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Abstract

Recent studies have shown the value of using deep learning models for mapping and 

characterizing how the brain represents and organizes information for natural vision. However, 

modeling the relationship between deep learning models and the brain (or encoding models), 

requires measuring cortical responses to large and diverse sets of natural visual stimuli from single 

subjects. This requirement limits prior studies to few subjects, making it difficult to generalize 

findings across subjects or for a population. In this study, we developed new methods to transfer 

and generalize encoding models across subjects. To train encoding models specific to a target 

subject, the models trained for other subjects were used as the prior models and were refined 

efficiently using Bayesian inference with a limited amount of data from the target subject. To train 

encoding models for a population, the models were progressively trained and updated with 

incremental data from different subjects. For the proof of principle, we applied these methods to 

functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of 

naturalistic videos, while a deep residual neural network driven by image recognition was used to 

model visual cortical processing. Results demonstrate that the methods developed herein provide 

an efficient and effective strategy to establish both subject-specific and population-wide predictive 

models of cortical representations of high-dimensional and hierarchical visual features.
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Introduction

An important area in computational neuroscience is developing encoding models to explain 

brain responses given sensory input (Trappenberg, 2009). In vision, encoding models that 

account for the complex and nonlinear relationships between natural visual inputs and 

evoked neural responses can shed light on how the brain organizes and processes visual 

information through neural circuits (Paninski et al., 2007; Naselaris et al., 2011; Chen et al., 

2014; Cox and Dean, 2014; Kriegeskorte, 2015). Existing models may vary in the extent to 

which they explain brain responses to natural visual stimuli. For example, Gabor filters or 

their variations explain the neural responses in the primary visual cortex but not much 

beyond it (Kay et al., 2008; Nishimoto et al., 2011). Visual semantics explain the responses 

in the ventral temporal cortex but not at lower visual areas (Naselaris et al., 2009; Huth et 

al., 2012). On the other hand, brain-inspired deep neural networks (DNN) (LeCun et al., 

2015), mimic the feedforward computation along the visual hierarchy (Kriegeskorte, 2015; 

Yamins and DiCarlo, 2016; Kietzmann et al., 2017; van Gerven, 2017), match human 

performance in image recognition (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; 

Szegedy et al., 2015; He et al., 2016), and explain cortical activity over nearly the entire 

visual cortex in response to natural visual stimuli (Yamins et al., 2014; Güçlü and van 

Gerven, 2015b, a; Wen et al., 2017, 2018; Eickenberg et al., 2017; Seeliger et al., 2017; Han 

et al., 2017; Shi et al., 2018).

These models also vary in their complexity. In general, a model that explains brain activity 

in natural vision tends to extract a large number of visual features given the diversity of the 

visual world and the complexity of neural circuits. For DNN, the feature space usually has a 

very large dimension in the order of millions (Krizhevsky et al., 2012; Simonyan and 

Zisserman, 2014; Szegedy et al., 2015; He et al., 2016). Even if the model and the brain 

share the same representations up to linear transform (Yamins and DiCarlo, 2016), matching 

such millions of features onto billions of neurons or tens of thousands of neuroimaging 

voxels requires substantial data to sufficiently sample the feature space and reliably train the 

transformation from the feature model to the brain. For this reason, current studies have 

focused on only few subjects while training subject-specific encoding models with neural 

responses observed from each subject given hundreds to thousands of natural pictures 

(Güçlü and van Gerven, 2015b; Eickenberg et al., 2017; Seeliger et al., 2017), or several to 

tens of hours of natural videos (Güçlü and van Gerven, 2015a; Wen et al., 2017, 2018; 

Eickenberg et al., 2017; Shi et al., 2018). However, a small subject pool incurs concerns on 

the generality of the conclusions drawn from such studies. Large data from single subjects 

are rarely available and difficult to collect especially for patients and children. It is thus 

desirable to transfer encoding models across subjects to mitigate the need for a large amount 

of training data from single subjects.

Transferring encoding models from one subject to another should be feasible if different 

subjects share similar cortical representations of visual information. Indeed, different 

subjects show similar brain responses to the same natural visual stimuli (Hasson et al., 2004; 

Lu et al., 2016), after their brains are aligned anatomically. The consistency across subjects 

may be further improved by functional alignment of fine-grained response patterns (Haxby 

et al., 2011; Conroy et al., 2013). Recent studies have also shown that encoding (Güçlü and 
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van Gerven, 2015b; Wen et al., 2017) or decoding (Raz et al., 2017; Wen et al., 2017) 

models trained for one subject could be directly applied to another subject for reasonable 

encoding and decoding accuracies. Whereas these findings support the feasibility of 

transferring encoding and decoding models from one subject to another, it is desirable to 

consider and capture the individual variations in functional representations. Otherwise, the 

encoding and decoding performance is notably lower when the models are trained and tested 

for different subjects than for the same subject (Wen et al., 2017).

Beyond the level of single subjects, what is also lacking is a method to train encoding 

models for a group by using data from different subjects in the group. This need rises in the 

context of “big data”, as data sharing is increasingly expected and executed (Teeters et al., 

2008; Van Essen et al., 2013; Paltoo et al., 2014; Poldrack and Gorgolewski, 2014). For a 

group of subjects, combining data across subjects can yield much more training data than are 

attainable from a single subject. A population-wise encoding model also sets the baseline for 

identifying any individualized difference within a population. However, training such 

models with a very large and growing dataset as a whole is computationally inefficient or 

even intractable with the computing facilities available to most researchers (Fan et al., 2014).

Here, we developed methods to train DNN-based encoding models for single subjects or 

multiple subjects as a group. Our aims were to 1) mitigate the need for a large training 

dataset for each subject, and 2) efficiently train models with big and growing data combined 

across subjects. To achieve the first aim, we used pre-trained encoding models as the prior 

models in a new subject, reducing the demand for collecting extensive data from the subject 

in order to train the subject-specific models. To achieve the second aim, we used incremental 

learning algorithm (Fontenla-Romero et al., 2013) to adjust an existing encoding model with 

new data to avoid retraining the model from scratch with the whole dataset. To further 

leverage both strategies, we employed functional hyper-alignment (Guntupalli et al., 2016) 

between subjects before transferring encoding models across subjects. Using experimental 

data for testing, we showed the merits of these methods in training the DNN-based encoding 

models to predict functional magnetic resonance imaging (fMRI) responses to natural movie 

stimuli in both individual and group levels.

Methods and Materials

Experimental data

In this study, we used the video-fMRI data from our previous studies (Wen et al., 2017, 

2018). The fMRI data were acquired from three human subjects (Subject JY, XL, and XF, all 

female, age: 22–25, normal vision) when watching natural videos. The videos covered 

diverse visual content representative of real-life visual experience.

For each subject, the video-fMRI data was split into three independent datasets for 1) 

functional alignment between subjects, 2) training the encoding models, and 3) testing the 

trained models. The corresponding videos used for each of the above purposes were 

combined and referred to as the “alignment” movie, the “training” movie, and the “testing” 

movie, respectively. For Subjects XL and XF, the alignment movie was 16 minutes; the 

training movie was 2.13 hours; the testing movie was 40 minutes. To each subject, the 
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alignment and training movies were presented twice, and the testing movie was presented 

ten times. For Subject JY, all the movies for Subjects XL and XF were used; in addition, the 

training movie also included 10.4 hours of new videos not seen by Subjects XL and XF, 

which were presented only once.

Despite their different purposes, these movies were all split into 8-min segments, each of 

which was used as continuous visual stimuli during one session of fMRI acquisition. The 

stimuli (20.3°×20.3°) were delivered via a binocular goggle in a 3-T MRI system. The fMRI 

data were acquired with 3.5 mm isotropic resolution and 2 s repetition time, while subjects 

were watching the movie with eyes fixating at a central cross. Structural MRI data with T1 

and T2 weighted contrast were also acquired with 1 mm isotropic resolution for every 

subject. The fMRI data were preprocessed and co-registered onto a standard cortical surface 

template (Glasser et al., 2013). More details about the stimuli, data acquisition and 

preprocessing are described in our previous papers (Wen et al., 2017, 2018).

Nonlinear feature model based on deep neural network

The encoding models took visual stimuli as the input, and output the stimulus-evoked 

cortical responses. As shown in Fig. 1, it included two steps. The first step was a nonlinear 

feature model, converting the visual input to its feature representations; the second step was 

a voxel-wise linear response model, projecting the feature representations onto the response 

at each fMRI voxel (Kay et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011; Huth et 

al., 2012; Güçlü and van Gerven, 2015b, a; Wen et al., 2017, 2018; Eickenberg et al., 2017; 

Seeliger et al., 2017; Han et al., 2017; Shi et al., 2018). The feature model is described in 

this sub-section, and the response model is described in the next sub-section.

In line with previous studies (Güçlü and van Gerven, 2015b, a; Wen et al., 2017, 2018; 

Eickenberg et al., 2017; Seeliger et al., 2017), a deep neural network (DNN) was used as the 

feature model to extract hierarchical features from visual input. Our recent study (Wen et al., 

2018) has demonstrated that deep residual network (ResNet) (He et al., 2016), a specific 

version of the DNN, was able to predict the fMRI responses to videos with overall high and 

statistically significant accuracies throughout the visual cortex. Therefore, we used ResNet 

as an example of the feature model in the present study for transferring and generalizing 

encoding models across subjects. Briefly, ResNet was pre-trained for image recognition by 

using the ImageNet dataset (Deng et al., 2009) with over 1.2 million natural images 

sampling from 1,000 categories, yielding 75.3% top-1 test accuracy. The ResNet consisted 

of 50 hidden layers of nonlinear computational units that encoded increasingly abstract and 

complex visual features. The first layer encoded location and orientation-selective visual 

features, whereas the last layer encoded semantic features that supported categorization. The 

layers in between encoded increasingly complex features through 16 residual blocks. 

Passing an image into ResNet yielded an activation value at each unit. Passing every frame 

of a movie into ResNet yielded an activation time series at each unit, indicating the time-

varying representation of a specific feature in the movie. In this way, the feature 

representations of the training and testing movies could be extracted, as in previous studies 

(Wen et al., 2017, 2018). Here, we extracted the features from the first layer, the last layer, 

and the output layer for each of the 16 residual blocks in ResNet (Wen et al., 2018).
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Feature dimension reduction

The feature space encoded in ResNet had a huge dimension over 106. This dimensionality 

could be reduced since individual features were not independent. For this purpose, principal 

component analysis (PCA) was applied first to each layer and then across layers, as in 

previous studies (Wen et al., 2017, 2018). To define a set of principal components 

generalizable across various visual stimuli, a training movie as long as 12.54 hours was used 

to sample the original feature space. The corresponding feature representations were 

convolved with a canonical hemodynamic response function and then demeaned and divided 

by its standard deviation, yielding the standardized feature representation at each unit. Then, 

PCA was applied to the standardized feature representations from all units in each layer, as 

expressed as Eq. (1).

f l(x) = f l
o(x)Bl (1)

where f l
o(x) ∈ ℝ

1 × pl stands for the standardized feature representation from layer l given a 

visual input x, Bl ∈ ℝpl×ql consists of the principal components (as unitary column vectors) 

for layer l, fl(x) ∈ ℝ1×ql is the feature representation after reducing the dimension from pl to 

ql.

Due to the high dimensionality of the original feature space and the large number of video 

frames, we used an efficient singular value decomposition updating algorithm (or SVD-

updating algorithm), as used in prior studies (Zha and Simon, 1999; Zhao et al., 2006), to 

obtain the principal components Bl. Briefly, the 12.54-hour training movie was divided into 

blocks, where each block was defined as an 8-min segment (i.e. a single fMRI session). The 

principal components of feature representations were first calculated for a block and then 

were incrementally updated with new blocks. A minor distinction from the algorithms in 

(Zha and Simon, 1999; Zhao et al., 2006), we determined the number of principal 

components by keeping >99% variance of the feature representations of every block, rather 

than keeping a fixed number of components during every incremental update. See the SVD-
updating algorithm in Supplementary Information for details.

Following the layer-wise dimension reduction, PCA was applied to the feature 

representations from all layers, by keeping the principal components that explained >99% 

variance across layers for every block of visual stimuli. The final dimension reduction was 

implemented as Eq. (2).

f (x) = f 1:L(x)B1:L (2)
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where f1:L(x) =
f L(x)

p1
, …,

f L(x)
pL

 stands for the feature representations concatenated across L 

layers, B1:L consists of the principal components of f1:L(x) given the 12.54-hour training 

movie, and f(x) ∈ ℝ1×k is the final dimension-reduced feature representation.

The principal components Bl and B1:L together defined a dimension-reduced feature space, 

and their transpose defined the transformation to the original feature space. So, given any 

visual stimulus x, its dimension-reduced feature representation could be obtained through 

Eqs. (1) and (2) with fixed Bl and B1:L. Once trained, the feature model including the feature 

dimension reduction, was assumed to be common to any subjects and any stimuli.

Voxel-wise linear response model

As the second part of the encoding model, a voxel-wise linear regression model was trained 

to predict the response rv(x) at voxel v evoked by the stimulus x. In some previous studies 

(Güçlü and van Gerven, 2015a; Wen et al., 2017; Eickenberg et al., 2017), the encoding 

model for each voxel was based on a single layer in DNN that was relatively more predictive 

of the voxel’s response than were other layers. Herein, we did not assume a one-to-one 

correspondence between a brain voxel and a DNN layer. Instead, the feature representations 

from all layers were used (after dimension reduction) to predict each voxel’s response to 

video stimuli. After training, the regression coefficients of voxel-wise response models 

could still reveal the differential contributions of the features in different DNN layers to each 

voxel (Wen et al., 2018; St-Yves and Naselaris, 2017).

Mathematically, the linear response model was expressed by Eq. (3).

rv(x) = f (x)wv + εv (3)

where wv is a column vector of unknown regression coefficients specific to voxel v, and εv is 

the noise (unexplained by the model). Here, the noise was assumed to follow a Gaussian 

distribution with zero mean and variance equal to σv
2, i.e. εv N(0, σv

2).

Eq. (3) can be rewritten in vector/matrix notations as Eq. (4) for a finite set of visual stimuli 

(e.g. movie frames).

rv = Fwv + εv (4)

where F ∈ ℝn×k stands for the feature representations of n stimuli, rv ∈ ℝn×1 is the 

corresponding evoked responses, and εv N(0, σv
2I).

To estimate the regression coefficients wv in Eq. (4), we used and compared two methods, 

both of which are subsequently described in a common framework of Bayesian inference. In 

the first method, we assumed the prior distribution of wv as a zero-mean multivariate 
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Gaussian distribution without using any knowledge from a model pretrained with previous 

data from the same or other subjects (Sahani and Linden, 2003; Paninski et al., 2007). With 

such a zero-mean prior, we maximized the posterior probability of wv given the stimulus x 
and the fMRI response rv(x). In the second method, we assumed the prior distribution of wv 

as a multivariate Gaussian distribution, whereas the mean was not zero but proportional to 

the regression coefficients in the pretrained model. As such, the prior was transferred from 

existing knowledge about the model as learned from existing data or other subjects 

(hereafter we referred to this prior as the transferred prior). The first method was used for 

training subject-specific encoding models with subject-specific training data. The second 

method was what we proposed for transferring encoding models across subjects, as 

illustrated in Fig. 1a.

Training the response model with the zero-mean prior

From Eq. (4), the likelihood of the response rv given the unknown parameters wv and the 

known feature representations F followed a multivariate Gaussian distribution, as Eq. (5).

p(rv ∣ wv, F) = 1
(2πσv

2)n
exp −

‖rv − FWv‖2
2

2σv
2 (5)

In the framework of Bayesian inference, wv was a multivariate random variable that 

followed a multivariate Gaussian distribution with a zero-mean, and an isotropic covariance 

∑v = sv
2I, as expressed in Eq. (6).

p(wv) = 1
(2πsv

2)k
exp −

‖wv‖2
2

2sv
2 (6)

The prior distribution was independent of the visual input and thus its feature 

representations, i.e. p(wv) = p(wv|F). Therefore, given F and rv, the posterior distribution of 

wv was written as Eq. (7) according to the Bayes’ rule.

p(wv ∣ rv, F) =
p(rv ∣ wv, F)p(wv)

p(rv ∣ F) (7)

where p(rv|F) was constant since rv and F were known.

According to Eqs. (5), (6) and (7), the Bayesian estimation of wv was obtained by 

maximizing the natural logarithm of its posterior probability, which was equivalent to 

minimizing the objective function as Eq. (8).
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g(wv) = 1
n‖rv − Fwv‖2

2 + λ‖wv‖2
2 (8)

where λ =
σv

2/n

sv
2 . The analytical solution to minimizing (8) is as Eq. (9).

wv = (G + λI)−1 [F]Trv/n (9)

where G = [F]TF/n is the covariance matrix of F. Note that the above model estimation with 

zero-mean prior is simply a ridge regression estimator, i.e. least square regression with L2 

regularization.

Training the response model with the transferred prior

If a pretrained model, wv
0, was available, we could use this model to derive more informative 

and precise prior knowledge about wv. Specifically, wv was assumed to follow a multivariate 

Gaussian distribution, of which the mean was αwv
0 (α is a non-negative factor) and the 

covariance was ∑v = sv
2I. The prior probability of wv was as Eq. (10).

p(wv) = 1
(2πsv

2)k
exp −

‖wv − αwv
0‖2

2

2sv
2 (10)

Here, the prior was transferred from a pretrained model (namely the transferred prior), and 

was used to constrain the mean of the model to be trained with new data and/or for a new 

subject. According to Eqs. (5), (7) and (10), maximizing the posterior probability of wv was 

equivalent to minimizing the following objective function.

g(wv) = 1
n‖rv − Fwv‖2

2 + λ‖wv − αwv
0‖2

2
(11)

where λ =
σv

2/n

sv
2 . Note that if α = 0, this objective function becomes equivalent to Eq. (8). The 

objective function could be reformatted as Eq. (12), where a = αλ, b = (1 − α)λ, and c is a 

constant.
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g(wv) = 1
n‖rv − Fwv‖2

2 + a‖wv − wv
0‖2

2 + b‖wv‖2
2 + c (12)

In this function, the first term stands for the mean square error of model fitting, the second 

term stands for the deviation from the prior model, wv
0, and the third term had a similar 

regularization effect as that in Eq. (8). Hence, the model estimation method is a ridge 

regression estimator with an extra term that constrains the estimated model to be close to a 

prior model. The analytical solution to minimizing (12) was as Eq. (13).

wv = [G + (a + b)I]−1(awv
0 + [F]Trv/n) (13)

where G = [F]TF/n is the covariance matrix of F.

Choosing hyper-parameters with cross-validation

The hyper-parameters λ in Eq. (9) or (a, b) in Eq. (13) were determined for each voxel by 

four-fold cross-validation (Geisser, 1993). Specifically, the training video-fMRI dataset was 

divided into four subsets of equal size: three for the model estimation, and one for the model 

validation. The validation accuracy was measured as the correlation between the predicted 

and measured cortical responses. The validation was repeated four times such that each 

subset was used once for validation. The validation accuracy was averaged across the four 

repeats. Finally, the hyper-parameters were chosen such that the average validation accuracy 

was maximal.

Testing the encoding performance with the testing movie

Once voxel-wise encoding models were trained, we evaluated the accuracy of using the 

trained models to predict the cortical responses to the testing movies, which were not used 

for training the encoding models. The prediction accuracy was quantified as the correlation 

(r) between the predicted and observed fMRI responses at each voxel given the testing 

movie. Since the testing movie included five different 8-min sessions with entirely different 

content, the prediction accuracy was evaluated separately for each session and then averaged 

across sessions. The significance of the average voxel-wise prediction accuracy was 

evaluated with a block-permutation test (Adolf et al., 2014) with a block length of 30 

seconds (corrected at false discovery rate (FDR) q < 0.01), as used in our prior study (Wen et 

al., 2017, 2018).

Evaluating the encoding models without any transferred prior

For a specific subject, when the voxel-wise encoding model was estimated without any prior 

information from existing models pre-trained for other subjects, the estimated model was 

entirely based on the subject-specific training data. In this case, we evaluated how the 

encoding performance depended on the size of the training data.
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To do so, we trained the encoding models for Subject JY using a varying part of the 10.4-

hour training data. The data used for model training ranged from 16 minutes to 10.4 hours. 

For such models trained with varying lengths of data, we tested their individual performance 

in predicting the responses to the 40-min testing movie. We calculated the percentage of 

predictable voxels (i.e. significant with the block-permutation test) out of the total number of 

cortical voxels, and evaluated it as a function of the size of the training data. We also 

evaluated the histogram of the prediction accuracy for all predictable voxels, and calculated 

the overall prediction accuracy in regions of interest (ROIs) (Glasser et al., 2016) by 

averaging across voxels within ROIs.

Evaluating the encoding models with the transferred prior

When the voxel-wise encoding model was trained with the prior transferred from a 

pretrained model, the parameters in the new model depended on both the pretrained model 

and the new training data. As such, one might not require so many training data to train the 

model as required without the transferred prior.

We used this strategy for transferring encoding models from one subject to another. 

Specifically, we trained the models from scratch based on the 10.4-hour training data from 

one subject (JY), and used the trained models as the model prior for other subjects (XF and 

XL). With this prior model from Subject JY, we trained the encoding models for Subject XF 

and XL based on either short (16 minutes, i.e. two 8-min sessions) or long (2.13 hours, i.e. 

16 sessions) training data specific to them. Note that the movie used for training the prior 

model in Subject JY was different from either the training or testing movies for Subject XL 

and XF. With either short or long training data, we evaluated the encoding performance in 

predicting the responses to the testing movie for Subject XF and XL. For comparison, we 

also evaluated the encoding models trained with the same training data from Subject XF and 

XL without using any transferred knowledge from Subject JY, or the prior models from 

Subject JY without being retrained with any data from Subject XF and XL. The comparison 

was made with respect to the number of predictable voxels and the voxel-wise prediction 

accuracy (after converting the correlation coefficients to the z scores with the Fisher’s r-to-z 

transform). The model comparison was conducted repeatedly when the models under 

comparison were trained (or tested) with distinct parts of the training (or testing) movie. 

Between different models, their difference in encoding performance was tested for 

significance by applying one-sample t-test to the repeatedly measured prediction accuracy 

(corrected at false discovery rate (FDR) q<0.01).

We also conducted similar analyses by using Subject JY as the target subject, for whom the 

encoding models were trained with prior knowledge transferred from the encoding models 

trained with data from Subject XL or XF. Note that the prior models were trained with 1.87-

hour training data, and then were refined with 16min data from the target subject. Note that 

the movie used for training the prior model was different from the movie for refining the 

prior model for the target subject.

Wen et al. Page 10

Neuroimage. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hyperalignment between subjects

We also explored whether transferring encoding models from one subject to another would 

also benefit from performing functional hyperalignment as an additional preprocessing step. 

Specifically, we used the searchlight hyperalignment algorithm (Guntupalli et al., 2016) to 

correct for the individual difference in the fine-scale functional representation beyond what 

could be accounted for by anatomical alignment (Glasser et al., 2013). Given the 16-min 

alignment movie, the fMRI responses within a searchlight (with a radius of 20mm) were 

viewed as a high-dimensional vector that varied in time. A Procrustes transformation 

(Schönemann, 1966) was optimized to align high-dimensional response patterns from one 

subject to another (Guntupalli et al., 2016).

To evaluate the effect of hyperalignment in transferring encoding models across subjects, we 

performed the searchlight hyperalignment from Subject JY to Subject XL and XF. Then we 

applied the functional hyperalignment to the encoding models trained for the source subject 

(Subject JY) to give rise to the prior models that were used for training the encoding models 

for the target subject (Subject XL or XF). The encoding performance of the resulting models 

was evaluated and compared with those without hyperalignment. The difference in the 

encoding performance was addressed with respect to the number of predictable voxels and 

the voxel-wise prediction accuracy, and was tested for significance with one-sample t-test 

corrected at false discovery rate (FDR) q<0.01.

Training group-level encoding models with online learning

Here, we describe an online learning algorithm (Fontenla-Romero et al., 2013) to train 

group-level encoding models based on different video-fMRI data acquired from different 

subjects, by extending the concept of online implementation for the Levenberg-Marquardt 

algorithm (Dias et al., 2004). The central idea is to update the encoding models trained with 

existing data based on the data that become newly available, as illustrated in Fig. 1b.

Suppose that existing training data are available for a set of visual stimuli, X0 (n0 samples). 

Let F0 be the corresponding feature representations after dimension reduction, rv
0 be the 

responses at voxel v. Let wv
0 be the regression parameters in the voxel-specific encoding 

models trained with F0 and rv
0 according to Eq. (9). Given incremental training data, X1 (n1 

samples), F1 and rv
1, the parameters in the updated encoding model can be obtained by 

minimizing the objective function below.

gG(wv) = 1
n0 + n1

rv
0

rv
1 − F0

F1 wv
2

2

+ λ‖wv‖2
2 (14)

The optimal solution is expressed as Eq. (15).
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wv = (1 − θ)(G + λI)−1(G0 + λ0I)wv
0 + θ(G + λI)−1 [F1]Trv

1/n1 (15)

where G0 = [F0]TF0/n0 and G1 = [F1]TF1/n1 are the covariance matrices of F0 and F1, 

respectively; G = (1 − θ)G0 + θG1 is their weighted sum where the parameter θ specifies the 

relative weighting of the new data and the previous data. See Derivation of group-level 
encoding models in Supplementary Information for the derivation of Eq. (15). In this study, 

θ was set as the ratio of the corresponding sample sizes, i.e. θ = n1

n0 + n1 . As such, the 

samples in the new data were assumed to be as important as those in the previous data.

According to Eq. (15), the encoding model could be incrementally updated by incorporating 

new data without training the model from scratch. See Algorithm 1 for the updating rules. 

As more and more data was used for model training, the encoding model was expected to 

converge, as (G + λI)−1(G0 + λ0I) → I and θ → 0. When it was used to utilize the 

growing training data from different subjects, this algorithm converged to the group-level 

encoding models.

As a proof of concept, we trained group-level encoding models by incrementally updating 

the models with 16-min video-fMRI training data sampled from each of the three subjects in 

the group. Before each update, the incremental fMRI data was functionally aligned to the 

data already used to train the existing models (see Hyperalignment between subjects in 

Methods). After the encoding models were trained with all the training data combined 

across all the subjects, we evaluated their prediction performance given the testing movie for 

each subject. The prediction accuracy of the group-level encoding models was averaged 

across subjects. We then compared the prediction performance before and after every update 

by incorporating new data.

Results

In recent studies, DNNs driven by image or action recognition were shown to be able to 

model and predict cortical responses to natural picture or video stimuli (Khaligh-Razavi and 

Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015b, a; Cichy et al., 

2016; Wen et al., 2017, 2018; Eickenberg et al., 2017; Seeliger et al., 2017). This ability 

rested upon encoding models, in which nonlinear features were extracted from visual stimuli 

through DNNs and the extracted features were projected onto stimulus-evoked responses at 

individual locations through linear regression. Herein, we investigated the amount of data 

needed to train DNN-based encoding models in individual subjects, and developed new 

methods for transferring and generalizing encoding models across subjects without requiring 

extensive data from single subjects.

Encoding performance depended on the size of the training data

In this study, we focused on a specific DNN (i.e. ResNet) – a feed-forward convolutional 

neural network (CNN) pre-trained for image recognition (He et al., 2016). The DNN 
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included 50 successive layers of computational units, extracting around 106 non-linear visual 

features. This huge dimensionality could be reduced by two orders of magnitude, by 

applying PCA first to every layer and then across all layers. The reduced feature 

representations were able to capture 99% of the variance of the original features in every 

layer.

Despite the reduction of the feature dimensionality, training a linear regression model to 

project the feature representations onto the fMRI response at each voxel still required a large 

amount of data if the model was estimated solely based on the training data without any 

informative prior knowledge (Training the response model with the zero-mean prior in 

Methods). For such encoding models, we evaluated the effects of the size of the training data 

on the models’ encoding performance in terms of the accuracy of predicting the responses to 

the testing movie, of which the data were not used for training to ensure unbiased testing. 

When trained with 10.4 hours of video-fMRI data, the prediction accuracy of the encoding 

models was statistically significant (permutation test, FDR q<0.01) for nearly the entire 

visual cortex (Fig. 2.a). The number of predictable voxels and the prediction accuracy were 

notably reduced as the training data were reduced to 5.87 hours, 2.13 hours, or 16 minutes 

(Fig. 2.b). With increasing sizes of training data, the predictable areas increased 

monotonically, from about 20% (with 16-min of training data) to >40% (with 10.4-hour of 

data) of the cortical surface (Fig. 2.c). The average prediction accuracies, although varying 

across regions of interest (ROIs), showed an increasing trend as a growing amount of data 

were used for model training (Fig. 2.d). It appeared that the trend did not stop at 10.4 hours, 

suggesting a sub-optimal encoding model even if trained with such a large set of training 

data. Therefore, training encoding models for a single subject purely relying on training data 

would require at least 10 hours of video-fMRI data from the same subject.

Transferring encoding models across subjects

To mitigate this need for large training data from every subject, we asked whether the 

encoding models already trained with a large amount of training data could be utilized as the 

prior information for training the encoding models in a new subject with much less training 

data. To address this question, we used the encoding models trained with 10.4 hours of 

training data from Subject JY as a priori models for Subject XF and XL. A Bayesian 

inference method was used to utilize such prior models for training the encoding models for 

Subject XF and XL with either 16-min or 2.13-hour training data from these two subjects 

(see Training the response model with the transferred prior in Methods). The resulting 

encoding models were compared with those trained without using any prior models with the 

same amount of training data in terms of their accuracies in predicting the responses to the 

testing movie.

Fig. 3 shows the results for the model comparison in Subject XF. When the training data 

were as limited as 16 minutes, the encoding models trained with the prior modeled 

transferred from another significantly outperformed those without using the prior (Fig. 3.a). 

With the prior model, the predictable cortical areas were 26% of the entire cortex, nearly 

twice as large as the predictable areas without the prior (14.9% of the entire cortex). Within 

the predictable areas, the prediction accuracy was also significantly higher with the prior 
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model (Δz = 0.155 ± 0.0006, one-sample t-test, p<10−5) (Fig. 3.a). The difference in voxel-

wise prediction accuracy was significant (one-sample t-test, p<0.01) in most of the visual 

areas, especially for those in the ventral stream (Fig. 3.a). The advantage of using the prior 

model largely diminished when 2.13-hour training data were used for training the encoding 

models (Fig. 3.b). Although larger training data improved the model performance, the 

improvement was much more notable for the method when the prior model was not utilized. 

In that case, the predictable area increased from 14.9% to 26.7% of the cortex (p=6.5×10−5, 

paired t-test). When the prior model was utilized, the predictable area increased from 26.0% 

to 28.5% (p=0.017, paired t-test), and the prediction accuracy only improved marginally 

(Fig. 3.b). Similar results were observed when transferring from Subject JY to Subject XL 

(Supplementary Fig. S1), as well as across other pairs of subjects (Supplementary Fig. S2). 

It was noteworthy that the prediction accuracy of the transferred encoding model with 16-

min fMRI data was comparable to the non-transferred models with 2.13-hour fMRI data 

(Fig. 3 and Supplementary Fig. S3).

We also asked whether the better performance of the encoding models with the transferred 

prior was entirely attributable to the prior models from a different subject, or it could be in 

part attributable to the information in the training data specific to the target subject. To 

address this question, we directly used the prior models (trained with data from Subject JY) 

to predict the cortical responses to the testing movie in Subject XL and XF. Even without 

any further training, the prior models themselves yielded high prediction accuracy for 

widespread cortical areas in Subject XF for whom the models were not trained (Fig. 4.a). 

When the prior models were fine-tuned with a limited amount (16-min) of training data 

specific to the target subject, the encoding performance was further improved (Fig. 4.b). The 

improvement was greater when more (2.13-hour) training data were utilized for refining the 

encoding models (Fig. 4.c). Similar results were also observed in another subject 

(Supplementary Fig. S4). Hence, Bayesian inference to transfer encoding models across 

subjects could help train the encoding models for new subjects without requiring extensive 

training data from them. The subject-specific training data served to tailor the encoding 

models from the source subject towards the target subject.

Functional alignment better accounted for individual differences

Transferring encoding models across subjects were based on the assumption that the models 

and data from individual subjects were co-registered. Typically, the co-registration was 

based on anatomical features (i.e. anatomical alignment) (Glasser et al., 2013). We expected 

that searchlight hyperalignment of multi-voxel responses could better co-register the fine-

grained representational space on the cortical surface (Guntupalli et al., 2016) to improve the 

efficacy of transferring the encoding models across subjects (see Hyperalignment between 
subjects in Methods).

Therefore, we performed searchlight hyperalignment such that Subject JY’s fMRI responses 

to the alignment movie were aligned to the other subjects’ responses to the same movie. 

After applying the same alignment to the encoding models trained for Subject JY, we used 

the aligned encoding models as the prior model for training the encoding models for Subject 

XF or XL with 16-min training datasets from each of them. It turned out that using the 
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functional alignment as a preprocessing step further improved the performance of the 

transferred encoding models. For Subject XF, the model-predictable areas increased from 

26% to 27.8% (p=9.7×10−4, paired t-test), and the prediction accuracy also increased, 

especially for the extrastriate visual areas (Fig. 5). Similar results were obtained for Subject 

XL (Supplementary Fig. S5).

Group-level encoding models

We further explored and tested an online learning strategy to train the encoding models for a 

group of subjects by incrementally using data from different subjects for model training (see 

Training group-level encoding models with online learning in Methods).

Basically, incremental neural data (16 minutes) was obtained from a new subject with new 

visual stimuli, and was used to update the existing encoding models (Fig. 6a). Such learning 

strategy allowed training group-level encoding models. The models significantly predicted 

the cortical response to novel testing movie for each subject (Fig. 6b). With every 

incremental update, the encoding models predicted wider cortical areas that increasingly 

covered 18.4%, 21.72%, and 24.27% of the cortex, and achieved higher prediction 

accuracies within the predictable areas (first update: Δz = 0.05 ± 0.0006, p<10−5; second 

update: Δz = 0.036 ± 0.00034, p<10−5, one-sample t-test) (Fig. 6.b). Meanwhile, the group-

level encoding models exhibited similar predictability across individual subjects 

(Supplementary Fig. S6).

Discussion

In this article, we have described methods to transfer and generalize encoding models of 

natural vision across human subjects. Central to our methods is the idea of taking the models 

learnt from data from one subject (or a group of subjects) as the prior models for training the 

models for a new subject (or a new group of subjects). This idea allows to train subject-

specific encoding models with a much less amount of training data than otherwise required 

if training the models from scratch without considering any pretrained model prior. The 

efficacy of this method, as demonstrated in this paper, suggests that different subjects share 

largely similar cortical representations of vision (Hasson et al., 2004; Haxby et al., 2011; 

Conroy et al., 2013; Chen et al., 2017). It has also led us to develop a method to train 

encoding models generalizable for a population by incrementally learning from different 

training data collected from different subjects.

The methods are described in the context of using DNN as a feature model, but they are also 

valuable and applicable to other models of visual or conceptual features (Kay et al., 2008; 

Naselaris et al., 2009; Nishimoto et al., 2011; Huth et al., 2012). In general, the larger the 

feature space is, the more data is required for training the model that relates the features to 

brain responses in natural vision. DNNs attempt to extract hierarchical visual features in 

many levels of complexity (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Zeiler 

and Fergus, 2014; LeCun et al., 2015; Szegedy et al., 2015; He et al., 2016), and thus it is 

so-far most data demanding to model their relationships to the visual cortex. Nevertheless, 

DNNs are of increasing interest for natural vision (Cox and Dean, 2014; Khaligh-Razavi and 

Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015b, a; Kriegeskorte, 
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2015; Cichy et al., 2016; Wen et al., 2017, 2018; Eickenberg et al., 2017; Horikawa and 

Kamitani, 2017; Seeliger et al., 2017). Recent studies have shown that DNNs, especially 

convolutional neural networks for image recognition (Krizhevsky et al., 2012; Simonyan and 

Zisserman, 2014; He et al., 2016), preserve the representational geometry in object-sensitive 

visual areas (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Cichy et al., 

2016), and predicts neural and fMRI responses to natural picture or video stimuli (Güçlü and 

van Gerven, 2015b, a; Wen et al., 2017, 2018; Eickenberg et al., 2017; Seeliger et al., 2017), 

suggesting their close relevance to how the brain organizes and processes visual information 

(Cox and Dean, 2014; Kriegeskorte, 2015; Yamins and DiCarlo, 2016; Kietzmann et al., 

2017; van Gerven, 2017). DNNs also open new opportunities for mapping the visual cortex, 

including the cortical hierarchy of spatial and temporal processing (Güçlü and van Gerven, 

2015b, a; Cichy et al., 2016; Wen et al., 2017; Eickenberg et al., 2017), category 

representation and organization (Khaligh-Razavi and Kriegeskorte, 2014; Wen et al., 2018), 

visual-field maps (Wen et al., 2017; Eickenberg et al., 2017), all by using a single 

experimental paradigm with natural visual stimuli. It is even possible to use DNNs for 

decoding visual perception or imagery (Wen et al., 2017; Horikawa and Kamitani, 2017). 

Such mapping, encoding, and decoding capabilities all require a large amount of data from 

single subjects in order to train subject-specific models. Results in this study suggest that 

even 10 hours of fMRI data in response to diverse movie stimuli may still be insufficient for 

DNN-based encoding models (Fig. 2). Therefore, it is difficult to generalize the models 

established with data from few subjects to a large number of subjects or patients for a variety 

of potential applications.

The methods developed in this study fill this gap, allowing DNN-based encoding models to 

be trained for individual subjects without the need to collect substantial training data from 

them. As long as models have been already trained with a large amount of data from existing 

subjects or previous studies, such models can be utilized as the prior models for a new 

subject and be updated with additional data from this subject. Results in this study 

demonstrate that with prior models, encoding models can be trained with 16-min video-

fMRI data from a single subject to reach comparable encoding performance as the models 

otherwise trained with over two hours of data but without utilizing any prior models (Fig. 3). 

Apparently, data acquisition for 16 minutes readily fit into the time constraint of most fMRI 

studies. With the method described herein, it is thus realistic to train encoding models to 

effectively map and characterize visual representations in many subjects or patients for basic 

or clinical neuroscience research. The future application to patients with various cortical 

visual impairments, e.g. facial aphasia, has the potential to provide new insights to such 

diseases and their progression.

The methods developed for transferring encoding models across subjects might also be 

usable to transfer such models across imaging studies with different spatial resolution. The 

fMRI data in this study are of relatively low resolution (3.5mm). Higher resolution about 

1mm is readily attainable with fMRI in higher field strengths (e.g. 7T or above) (Goense et 

al., 2016). Functional images in different resolution reflect representations in different 

spatial scales. High-field and high-resolution fMRI that resolves representations in the level 

of cortical columns or layers is of particular interest (Yacoub et al., 2008; Goense et al., 

2016); but prolonged fMRI scans in high-field face challenges, e.g. head motion and 
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susceptibility artifacts as well as safety concern of RF power deposition. Transferring 

encoding models trained with 3-T fMRI data in lower resolution to 7-T fMRI data in higher 

resolution potentially enables higher throughput with limited datasets. Note that transferring 

the encoding models is not simply duplicating the models across subjects or studies. Instead, 

new data acquired from different subjects or with different resolution serve to reshape the 

prior models to fit the new information in specific subjects or representational scales. It is 

perhaps even conceivable to use the method in this study to transfer encoding models trained 

with fMRI data to those with neurophysiological responses observable with recordings of 

unit activity, local field potentials, and electrocorticograms. As such, it has the potential to 

compare and converge neural coding in different spatial and temporal scales. However, such 

a potential is speculative and awaits verification in future studies.

This study also supports an extendable strategy for training population-wide encoding 

models by collecting data from a large group of subjects. In most of the current imaging 

studies, different subjects undergo the same stimuli or tasks with the same experiment 

paradigm and the same acquisition protocol (Hodge et al., 2016). Such study design allows 

for more convenient group-level statistics, more generalizable findings, and easier 

comparison across individuals. However, if one has to collect substantial data from each 

subject, it is practical too expensive or unrealistic to do so for a large number of subjects. An 

alternative strategy is to design a study for a large number of subjects, but only collect 

imaging data from subjects undergoing different visual stimuli, e.g. watching different 

videos. For the population as a whole, data with a large and diverse set of stimuli become 

available. The methods described herein lay the technical foundation to combine the data 

across subjects for training population-wide encoding models. This strategy may be further 

complemented by also using a small set of stimuli (e.g. 16-min video stimuli) common for 

all subjects. Such stimuli can be used to functionally align the data from different subjects to 

account for individual differences (Fig. 6) (Haxby et al., 2011; Conroy et al., 2013; 

Guntupalli et al., 2016). It also provides comparable testing data to assess individual 

differences.

In addition, our methods allow population-wide encoding models to be trained 

incrementally. For a study that involves data acquisition from many subjects, data are larger 

and growing. It is perhaps an unfavorable strategy to analyze the population data only after 

data are available from all subjects. Not only is it inefficient, analyzing the population data 

as a whole requires substantial computing resources – a common challenge for “big data”. 

Using online learning (Fontenla-Romero et al., 2013), the methods described herein allows 

models to be trained and refined as data acquisition progresses. Researchers can examine the 

evolution of the trained models, and decide whether the models have converged to avoid 

further data acquisition. As population-wide encoding models become available, it is more 

desirable to use them as the prior models for training encoding models for specific subjects, 

or another population. Population-wide models are expected to be more generalizable than 

models trained from one or few subjects, making the prior models more valid and applicable 

for a wide group of subjects or patients.

Beyond the methods described in this paper, the notion of transferring encoding models 

across subjects may be substantiated with further methodological development. In this study, 
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the encoding parameters in the prior model was used to constrain the mean of the parameters 

in a new model, whereas the covariance of the parameters were assumed to be isotropic. As 

such, all the parameters were assumed to bear different means but the same variance while 

being independent of each other. The assumption of independence was valid, because the 

feature space was reduced to a lower dimension, and was represented by its (orthogonal) 

principal components. The assumption of isotropic variance might be replaced by a more 

general covariance structure, in which the prior variance is allowed to be different for the 

parameters of individual features. Although it is possible to estimate the prior variance from 

the data, it requires a larger amount of training data and iterative optimization to estimate 

both the model parameters and their prior (anisotropic) variances for the maximum posterior 

probability (Berger 2013). The demand for data and computation is what we aim to mitigate. 

Therefore, our assumption of isotropic variance is a legitimate choice, even though it may or 

may not be optimal.

In this paper, the method for transferring encoding models across subjects is described in the 

framework of Bayesian inference. Incorporating a pretrained model in the prior allows us to 

transfer the knowledge about encoding models from one subject to another subject. In the 

present study, we proposed a transferred prior that constrained the means of the encoding 

parameters to be close to those of a prior model, while assuming a priori Gaussian 

distribution for each parameter. Given these assumptions, the method is effectively ridge 

regression estimator with an extra L2-norm constraint for regularization, and the model 

estimation is thus linear and computationally efficient. Nevertheless, a more general 

description in the framework of Bayesian inference is useful for other model assumptions to 

be explored in future extension of this method.

In this study, we also assume a voxel-wise correspondence between one brain and another 

(Hasson et al., 2004). This assumption may not be optimal given the individual differences 

in the brain’s structure and function (Haxby et al., 2011; Conroy et al., 2013). In addition to 

anatomical alignment (Glasser et al., 2016), functional hyperalignment (Guntupalli et al., 

2016) is helpful to partly account for the individual differences, before transferring voxel-

wise encoding models across subjects. It is also likely helpful to statistically summarize the 

prior model across neighboring voxels, or in a region that contains the target voxel. 

Refinement of the algorithms for transferring encoding models awaits future studies.

In this study, a two-step PCA was used to reduce the dimension of the feature space prior to 

training the linear response model to relate visual features to brain responses. In the first 

step, PCA reduced the redundancy of features within each layer; in the second step, PCA 

reduced the feature space by taking into account the dependency of features in different 

layers. This strategy for dimension reduction was especially effective for estimating the 

encoding models with limited training data while mitigating the risk of overfitting (Wen et 

al., 2018; Shi et al., 2018). However, it should be noted that PCA is not a central to 

transferring encoding models across different subjects. What is central to this paper is the 

proposed cross-subject transferring and generalizing methods, which may be combined with 

other alternative methods for feature selection or dimension reduction (Li, 2004; Smith et 

al., 2014; St-Yves and Naselaris, 2017). In particular, Smith et al. has demonstrated that 
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incremental PCA is more favorable for handling large and growing datasets than 

conventional PCA (Smith et al., 2014).

In this study, we collected video-fMRI dataset from three subjects. Although the number of 

the subjects seems small, the fMRI data from all three subjects reaches a total of 44.8 hours, 

which is very large and unique. The proposed methods for transferring and generalizing 

encoding models across subjects achieved consistent and significant results. As each subject 

watched five testing movies, each for 10 times, for a total of 6.7 hours, repeating this 

paradigm for a large number of subjects, although desirable, is not realistic within the scope 

of this project.

Lastly, this study focuses exclusively on natural vision. However, the methods developed are 

anticipated to serve well for more general purposes, including natural language processing, 

speech and hearing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schemes of transferring and generalizing DNN-based neural encoding models across 
subjects
(a) Transferring encoding models across subjects. The encoding model comprises the 

nonlinear feature model and the linear response model. In the feature model, the feature 

representation is extract from the visual stimuli through the deep neural network (DNN), and 

followed by the feature dimension reduction. In the response model, the model parameters 

are estimated by using Bayesian inference with subject-specific neural data as well as a prior 

model trained from other subjects. (b) Generalizing encoding models across subjects. The 

dash arrows indicate the existing encoding model trained with the data from a group of 

subjects. The existing model can be incrementally updated by using the new data from a new 

subject with an online learning algorithm. In the scheme, the feature model is common any 

subjects and any stimuli, and the response model will be updated when new subject data is 

available.
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Figure 2. DNN-based neural encoding models for Subject JY
(a) Performance of neural encoding models (trained with 10.4-hour data) in predicting the 

cortical responses to novel testing movies. The accuracy is measured by the average 

Pearson’s correlation coefficient (r) between the predicted and the observed fMRI responses 

across five testing movies (permutation test, q<0.01 after correction for multiple testing 

using the false discovery rate (FDR) method). The prediction accuracy is visualized on both 

flat (left) and inflated (right) cortical surfaces. (b) Prediction accuracy of encoding models 

trained with less training data, i.e. 16min, 2.13h, and 5.87h. The right is the histograms of 

prediction accuracies. The x-axis is the prediction accuracy ranging from 0 to 0.8, divided 

into bins of length Δr = 0.02, the y-axis is the percentages of predictable voxels in the cortex 

within accuracy bins. (c) The percentage of predictable voxels as a function of training data 

size ranging from 16min to 10.4 hours. (d) ROI-level prediction accuracies as functions of 

the training data size. The error bar indicates the standard error across voxels.
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Figure 3. Comparison between the encoding models that utilized the prior models transferred 
from a different subject (transferred) versus those without using any transferred prior (non-
transferred)
Voxel-wise prediction accuracy of encoding models trained with 16min (a) and 2.13h (b) 
video-fMRI data (permutation test, corrected at FDR q<0.01). The top shows the voxel-wise 

prediction accuracy of the encoding models with the prior transferred from a pretrained 

model (right) and the encoding models without any transferred prior (left). The bottom left is 

the histograms of their respective prediction accuracies. The numbers are the total 

percentages of predictable voxels. The bottom right is the difference of prediction accuracy 

(Fisher’s z-transformation of r, i.e. z = arctanh(r)) between the encoding models with the 

transferred prior and those without any transferred prior (one-sample t-test, p<0.01). The 

figure shows the results for transferring from Subject JY to Subject XF, see Figure S1 and 

S2 for other subjects.
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Figure 4. Comparison between the encoding models that were refined from the prior models 
transferred from a different subject (transferred) versus the prior encoding models (prior)
(a) Voxel-wise prediction accuracy by directly using the prior encoding models (from 

Subject JY) to predict the responses to novel testing movies for Subject XF (permutation 

test, corrected at FDR q<0.01). (b) and (c) show the histograms of prediction accuracies of 

the encoding models that were transferred from the prior encoding models (blue) and the 

prior encoding models (green) trained with 16min (b) and 2.13h (c) training data, 

respectively. See Figure S4 for Subject XL.
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Figure 5. Comparison of the encoding models that were transferred from prior models with 
anatomical versus functional alignment
(a) Voxel-wise prediction accuracy of the encoding models based on anatomical alignment 

(left) and functional alignment (right) (permutation test, corrected at FDR q<0.01). (b) The 

histograms of prediction accuracies of anatomically aligned (blue) and functionally aligned 

(green) transferred encoding models. The colored numbers are the total percentages of 

predictable voxels. (c) The voxel-wise difference in prediction accuracy (Fisher’s z-

transformation of r, i.e. z = arctanh(r)) between functional alignment and anatomical 

alignment (one-sample t-test, p<0.01). The figure shows the results for Subject XF, see 

Figure S5 for Subject XL.
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Figure 6. Group-level encoding models
(a) Distinct video-fMRI dataset obtained from different subjects when watching different 

natural videos. (b) The voxel-wise prediction accuracy of group-level encoding models 

before and after every incremental update (permutation test, corrected at FDR q<0.01). The 

right is the histograms of prediction accuracies of incrementally updated encoding models. 

The colored numbers are the total percentages of predictable voxels. The testing accuracy is 

averaged across three subjects.
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Algorithm 1

Online learning algorithm for training population-based encoding models

1:
G0 ← 0, wv

0 0, n0 ← 0, λ0 = 0

2:
While new data* is available: X, rv

1, n1

3:

  θ = n1

n0 + n1

4:  F1 = DimensionReduction(ResNet(X))

5:  G1 = [F1]TF1/n1

6:  G = (1 − θ)G0 + θG1

7:

  wv = (1 − θ)(G + λI)−1(G0 + λ0I)wv
0 + θ(G + λI)−1 [F1]Trv

1/n1 with cross validation

8:
 G0 ← G, wv

0 wv, n0 ← n0 + n1, λ0 = λ

9: Output: wv

*
X is the new visual stimuli, rv

1
 is the cortical response, and n1 is the number of samples
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