalities in voxels/nodes that are known to be part of the DMN (e.g., decreased vmPFC 

nodal strength in PTSD), providing clues of DMN involvement (Abdallah et al., 2017b; 

Kennis et al., 2016; Koch et al., 2016; Lei et al., 2015; Patel et al., 2012; Suo et al., 2015). 

While these whole-brain studies have many strengths, a major limitation is the lack of ICN 

constraints, rendering the assessment of within-ICN topology impractical. The results 

therefore cannot be interpreted as being ICN-specific.

Considering the increased recognition of the role of ICN alterations in psychiatric disorders, 

and the need for developing circuit-based treatment (Kressel, 2017; Lui et al., 2016; Ross et 

al., 2017; Sheynin and Liberzon, 2016), it is critical for the field to develop tools to map ICN 

abnormalities. The accurate identification of ICN abnormalities could potentially pave the 

way for rational treatment development and target validation (Lanius et al., 2015). This has 

been recognized for brain stimulation approaches such as transcranial magnetic stimulation 

(Opitz et al., 2016), deep brain stimulation (Lozano and Lipsman, 2013), as well as for real 

time fMRI feedback (Garrison et al., 2013; Whitfield-Gabrieli et al., 2017), and 

psychotherapy (Lanius et al., 2015).

Meso-scale analysis of network architecture (e.g., communities) is well established in 

network science, and shifts the analysis to a scale coarser than seed-based and voxel/node-

based whole-brain approaches (Fortunato, 2010; Meunier et al., 2010; Newman, 2011; 

Sporns and Betzel, 2016). Indeed, such methods have been used to define ICNs (e.g., (Power 

et al., 2011)). In the current study, we implemented an ICN-restricted approach to 

systematically investigate connectivity within the DMN. To achieve this goal, we used 1) a 

meta-analytically derived functional brain atlas from Power et al (2011) to delineate ROIs 

(also referred to as nodes); 2) a validated definition of the DMN using the ICN map from 

Yeo et al (2011); and 3) network tools from graph theory to probe connectivity patterns 

(Rubinov and Sporns, 2010). Here, it is important to note that the network-restricted 

methods established in the current study are not limited to a particular ICN or disease. 

Therefore, they can be easily implemented to investigate other circuits and neuropsychiatric 

disorders, extending the scientific benefit beyond the study’s specific PTSD findings.

We hypothesized that PTSD symptoms would be associated with a pattern of network-wide 

connectivity dysfunction in the DMN. We aimed: 1) to determine whether previous 

observations made regarding altered DMN functional connectivity strength in PTSD hold 

true using a method that is DMN-specific, less model-reliant, and standardized (i.e., the 

DMN overall strength – the primary outcome of the study); 2) to further characterize DMN 

dysfunction in terms of network topology (i.e., the ability to integrate and segregate 

information); 3) to determine the modular architecture of the DMN, and to identify sub-

communities relevant to PTSD; 4) to identify subregions in the DMN driving the network-

wide abnormalities using edge-based statistics; 5) to determine, using data from diffusion 

MRI (dMRI), whether structural white matter abnormalities are driving the DMN functional 

abnormalities; and 6) to assess the robustness of results by repeating the analyses using 

alternate ROI definitions and network construction techniques. The main analyses were 

carried out with a dimensional approach based on a continuum of PTSD symptoms severity 

rather than diagnosis, consistent with the continuous nature of the disorder (further details in 

the Data in Brief supplements), but group comparisons were conducted also on the global 
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metrics to ascertain robustness and enable comparisons with other studies that have used 

group approaches.

2. Materials and Methods

This study is a novel analysis of a previously published data set (Abdallah et al., 2017b), 

however, none of the reported measures and analyses in the current report overlap with the 

previous study. Participants and clinical assessment details were previously reported 

(Abdallah et al., 2017b) and are also included in the accompanying data article (see online 

Data in Brief supplements). Written informed consents were obtained from all participants. 

The study was approved by Institutional Review Boards at Yale University and the VA 

Connecticut Healthcare System.

2.1 Neuroimaging Acquisition

Imaging data were collected using a Siemens TIM Trio 3.0 Tesla magnet with a 32-channel 

head coil. Three high-resolution structural MRI (sMRI) scans were used to improve surface 

delineation and enable subject-specific coregistration: 2 × T1-weighted MPRAGE (voxel 

size = 1 × 1 × 1 mm; TR = 2530 ms; TE = 2.71 ms; Flip = 7°); 1 × T2-weighted (voxel size 

= 1 × 1 × 1 mm; TR = 3200 ms; TE = 419 ms; Flip = 120°).

Whole-brain functional data were acquired using two 5-minute T2*-weighted BOLD 

resting-state runs (voxel size = 3.4 × 3.4 × 3.4 mm; TR = 25 ms; TE = 419 ms; Flip = 80°; 

145 frames).

The diffusion MRI (dMRI) scan was acquired with a b-value of 1000 s/mm2, with 128 non-

collinear encoding directions (voxel size = 1.7 × 1.7 × 3.0 mm; TR = 7400 ms; TE = 115 

ms; Flip = 90°). The first image was acquired without diffusion weighting (b = 0 s/mm2).

2.2 First-level Processing

The preprocessing of resting-state fMRI consisted of correcting for motion and time-slice 

acquisition, brain extraction, spatial smoothing with 5 mm FWHM isotropic Gaussian 

kernel, high-pass temporal filtering (100 s), nonlinear registration of structural images to a 

standard Montreal Neurological Institute (MNI) template (2 × 2 × 2 mm), boundary-based 

registration (BBR) to high-resolution T1 images. In addition, we also performed motion 

scrubbing (Power et al., 2012) and regressed motion parameters, cerebrospinal fluid (CSF), 

white matter, the global brain signal, and their 1st derivatives (Power et al., 2014). Quality 

control criteria for each BOLD run were as follows: 1) no motion scrubbing greater than 

50% of the run; and 2) no frame movement larger than 1 functional voxel.

Processing of dMRI scans was done using the trac-all pipeline in Freesurfer (Yendiki et al., 

2011). The processing steps included eddy current and head motion estimation/correction 

(Yendiki et al., 2014), BBR registration of low-b diffusion (b = 0) to the high-resolution 

sMRI scans and registration to MNI template (1 × 1 × 1 mm), tensor estimation (dtifit), and 

the ball-and-stick model fit (bedpostx) (Behrens et al., 2003).
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Tractography was performed by propagating 5000 streamline samples from each voxel using 

the FSL FDT toolbox (probtrackx2) (Behrens et al., 2007). Processing was conducted in the 

subject space.

CAPS scores were not correlated with head motion in the scanner during the fMRI [relative 

motion: r(64) = −0.0497, p = 0.6989; absolute motion: r(64) = −0.1232, p = 0.3361] or dMRI 

[translation motion: r(60) = 0.0445; p = 0.7355; rotation motion: r(60) = 0.1324; p = 0.309] 

scans.

2.3 Network Construction

Using a meta-analytically derived functional brain atlas from Power et al (which we refer to 

throughout as the functional atlas), we partitioned the brain into 264 cortical and subcortical 

ROIs (Power et al., 2011). To construct a DMN-specific network—and in order to avoid a 

potential bias in selecting the DMN component(s) post-signal decomposition— we decided 

to adopt a validated and reliable DMN mask established by Yeo et al (2011) (see online Data 

in Brief supplements for rationale). Of the original 264 ROIs, 64 ROIs were found to belong 

to the DMN map and were subsequently used for the analyses. See Figure 1 for a visual 

representation of the DMN nodes. We extracted and averaged time series from all voxels 

within each ROI. We then generated pairwise Pearson correlation coefficients from each 

ROI and proceeded to apply a Fischer z-transformation (Fz) to stabilize the correlation 

coefficient variance, resulting in a DMN-specific 64 × 64 Fz matrix. Each of the two 5-

minute runs were processed separately until this point and then averaged prior to further 

analyses. Since it has been shown that regressing the global BOLD signal may induce 

anticorrelations, the interpretation of which remains unclear (Keller et al., 2013; Murphy et 

al., 2009), negative weights were initially discarded from analyses. However, the analyses 

were in part repeated with the complete networks (where both positive and negative weights 

are retained), on a post hoc basis to ensure consistency. Since certain graph theoretical 

measures such as the clustering coefficient require that weights fall between 0 and 1 (Onnela 

et al., 2005), Fz matrices were then rescaled by maximal weight (Fzscaled = Fz/max(abs(Fz)); 

between 0 and 1 for the positive-only networks, and between - 1 and 1 for the full networks.

Concerns have been raised with regards to the reliability of weighted networks, namely that 

they are prone to noise (Kramer et al., 2009; Zalesky et al., 2016). To ascertain that our main 

results were not driven by this influence, we attempted two alternative approaches. In the 

first approach, we used stringent thresholding criteria (retaining the top 15% of the edges 

with the strongest weight) to attenuate the effect of such false positives. The second 

approach avoids such an arbitrary threshold and uses statistical significance to determine the 

presence of edges between nodes (Kramer et al., 2009). In addition to having the advantage 

of sparsifying the network in a principled way, such an approach may also reduce false 

negatives compared to highly stringent (arbitrary) cutoffs (Kramer et al., 2009). See Data in 

Brief article for details.

For the modularity analysis, we constructed a whole-sample average network. This 

representative network was constructed by taking the mean weight of each of the each of the 

entries in the 64 × 64 Fz matrices across the 65 participants. As with the networks in the 
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main analyses described above, negative values were discarded, and weights were rescaled 

between 0 and 1 for consistency.

Anatomical networks were constructed using the same parcellation as the functional 

networks (Power et al., 2011). Similar to the functional networks, we obtained a 64 × 64 

DMN-specific anatomical connectivity matrix for each participant. Within each ROI, the 

number of streamlines passing through each voxel were log-transformed and averaged, and 

the matrix rescaled my maximal weight between 0 and 1 to maintain consistency with the 

functional networks). ROI volumes of the adopted functional atlas were uniform (10 mm 

diameter spheres), rendering normalization by ROI size unnecessary. As a quality control 

measure for the probabilistic tractography process, we calculated pairwise Pearson 

correlation values of the anatomical connectivity matrices across participants (values in the 

lower triangles were first transformed into a vector). The values of the correlations ranged 

from r = 0.446 to 0.758 with a mean of 0.612, indicating that the individual connections 

were consistent across individuals in the sample.

All analyses that follow were applied to the weighted matrices, using the weighted-variants 

of the functions included in the Brain Connectivity Toolbox (https://sites.google.com/site/

bctnet) (Rubinov and Sporns, 2010, 2011), GenLouvain (Jeub et al., 2011–2017)(http://

netwiki.amath.unc.edu/GenLouvain), and the Community Detection Toolbox (http://

commdetect.weebly.com), under MATLAB 2016b (MathWorks Inc., Massachusetts, United 

States). Brain maps were generated using BrainNet Viewer (https://www.nitrc.org/projects/

bnv) (Xia et al., 2013).

2.4 Connectivity Strength, Integration, and Segregation

As a primary outcome measure, we used the overall connectivity strength (S). We first 

calculated the nodal strength—the weighted variant of nodal degree, calculated as the sum of 

all neighboring link weights. When averaged across the network, it provides information 

about the overall connectivity strength or wiring investment of the network (Rubinov and 

Sporns, 2010).

We calculated two secondary global measures to further characterize information transfer 

across the network: global efficiency and clustering coefficient. Global efficiency measures 

network integration, the efficiency of overall network communication across the network. 

Mathematically, it is inversely related to the distance between nodes (i.e., the number of 

edges separating them, taking into account the weight of these edges) (Latora and Marchiori, 

2001). The clustering coefficient measures network segregation by quantifying local 

interconnectivity. It is mathematically related to the number and weight of triangles formed 

by nodes and edges (Onnela et al., 2005; Watts and Strogatz, 1998). While the clustering 

coefficient is calculated on a nodal basis, an average across all nodes can be calculated and 

interpreted as a measure of overall network segregation—the capacity of specialized 

processing. All subsequent mentions of the clustering coefficient refer to the mean clustering 

coefficient across all nodes. Weighted generalizations of the clustering coefficient (Onnela et 

al., 2005), and the global efficiency (Latora and Marchiori, 2001; Rubinov and Sporns, 

2010), were adopted for the calculations.
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For a meaningful assessment of the global efficiency and clustering coefficient, the 

variability in overall connectivity strength S across subjects needs to be accounted for 

(Alexander-Bloch et al., 2010; van den Heuvel et al., 2017; van Wijk et al., 2010). One 

method to attenuate this variability consists of expressing variants of the global efficiency 

and clustering coefficient that have been normalized with matched random networks (van 

den Heuvel et al., 2017; van Wijk et al., 2010). Here we use this approach, with random 

networks that match the original networks in terms of degree and strength distribution 

(Maslov and Sneppen, 2002; Rubinov and Sporns, 2011). The normalized variants of the 

global efficiency and clustering coefficient were therefore defined as Enorm = Eoriginal/

Erandom and Cnorm = Coriginal/Crandom. It should be noted however that no method has been 

shown to be completely devoid of problems (van den Heuvel et al., 2017; van Wijk et al., 

2010; Zalesky et al., 2012). For this reason, several other strategies were attempted and can 

be found in the accompanying online Data in Brief supplements.

Linear regressions were used to examine the relationship between CAPS scores and the 

global metrics. Details of group comparisons using general linear modes and robustness 

analyses can also be found in the online Data in Brief supplements.

2.5 Modular Organization

Briefly, we adopted a multi-iterative generalization of the Louvain community detection 

algorithm, with an association-reclustering approach, and applied it to our sample-average 

network (Blondel et al., 2008; Lancichinetti and Fortunato, 2012; Sporns and Betzel, 2016).

We optimized the modularity-like quality function Q (within-partition connectivity relative 

to between-partition connectivity) by running the Louvain algorithm iteratively until a 

plateau is reached and the largest level of modularity is achieved (Blondel et al., 2008; 

Newman and Girvan, 2004). Here a uniform null model rather than the more common 

Newman-Girvan null model was used, as it has been shown to be more suitable for 

correlation networks (Bazzi et al., 2016; Sporns and Betzel, 2016).

A resolution parameter γ can be used with the Louvain algorithm to control the number/size 

of detected communities. Rather than solely focusing on default modularity (i.e., for γ = 1), 

we explored a range of γ values (Betzel and Bassett, 2017; Betzel et al., 2013; Hric et al., 

2014; Yang and Leskovec, 2015). Our goal was to identify a resolution at which the outputs 

of the Louvain algorithm were most stable (Traud et al., 2011), while retaining 

interpretability and plausibility with regard to the organization of the DMN (Andrews-Hanna 

et al., 2010). To achieve the latter, we made the decision to focus on partition solutions 

where the total number of detected communities was ≤ 6. We started with an arbitrary range 

for values of γ between 0.5 and 1.5, in increments of 0.01.

A shortcoming of modularity maximization methods is their degeneracy: they may output 

different partitions despite similar Q values (Good et al., 2010; Sporns and Betzel, 2016). 

Rather than adopt one of such outputs, we ran 200 randomly-seeded iterations of the 

algorithm (each optimized for Q), for each value of γ. We used the variability in the 

partition solutions to identify the candidate γ where the variability would be lowest, which 

we used as an indicator of the presence of well-defined communities at this resolution 
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(Betzel and Bassett, 2017; Doron et al., 2012). To quantify partition solution similarity, we 

used the Rand index (Traud et al., 2011). For each value of γ, z-scored Rand indices were 

calculated on a pairwise basis from the 200 partition solutions, and then averaged. We then 

selected the γ value corresponding to the maximal z-Rand value, in the range of γ values 

resulting in ≤ 6 total number of detected communities (Figure 2).

To resolve the variability across the 200 partition solutions, an association-reclustering 

approach was used to reach consensus (Lancichinetti and Fortunato, 2012). We generated a 

64 × 64 agreement matrix D from the 200 partition solutions. D was constructed such as 

each cell indicates the probability that nodes were assigned to the same community, and was 

therefore weighted (Sporns and Betzel, 2016). Without thresholding, the Louvain algorithm 

was run on D for another 200 iterations, to verify that an identical partitioning solution has 

been reached. Here we used the commonly used permutation null model (Lancichinetti and 

Fortunato, 2012; Sporns and Betzel, 2016). It should be noted however, that in some cases 

applying a threshold to D and/or repeated meta-association-reclustering steps are necessary 

to converge onto a stable partition (Sporns and Betzel, 2016); we found this to be 

unnecessary in our case, likely due to the relatively high consistency among the partition 

solutions.

2.6 Modularity and PTSD Severity

In addition to identifying the functional modular organization of the DMN in our sample 

(Figure 3), our interest was in determining whether modularity is associated with PTSD 

symptom severity. We moved back to the subject level, and used the partition solution that 

we identified above to calculate the modularity Q for each subject, in an approach adopted 

from (Betzel et al., 2014).

However, modular organization is known to be affected by the overall level of connectedness 

of the network (Fortunato and Barthelemy, 2007). To inform whether the relationship 

between subject-specific modularity and PTSD symptom severity is driven by this 

phenomenon, we examined the relationship between Q and S.

To try to obtain meaningful results at the level of the individual communities despite a 

potential systematic bias due to overall DMN connectivity differences, we calculated a ratio 

of the within-community strength to S for each. The relationship between these ratios and 

PTSD symptom severity was examined using linear regressions, and FDR was used to 

control for multiple comparisons.

2.7 Edge Statistical Testing

Another approach to we used to map abnormalities observed on the whole-network level to a 

finer scale consisted of statistically testing all edges in the networks— [N × (N − 1)/2] = 

2,016 edges in this case, while correcting for family-wise error. The DMN connectivity 

matrices of each participant were entered as dependent variables and the total CAPS score 

was used as a predictor variable (connection threshold t = 3.5; permutations = 10,000; 

corrected α < 0.05). Network-based statistics (NBS) were used to control for family-wise 

error at the subnetwork level (Zalesky et al., 2010). Robustness analyses can be found in the 

online Data in Brief supplements.
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2.8 Anatomical Connectivity

Highly informative observations have been recently made regarding the relationship between 

functional and structural networks obtained from the same individuals (Betzel et al., 2013; 

Goni et al., 2014; Honey et al., 2009; Mišić et al., 2016). However, the scope of our analysis 

here is limited to assessing whether there is evidence of a direct parallel between white 

matter dysconnectivity and the functional abnormalities that we identified in this sample, 

and so are focused and post hoc in nature. These analyses included a subsample of 

individuals with both fMRI and dMRI scans (n = 61).

A linear regression was used to assess the relationship between structural connectivity 

strength (the structural equivalent of S) and CAPS. To test whether the frontal 

dysconnectivity evidenced in the functional edge analysis was associated (e.g., potentially 

mediated) by white matter structural connectivity, we tested these functionally abnormal 

edges/nodes in structural networks using NBS. To increase sensitivity, we reduced multiple 

comparisons by only including the edges/nodes that were detected with the functional NBS 

analysis.

2.10 Robustness of Global Measures

In order to assess the robustness of our global metrics and ascertain that the detected 

changes were not due to intricacies of the employed network construction method, we 

conducted additional robustness analyses using alternate node (HCP multi-modal atlas), 

edge (signed, thresholded, statistically significant), and DMN definitions (Glasser et al., 

2016; Kramer et al., 2009; Power et al., 2011; van den Heuvel et al., 2017). Details can be 

found in the online Data in Brief supplements.

3. Results

Our sample was, on average, comprised of Veterans with moderate to severe PTSD severity 

[mean CAPS = 43.4 (SEM = 3.7)], but included individuals that spanned the whole spectrum 

of the disease, with 54% meeting DSM-IV criteria for PTSD diagnosis. The mean age was 

34.8 (SEM = 1.2), and the participants were predominately male (89%). Additional 

demographics and behavioral details can be found in the online Data in Brief supplements.

3.1 Connectivity Strength, Integration, and Segregation

For our primary measure, we found evidence of reduced functional connectivity strength (S) 

within the DMN in participants with high PTSD symptom severity [r(64) = −0.329, p = 

0.0075; Figure 4A]. Similarly, group comparisons revealed a lower S in subjects who met 

DSM-IV criteria for PTSD compared to those who did not (i.e., combat controls): [combat 

controls (CC): mean = 10.30 ± 0.31; PTSD: mean = 9.23 ± 0.28; p = 0.014; Figure 4B].

As for the secondary global measures, we found reduced global efficiency [Enorm: r(64) = 

−0.299, p = 0.0157; Figure 5A], and increased overall clustering coefficient [Cnorm: r(64) = 

0.334, p = 0.0065; Figure 5B] in participants with high PTSD symptom severity. Similarly, 

group comparisons revealed a lower Enorm but higher Cnorm in subjects who met DSM-IV 

criteria for PTSD compared to those who did not: Enorm [CC: mean = 0.892 ± 0.004; PTSD: 
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mean = 0.877 ± 0.004; p = 0.01; Figure 5C], and Cnorm [CC: mean = 1.067 ± 0.009; PTSD: 

mean = 1.097 ± 0.008; p = 0.016; Figure 5D].

Controlling for various behavioral and epidemiological potential confounds did not change 

the pattern of the results. None of the PTSD subscale scores were significant as part of a 

multivariable regression when explored with S, Enorm, or Cnorm (p > 0.15 in all cases). 

Combat exposure severity did not correlate with any of the connectivity measures, nor was 

the interaction with CAPS significant (p > 0.4 in all cases). For details, see online Data in 

Brief supplements.

3.2 Modularity

The highest average z-Rand score was identified at γ = 1.26 (Figure 2). Applying the 

association-reclustering procedure to the ensemble of 200 partition solutions at this 

resolution yielded a consensus partition with 4 communities (Figure 3). The divisions were 

as follows: a posterior community (PCC, precuneus, and left angular gyrus), a frontal 

community (vmPFC and dmPFC), an MT-P community (middle temporal and 

parahippocampal cortex), and an MT-IF (middle temporal and inferior frontal cortex) 

community.

Moving back from the average network to the individuals’ networks, we were interested in 

exploring whether PTSD symptom severity was associated with modularity. There was a 

trend-level significance for the regression between the total modularity Q and CAPS [r(64) = 

0.252, p = 0.0430]. Yet, there was also a strong inverse correlation between Q and S [r(64) = 

−0.677, p <0.0001], raising the possibility that an increase in modularity may be driven by 

loss of connectivity in the DMN (described under 3.1).

To try to obtain more meaningful results at the level of the communities and assess whether 

particular communities were driving the decrease in overall strength, for each of the 4 

modules, we calculated a ratio of the within-module strength to S. Here we found that 

Sposterior/S was positively correlated with CAPS [r(64) = 0.346, corrected p = 0.019; FDR 

adjusted for 4 comparisons], but no correlation was evident between Sfrontal/S [r(64) = 

−0.007, corrected p = 0.955; FDR adjusted], SMT/S [r(64) = 0.116, corrected p = 0.609; FDR 

adjusted], or SMT-IF/S [r(64) = 0.094, corrected p = 0.609; FDR adjusted] and CAPS.

Totals for within-community and between-community strengths were both negatively 

correlated with CAPS [Swithin: r(64) = −309, p = 0.0124; Sbetween: r(64) = −0.314, p = 

0.0110].

3.3 Edge Statistical Testing

After correcting for family-wise error using NBS, analyses at the level of the whole DMN 

identified a total of 6 abnormal edges and 7 nodes, with connection weights that were 

negatively associated with PTSD severity (Figure 6). Out of the 6 abnormal edges, all 

involve the PFC [mPFC and lateral orbitofrontal cortex (lOFC)]. No edges were found to be 

positively associated with PTSD severity. More details can be found in the online Data in 

Brief supplements.
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3.4 Anatomical Connectivity

No statistically significant relationship was found between CAPS and structural strength 

[r(60) = −0.136, p = 0.2906]. A positive correlation was found between structural strength 

and functional strength [r(60) = 0.288, p = 0.0234]. To ensure that this was not a false-

negative finding due to the suboptimal functional brain atlas, the dMRI networks were 

reconstructed with the HCP multi-modal atlas (normalized by ROI volume), here too, no 

statistically significant relationship was found [S: r(60) = −0.127, p = 0.335].

To test whether the PFC functional dysconnectivity identified using NBS is driven by a 

disruption in structural connectivity, we tested these functionally abnormal edges/nodes in 

structural networks using NBS, in the subset of patients having completed both fMRI and 

dMRI scans (n = 61). None of the structural edges were found to be associated with CAPS.

3.5 Robustness of Global Measures

The calculations of the global measures (S, Enorm, and Cnorm) using the different node and 

edge definitions revealed a largely similar pattern of results. The primary outcome measure 

S was consistently negatively correlated with CAPS scores. Details can be found in the 

online Data in Brief supplements.

4. Discussion

Consistent with the study aims, we established measures of ICN connectivity, and tested 

their utility in identifying a DMN endophenotype of PTSD symptom psychopathology. 

Confirming our hypothesis, the results provide evidence of altered functional connectivity in 

the DMN of Veterans with high PTSD symptom severity. While we opted for a single group 

dimensional analysis for our primary analyses (see Data in Brief supplements for 

justification), we also compared the global measures between PTSD and non-PTSD 

subjects, this was done to ensure the robustness of the results, and to enable a meaningful 

comparison between our results and those of other studies that follow a group comparison 

approach. To this aim, we divided our sample into two groups: those who met DSM-IV 

criteria for PTSD and those who did not, i.e., combat exposed controls.

Our primary measure of DMN overall functional connectivity strength S was negatively 

correlated with symptom severity. Consistent with the correlational analysis, we found that 

the PTSD group was characterized with a decreased S, compared to the non-PTSD combat 

exposed group. These findings extend prior evidence from seed-based studies showing a 

seed-to-seed decreased connectivity in PTSD (Bluhm et al., 2009; DiGangi et al., 2016; 

Miller et al., 2017a; Sripada et al., 2012; Tursich et al., 2015). Compared to seed 

connectivity, S may be more robust in assessing ICNs as it leverages connectivity from the 

whole ICN, rather than being based on a few seeds only. For the same reason, it may lead to 

more reproducible results, as S is less likely to be influenced by small perturbations (e.g., 

alignment, or other localized noise issues) given that it is calculated from diversified nodes 

(e.g., 64 in this study). For example, a recent study examined within-DMN functional 

connectivity but failed to demonstrate DMN alterations in the PTSD group (Reuveni et al., 

2016). However, only 4 DMN seeds (mPFC, precuneus, inferior parietal lobules bilaterally) 
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were used to explore connectivity between these ROIs and a DMN map decomposed on a 

subject-specific basis. The reliance on a small number of nodes could have resulted in a 

decreased sensitivity to detect differences. By adopting a 64-node functionally-derived map 

for the DMN, we have taken a step towards less model-dependence (e.g., using seeds in the 

mPFC or PCC as a surrogate for the DMN), while avoiding the shortcomings of a sample- or 

subject-specific DMN decomposition.

With regard to the secondary measures of global topology, the normalized global efficiency 

Enorm was negatively correlated with PTSD symptom severity, while the clustering 

coefficient Cnorm was positively correlated. Here too, the results of the group comparisons 

were consistent with the correlation analyses: the PTSD group was characterized by lower 

Enorm and higher Cnorm compared to the non-PTSD combat exposed group. These 

topological alterations may represent an overall loss of integration (global efficiency) and 

increased segregation (clustering coefficient) of the DMN with increasing PTSD severity. 

This finding could reflect a tendency of increased regional specialization where local 

interconnections would be expected to be augmented at the expense of integrative long-

range connections. Taken together, these findings could represent a deviation from the 

optimal cost-effective connectivity pattern (Bassett and Bullmore, 2016). The DMN plays an 

important role in internal mentation and self-directed thought. This disrupted connectivity 

may reflect a reduced ability to maintain a tranquil state of internal mentation due to 

increased arousal and intrusive and negative thoughts that is observed in PTSD (Abdallah et 

al., 2017a).

In the current study, we explored modularity at different scales and selected scale that 

yielded the most stable (similar) partitioning solutions. In the consensus partition we 

adopted, the DMN was partitioned into 4 communities: (1) posterior, comprising the PCC, 

precuneus, and left angular gyrus; (2) frontal, comprising nodes in the vmPFC and dmPFC; 

(3) MT-P, comprising parts of the middle temporal and parahippocampal cortex; and MT-IF, 

comprising parts of the middle temporal and inferior frontal cortex. Interestingly, although 

the division into frontal, posterior, and MT is consistent with recent evidence from 

functional and structural studies that suggest that the DMN comprises distinct subsystems, 

our analysis suggested a division of the MT into MT-P and MT-IF (Andrews-Hanna et al., 

2010; Yeo et al., 2011). It remains unclear whether this is due to differences in network 

definitions/preprocessing or in the sample (healthy vs. all combat-combat exposed and in 

part with PTSD diagnosis). Adopting a coarser resolution (γ = [0.6–0.8]) would have 

yielded 3 communities, more consistent with such earlier studies, but was markedly less 

stable than the 4-community solution (see Figure 2). This partition solution was applied to 

the individual networks. A statistically significant correlation was present between PTSD 

symptom severity and the total modularity Q, although this might have been driven by the 

difference in S. After calculating the ratio of the strength within each of the communities to 

total S, we were able to find that connectivity within the posterior community (PCC, 

precuneus) may have been spared relative to the decreased connectivity strength in the rest 

of the DMN. Breaking up S into within- and between-community connectivity strength 

shows that both contribute similar variances (9.5% and 9.8% respectively) to PTSD 

symptom severity.
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The results of our whole-DMN NBS analyses suggests that in PTSD the PFC may be 

characterized by loss of connectivity with the rest of the DMN: all impaired edges (edge 

strength negatively correlated with symptom severity) involved the mPFC or lOFC. The 

dysconnectivity between the mPFC and lOFC node (Figure 6) may be of particular clinical 

relevance to PTSD, since the lOFC is known to relay sensory input to the mPFC and support 

stimulus-value associations (Euston et al., 2012). lOFC-mPFC dysconnectivity may 

therefore reflect this system’s impaired ability to support cognitive reappraisal. Task fMRI 

studies have implicated the mPFC in self-judgment and assessing personal significance 

(Heatherton et al., 2006; Mitchell et al., 2006). It is therefore possible that abnormalities in 

this area are linked to the pervasive negative thoughts often present in PTSD. These 

localized findings may be relevant for future circuit-based brain stimulation treatments 

(Karsen et al., 2014; Nahas et al., 2010; Opitz et al., 2016; Sheynin and Liberzon, 2016). 

The characterization of the meso-scale network architecture in disease may also have 

translational value beyond guiding brain stimulation applications (Lanius et al., 2015). Other 

approaches that enable the manipulation of ICN-level activity are currently in development 

(Garrison et al., 2013; Whitfield-Gabrieli et al., 2017). Another possible application could be 

the potential for specificity of DMN biomarkers in particular. While in this study we have 

identified a loss of connectivity in the DMN that is associated with PTSD, the opposite 

pattern of DMN connectivity, i.e., strengthening of DMN connectivity has been described in 

major depressive disorder (Mulders et al., 2015). Accurate characterization can in the future 

pave way for more fine-grained investigations aimed at predicting disease-specific treatment 

response and the identification of at-risk individuals (e.g., using longitudinal data).

Using dMRI data from the same subjects, anatomical connectivity strength within the DMN 

was positively correlated with functional connectivity strength (consistent with prior 

evidence (Honey et al., 2009)), but was not found to be significantly associated with PTSD 

severity. Edges identified in the functional NBS analyses were also not found to be 

associated with PTSD symptom severity. These findings suggest that the abnormalities may 

be confined to the functional level, rather than being due to underlying white matter 

dysconnectivity (e.g., conditions such as traumatic brain injury (Eierud et al., 2014)). 

Though it should be noted that there remains a possibility of more complex interactions, to 

be thoroughly explored in future studies.

Recognizing the potential variability due to the choice of atlas and network construction 

method, we repeated our analyses of the global topological measures using networks 

constructed with alternate definitions. As alternate node definition, we used a state of the art 

multi-modal cortical parcellation (Glasser et al., 2016). We also attempted various edge 

definitions: signed full, sparse thresholded (15% density), and statistically significant 

networks (Kramer et al., 2009). We obtained a largely similar pattern of results for our 

global topological metrics (see online Data in Brief supplements). DMN overall strength S 
was more robust than global efficiency and clustering coefficient. This apparent robustness 

in our method affirms its potential utility as a biomarker, although the specificity and 

sensitivity of these findings to PTSD remains to be fully assessed. This will necessitate a 

systematic examination of the DMN across different neuropsychiatric disorders or clusters 

of symptoms using similar methods, and in other PTSD samples to assess replicability.
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Limitations and future directions

Limitations in the current study design include its cross-sectional nature, which prevents 

conclusions as to whether altered DMN connectivity represents a vulnerability for 

developing PTSD in response to trauma, or whether these changes are trauma-induced. The 

decision not to exclude comorbid psychiatric and substance abuse disorders, mild TBI, and 

psychotropic medications limits internal validity, although it enhances external validity by 

rendering our sample closer to the Veterans PTSD population. We attempted to ensure that 

these confounds did not drive the results by conducting analyses with a subgroup of non-

medicated subjects, and subgroup of subjects with no psychiatric comorbidities. We also 

covaried for these confounds in post hoc tests. The results remained consistent with the full 

group analyses and can be found in the Data in Brief supplements. However, we recognize 

that this issue remains a significant limitation that can only be thoroughly addressed in 

samples consisting of non-comorbid and non-medicated individuals. The absence of a non-

combat-exposed healthy control group limits the conclusions drawn to the combat-exposed 

population. Women comprised only 11% of the total sample, which limits generalizability of 

the results to that group. The primary outcome of the study was S, while all other analyses 

are secondary in nature. Therefore, it should be noted that the secondary analyses were often 

not adjusted for the number of comparisons across methods and they should therefore be 

interpreted in this context (the modularity and edge-wise analyses were each adjusted 

internally: 4 comparisons for modularity and 2016 comparisons for edge-wise statistics). 

Moreover, while putative confounds of functional connectivity (e.g., motion artifacts) were 

addressed in the processing pipeline, and a systematic bias in in-scanner movement is 

unlikely (see 2.2), there remains a possibility that other currently unknown confounds are at 

play.

Other limitations regarding the functional networks should be mentioned. First, fMRI-

derived networks are known to be noisy and can be affected by non-trivial choices in the 

network construction process, and to date, there’s no consensus on the optimal method 

(Fornito et al., 2015; Kramer et al., 2009; van den Heuvel et al., 2017; Zalesky et al., 2016). 

Although we used several different alternate methods to demonstrate relative robustness, this 

was by no means comprehensive as there remains other methods that could be assessed in 

the future. A limitation specific to the global efficiency and clustering coefficient is that the 

effect of S should be removed prior to assessing them (otherwise the varying level of S 
across individuals may bias their calculation). Here we reported the results obtained using 

the normalization method with a null model that preserves the weight and degree distribution 

(Maslov and Sneppen, 2002; Rubinov and Sporns, 2010; van den Heuvel et al., 2017), since 

it was the one that appropriately mitigated this effect (a detailed analysis can be found in the 

Data in Brief supplements). The appropriateness of such null models has been recently put 

into question (Zalesky et al., 2012); these concerns appear to be specific to making empirical 

observations as they may lead to exaggerated small-world properties in the networks. 

Although in this study we make no such observations and we only use them to account for 

the difference in connectivity, improved null models should be developed in the future to 

confirm these results. The asymmetrical findings in the left mPFC and lOFC needs to be 

fully assessed. Differences in both hemispheres have been reported in the literature (Kennis 

et al., 2015; Patel et al., 2012; Yamasue et al., 2003). Therefore, it remains to be seen if this 
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asymmetry represents true lateralization of function (e.g., left vmPFC is linked to emotional 

appraisal (Etkin and Schatzberg, 2011)).
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Figure 1. DMN Nodes
Figure depicts the 64 nodes from the functional atlas comprising the DMN that we used for 

the primary analysis.
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Figure 2. Identification of candidate resolution parameters
Plot representing the z-Rand scores and number of communities for each resolution 

parameter (γ). The number of communities were determined after the association-

reclustering step. The dashed line represents the local z-Rand maximum (30.5), 

corresponding to γ = 1.26, at which the outputs of the Louvain algorithm were most stable 

(while the total number of communities remained ≤ 6).
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Figure 3. The partition solution resulting in 4 DMN communities
A predominantly posterior community (yellow; PCC, precuneus, and left angular gyrus), a 

frontal community (green; vmPFC and dmPFC), an MT-parahippocampal (MT-P 

community (red; middle temporal and parahippocampal cortex), and an MT-inferior frontal 

(MT-IF) community (blue).
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Figure 4. PTSD and DMN connectivity strength
(A) Scatter plot depicting the correlation between PTSD severity, as measured by the 

Clinician Administered PTSD Scale (CAPS), and DMN overall connectivity strength (S) 

[r(64) = −0.329, p = 0.0075]. The gray area is the 95% confidence band of the best-fit line. 

(B) Bar graph depicting means and standard error of S across groups [CC: mean = 10.30 

± 0.31; PTSD: mean = 9.23 ± 0.28; p = 0.014].
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Figure 5. PTSD and DMN integration and segregation
(A–B) Scatter plots depicting the correlation between PTSD severity, as measured by the 

Clinician Administered PTSD Scale (CAPS), and DMN integration and segregation. The 

gray area is the 95% confidence band of the best-fit line. (A) represents the normalized 

global efficiency [Enorm: r(64) = −0.299, p = 0.0157]; (B) represents the clustering coefficient 

[Cnorm: r(64) = 0.334, p = 0.0065]. (C–D) Bar graphs depicting means and standard error of 

Enorm: [CC: mean = 0.892 ± 0.004; PTSD: mean = 0.877 ± 0.004; p = 0.01], and Cnorm: 

[CC: mean = 1.067 ± 0.009; PTSD: mean = 1.097 ± 0.008; p = 0.016], across the CC and 

PTSD groups.
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Figure 6. Sub-network within the DMN negatively associated with PTSD severity after 
correcting for family-wise error
Connections represent edges that were negatively associated with CAPS severity after 

correction for multiple comparisons with NBS. Note that all abnormal edges involve the 

PFC (mPFC and lateral orbitofrontal cortex).

Akiki et al. Page 26

Neuroimage. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Neuroimaging Acquisition
	2.2 First-level Processing
	2.3 Network Construction
	2.4 Connectivity Strength, Integration, and Segregation
	2.5 Modular Organization
	2.6 Modularity and PTSD Severity
	2.7 Edge Statistical Testing
	2.8 Anatomical Connectivity
	2.10 Robustness of Global Measures

	3. Results
	3.1 Connectivity Strength, Integration, and Segregation
	3.2 Modularity
	3.3 Edge Statistical Testing
	3.4 Anatomical Connectivity
	3.5 Robustness of Global Measures

	4. Discussion
	Limitations and future directions

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

