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Abstract Fluorescence spectrometry, combined with

principle component analysis, partial least-squares regres-

sion (PLSR) and artificial neural network (ANN), was

applied for the analysis of Maltese extra virgin olive oil

(EVOO) adulterated by blending with vegetable oil (corn

oil, soybean oil, linseed oil, or sunflower oil). The novel

results showed that adjusted PLSR models based on syn-

chronised spectra for detecting the % amount of EVOO in

vegetable oil blends had a lower root mean square error

(0.02–6.27%) and higher R2 (0.983–1.000) value than

those observed when using PLSR on the whole spectrum.

This study also highlights the use of ANN as an alternative

chemometric tool for the detection of olive oil adulteration.

The performance of the model generated by the ANN is

highly dependent both on the type of data input and the

mode of cross validation; for spectral data which had a

variable importance plot value [ 0.8 the excluded row

cross validation was more appropriate while for complete

spectral analysis k-fold or CV-10 was more appropriate.

Keywords Adulteration � Chemometrics � EVOO �
Spectrofluorimetry � Synchronised spectra � ANN � PLSR �
PCA

Introduction

Virgin olive oils are obtained from the olive tree Olea

europaea L drupes, widely diffused across the Mediter-

ranean region (Solari and Vernet 1992; Terral and Arnold-

Simard 1996). The classification of olive oils is governed

by strict controls issued by the European Union Commis-

sion (EEC 2013) for the verification of its quality and

purity. In order for an olive oil to be classified as virgin, it

must be obtained solely by mechanical means without any

extra treatment or refining processes. Only minimal treat-

ment such as washing, pressing, decantation, centrifugation

and filtration is allowed. Unlike the common seed oils, it is

one of the few vegetable oils consumed in its natural state

without the need of further refining process, such as

bleaching and deodorisation (Rahmani and Saari-Csallany

1998).

The high investment required to produce high quality

olive oil results in a higher market price than other refined

seed oils. Due to their lower price, refined oils are some-

times used to adulterate olive oils of better quality, such as

extra-virgin olive oil, in order to increase the volume of oil

and obtain a larger output at the expense of quality. The

most common edible oils such as soybean, corn, canola,

cotton, sunflower, and peanut are likely to be used as illicit

adulterants of olive oil. Therefore, a rapid method to detect

adulteration is important for purposes of quality control

and to check the veridicity of labelling of extra virgin olive

oil (Guimet et al. 2005).

Numerous analytical practices have been established in

recent years to safeguard the authenticity of olive oil.

These include chromatographic techniques (Bosque-Sendra

et al. 2012; Baccouri et al. 2008) and spectroscopic tech-

niques, such as mass spectrometry (Calvano et al. 2012),

nuclear magnetic resonance (Fragaki et al. 2005), near-
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infrared spectroscopy (Mignani et al. 2011), Raman spec-

troscopy (Dong et al. 2012), chemiluminescence (Pa-

padopoulos et al. 2002), UV spectrometry (Jiang et al.

2013), fluorescence spectroscopy (Sikorska et al. 2012),

and synchronous fluorescence (Poulli et al. 2007). The

application of different DNA based methods have been

shown to be very effective in ensuring both the traceability

of EVOO from the tree to the oil but also when it comes to

varietal adulteration (Pasqualone et al. 2016). Compared to

the other analytical techniques both UV and fluorescence

spectroscopic techniques are ideal for the determination of

olive oil adulteration, owing to their simplicity, cost-ef-

fectiveness, rapidity and non-destructive nature of the

analysis. Fluorescence spectroscopy is more sensitive and

selective in terms of organic and inorganic compounds than

the other spectroscopic methods (Sikorska et al. 2004).

The fluorescence emission spectra of olive oils reveals

five major bands. The 300–390 nm band provides infor-

mation about their polyphenolic and tocopherol content

(Zandomeneghi 2006; Giungato et al. 2004). While the low

intensity doublet at 440 and 455 nm corresponds to oxi-

dised fatty acids and phenolic antioxidants in virgin olive

oils, which provide greater protection against oxidation of

monounsaturated fatty acids (Kyriakidis and Skarkalis

2000). The strong band at 525 nm corresponds to the

vitamin E content. The medium intensity band at 681 nm

corresponds to the chlorophyll band which most of the time

is absent in the rest of the seed oils.

In the present study we focused on the use of a single

wavelength synchronised fluorescence spectroscopy rather

than the entire EEM (Maggio et al. 2010) or the total

synchronous fluorescence (Poulli et al. 2006) for the

determination of different olive oil adulterants. The aim of

this study was to determine the potential of fluorescence

spectroscopy and chemometric methods as a tool for the

assessment of olive oil adulterants on local EVOOs.

However in this study, a variable selection process was

carried out and its potential effect on the overall perfor-

mance of the partial least squares regression models was

assessed. Furthermore, the performance of the PLSR

models was compared to those obtained using higher

modelling power methods namely artificial neural

networks.

Materials and methods

Samples and sample preparation

Fresh extra virgin olive oil (EVOO) (12 samples), which

had been previously analysed for its peroxide value, free

acidity, K232 and K270 parameters in order to establish its

quality, was obtained from a small-scale local press.

Samples of six commonly used adulterants, namely sun-

flower (SFO) (4 samples), peanut (PO) (2 samples), soya

bean (SBO) (3 samples), linseed (LSO) (3 samples), corn

(CO) (3 samples) and rapeseed (RSO) (2 samples) oil, were

purchased from local supermarkets. Solutions of olive oil,

pure, and adulterated (0.5, 5, 20, 25, 50, 60, 75, 80% w/w)

with increasing levels of seed oil up to a composition of

pure seed oil, were prepared and diluted 50% in spec-

trophotometrically pure 2,2,4-trimethylpentane (Sigma-

Aldrich).

Fluorescence spectroscopy and synchronous

fluorescence spectra measurement

A three-dimensional (3D) matrix excitation-emission

matrix (EEM) was obtained for each sample using a Jasco

FP-8300 fluorescence spectrophotometer, with both the

excitation and the emission bandwidths set at 5 nm for a

measurement range between 210 and 750 nm. The acqui-

sition interval and the integration time were maintained at

0.5 nm and 10 ms, respectively, with a scan speed of

5000 nm min-1. The oil samples were examined by means

of right-angle geometry. Synchronous fluorescence spectra

were acquired by simultaneous scanning of the excitation

and the emission monochromators, with a constant dis-

tance, Dk, of 24 nm. All analyses were carried out in

duplicates, and the results reported as mean values. Fluo-

rescence intensities were plotted as a function of the

excitation wavelength.

Statistical analysis and model building

Principal component analysis (PCA)

PCA is a multivariate projection method, generally used in

chemometrics to compress large dimensional data into a

smaller-dimensional space with the smallest loss of infor-

mation (Aguado et al. 2008). PCA used to visualize dif-

ferences in the various seed oils and olive oil on the basis

of the whole spectral difference observed in the excitation,

emission and synchronised spectra data by using Past 3.06

(Øyvind Hammer, University of Oslo).

Partial least square regression analysis (PLSR)

PLSR is a type of multiple linear regression analysis which

is used to extract latent factors that account for much of the

apparent factor (Zheng and Lu 2011). In this study, the

synchronised spectral data obtained at 24 nm from 210 to

750 nm were used. The PLSR prediction models were built

using JMP� 10 statistical software package (SAS) using

leave-one-out as the validation method. The PLSR was

optimised using an adjusted PLSR, by using wavelengths
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which had a variable importance plot value (VIP) larger

than 0.8.

Artificial neural networks (ANN)

ANN is a nonlinear statistical model whereby the response

variable, in this case the % amount of olive oil present and

the absorbance at the different wavelength, were consid-

ered as factors, used to build up a prediction model. The

purposes of using an artificial neural network was to pro-

cess information supplied by the spectral data and predict

the concentration of the adulterant. This method was cross

validated using three methods the k-fold, holdback and

excluded rows. For the k-fold cross validation the original

data was randomly divided into k equivalent subsamples,

and a single subsample retained as the validation data for

testing the model, while the remaining k - 1 subsamples

were used as training data. Similarly, holdback validation

was carried out by randomly selecting a portion of the data

for training whilst 0.33% of the data was used as a hold-

back portion for testing. Unlike the other cross validation

techniques whereby the testing and training portions were

randomly selected, in the case of the excluded row hold-

back the testing portion of data is chosen by the user; in

this experiment the 20, 40 and 80% adulterant concentra-

tion data were used to testing the model, since these con-

centrations would cover a substantial range in order to

assess the performance of the model. Similar to PLSR,

ANN model building was carried out on both the whole

spectral region and the wavelengths which had a

VIP[ 0.8.

Assessment of model performance

The residual difference between experimental values and

prediction values was plotted and validation of the models

was performed by comparing differences in root mean

square error (RMSE), root mean standard deviation

(RMSD), coefficient of linearity (R2) and mean biased

error (MBE).

Results and discussion

Excitation and emission fluorescence spectra

of adulterants and olive oil

Three-dimensional excitation and emission fluorescence

spectra showed variations in both the excitation and

emission wavelengths and their corresponding intensity. In

general, with the exception of linseed oil, as the concen-

tration of the adulterating seed oil increased there was a

shifting of the EEM fluorescence towards 350 nm

excitation and 450 nm emission coupled with an increase

in the intensity. Figure 1 illustrates the changes observed

from 100% seed oil (left side) to 25% seed oil. In the

majority of the spectra the decrease in the intensity

observed within the 350 nm (Ex) and 450 nm (Em) was

coupled with an increase in the intensity of bands appear-

ing at an excitation of 330–440 nm and an emission of

660–700 nm. This peak is attributed to the presence of

chlorophyll pigment and their degraded analogue pheo-

phytins, present predominantly in olive oil and to some

extent also in cold pressed linseed oil (Gliszczyńska-

Świgło et al. 2007 and Herchi et al. 2012). Since the

samples were freshly prepared, this peak would be expec-

ted to be more pronounced in aged samples.

Both the seed oil adulterants and olive oil samples

studied displayed a strong characteristic band with excita-

tion at 300–360 nm and emission at about 350–400 nm.

This band has been attributed to tocopherols and toco-

trienols (Sikorska et al. 2004). The maxima of tocopherol

emission vary slightly from one oil to another due to dif-

ferences in the tocopherol composition. The intensity in the

absorbance reflects the amount of tocopherols and toco-

trienols present in the oil, with the seed adulterating oils

showing a much higher concentration of tocopherols, as

displayed by the increase in the intensity within this region

when compared to seed: olive oil mixtures. Since toco-

pherols and tocotrienols are a vast class of compounds their

spectral characteristics vary. Figure 1 shows that there are

only small changes in excitation and emission maxima,

which was attributed to the different extraction procedures

to which the seeds were subjected. However, the EEM

spectrum of linseed oil differs greatly from the rest of the

seed oils; in fact, apart from the emission peak corre-

sponding to the tocopherols and tocotrienols a stronger

band was observed at a longer wavelength of 520 nm,

which decreased in intensity as the % content of olive oil

increased, whilst the peak corresponding to the tocopherols

and tocotrienols increased. This is probably due to the

presence of fluorophores present in linseed but not in olive

oil. These compounds are most probably omega-3,6,9 fatty

acids, present in very large amounts in cold pressed linseed

oil but that are found at much lower concentrations in olive

oil (Sauci et al. 1994).

Principal component analysis (PCA)

Using PCA, we found that the use of only two principal

components explained 91.1% of the variance of the data for

the difference between the emission spectra, 99.5% for the

excitation spectra and 96.3% for the synchronised spectra

at 24 nm. The score plots obtained for each analysis clas-

sified the oils in four distinct areas; olive oil and linseed oil

separated from the other seed oils (Fig. 2). This separation
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is due to the negative scores obtained in PC1, attributed to

its high content of compounds emitting at 420 to 485 nm

and 600 to 700 nm, together with compounds excited at

680 to 700 nm. Apart from chlorophyll pigments, the

presence of a different fatty acid profile will also contribute

to variation in the emission and excitation spectra (Maggio

et al. 2009; Matthäus and Özcan 2011). Virgin olive oil is

rich in oleic acid (55–83%), which is monounsaturated,

while corn, soybean and sunflower oils predominantly

contain polyunsaturated fatty acids. The clustering of olive

oil and linseed oil is attributed to the higher levels of other

fluorophores such as tocopherols, b-carotene and phenolic

compounds that are refined out of other oils. Under both the

excitation and emission PCA, peanut and sunflower oil

clustered together whilst soya and rapeseed oil formed a

separate cluster, due to similar classes of tocopherols and

fatty acids (Kamal-Eldin and Andersson 1997). The pair

combination of these two types of oils is due to an emission

wavelength maxima centred at 350 nm and excitation

wavelength maxima at 420 nm for soya and rapeseed oil,

Corn oil Adulteration

Sunflower oil Adulteration

Soya oil Adulteration

Linseed oil Adulteration

Fig. 1 3D EEM’s between 210 to 750 nm excitation (axis z) and 210

to 750 nm emission (x axis) against intensity (y axis) for different

levels of olive oil adulteration concentrations, 100, 75, and 25% (left

to right), for corn (1st row), sunflower (2nd row), soya bean oil (3rd

row) and linseed (4th row)
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(A)

(B)

(C)

Sunflower

Corn

Rapeseed

Peanut

Soya

Linseed

Olive1.6 -1.2 -0.8 -0.4 0.4 0.8 1.2 1.6

-1.6

-1.2

-0.8

-0.4

0.4

0.8

1.2

1.6

Fig. 2 PCA scores plots (left column) for the discrimination of

EVOO and vegetable oil adulterants based on emission spectral data

(a), excitation spectral data (b) and synchronised spectral data at

24 nm (c), and their corresponding loading plots (right column). The

blue solid lines represent loading scores for PC1 while the red dotted

lines represent loading scores for PC2 for the different wavelengths

(x-axis)
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while peanut and sunflower oil showed an emission max-

ima at a lower wavelength of 330 nm and an excitation

centred at 410 nm. This hypsochromic shift is attributed to

the different extraction procedures and refining process

(Sikorska et al. 2004).

bFig. 3 Synchronised spectra (left column) obtained at 24 nm with

increasing concentration of seed oil adulteration (solid blue lines) and

olive oil (black dotted line). Arrows indicate the maxima obtained for

the different seed oils. The variable importance plots (right column)

obtained on using PLSR, where the wavelengths (x-axis) and their

corresponding VIP (y-axis) are plotted. The red dotted line indicates

the VIP at 0.8 (color figure online)

Table 1 Root mean square error, root mean standard deviation, R2 and bias error obtained using PLSR and adjusted PLSR whereby the model

was re-evaluated using only the wavelengths which had a VIP[ 0.8

Oil Adulterant RMSE RMSD R2 MBE

PLSR Adjusted PLS PLSR Adjusted PLS PLSR Adjusted PLS PLSR Adjusted PLS

Sunflower 3.490 0.646 1.028 0.587 0.995 1.000 - 0.400 - 0.034

Linseed 3.411 2.453 0.625 2.340 0.995 0.997 0.364 0.417

Corn 2.928 1.257 0.623 1.661 0.996 0.999 - 0.404 - 0.127

Soya 0.773 0.002 1.509 0.002 1.000 1.000 - 0.021 0.000

Peanut 7.665 6.274 2.207 4.732 0.975 0.983 - 0.200 - 0.327

Rapeseed 3.349 1.850 1.292 0.108 0.995 0.999 - 0.329 - 0.105

Table 2 The Root mean square error, root mean standard deviation

and R2 value obtained using the artificial neural network, constructed

on the synchronised spectral wavelengths which had a VIP[ 0.8. The

model was cross validated using different methods k-fold or CV-10

(k), Holdback at 0.33% (HB) and excluded row (ER)

Oil adulterant RMSE RMSD R2 MBE

k HB ER k HB ER k HB ER k HB ER

Sunflower 6.803 2.940 1.694 1.004 3.727 0.356 0.984 0.998 0.999 - 0.111 0.061 - 0.075

Linseed 1.609 3.231 1.031 1.231 6.043 0.037 0.999 0.996 1.000 - 0.015 - 0.027 - 0.009

Corn 1.254 1.780 0.420 0.810 2.804 0.003 1.000 0.999 1.000 - 0.027 0.217 0.001

Soya 3.018 3.546 1.330 0.704 7.177 0.007 1.000 0.996 0.995 - 0.004 0.379 0.146

Peanut 6.314 6.808 2.618 3.014 7.411 0.000 0.987 0.980 0.997 - 0.088 0.132 - 0.171

Rapeseed 0.001 6.928 1.458 2.967 5.949 0.000 1.000 0.980 0.999 0.000 - 0.265 - 0.006

Table 3 The root mean square error, root mean standard deviation

and R2 value obtained using the artificial neural network, constructed

on the whole synchronised spectrum at 24 nm. The model was cross

validated using different methods k-fold or CV-10 (k), Holdback at

0.33% (HB) and excluded row (ER)

Oil Adulterant RMSE RMSD R2 MBE

k HB ER k HB ER k HB ER k HB ER

Sunflower 3.202 7.414 3.110 0.066 0.000 4.230 0.997 0.977 0.996 - 0.083 - 0.098 - 0.080

Linseed 1.655 6.199 7.597 0.017 1.948 2.797 0.999 0.988 0.989 - 0.106 0.241 1.468

Corn 0.090 6.351 1.023 0.007 0.005 1.126 1.000 0.989 1.000 - 0.026 - 0.096 - 0.059

Soya 0.001 4.478 3.321 0.000 3.332 1.200 1.000 0.995 0.996 0.000 - 0.061 - 0.372

Peanut 0.097 11.449 21.201 0.018 5.149 1.195 1.000 0.944 0.789 - 0.007 0.087 0.001

Rapeseed 0.862 5.409 1.658 0.000 1.123 1.624 1.000 0.992 0.999 0.036 1.275 0.062
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Synchronous spectra and partial least squares

analysis (PLSR)

PLSR was performed on the oil-adulterant mixture sam-

ples’ synchronised spectra. This method models both the

dependent (absorbance value at each wavelength) and

independent (concentration of olive oil present within the

mixture) variables simultaneously to find the latent vari-

ables (wavelengths) that will best predict the concentration

of olive oil in the mixture. The optimum number of factors

calculated using the leave-one-out cross-validation varied

depending on the seed oil adulterant. VIP score values for

each wavelength are a measure of a variable’s importance

in modelling both wavelength absorbance and % concen-

tration present in olive oil (Fig. 3). A value of 0.8 is gen-

erally considered to be a small VIP (Eriksson et al. 2006)

and a red line is drawn on the plot at 0.8. From the variable

importance plots one can see that not every wavelength in

the spectrum has a VIP[ 0.8, however there was a small

region in all spectra which did not vary on changing to a

different adulterant. This region was found between 360 to

500 nm and another one at 579–664 nm; these regions

correspond to the tocopherols/tocotrienols band and the

chlorophylls/pheopytins respectively. The performance of

the prediction model varied depending on the choice of the

adulterant, the root mean square error ranging from 7.2 for

peanut oil adulteration to 0.7 for soya bean oil (Table 1).

Although the RMSE was acceptable we repeated the PLSR

using only the wavelengths which had a VIP score[ 0.8.

The results showed a great improvement on the predicted

model and with the exception of peanut oil adulteration, the

RMSE was decreased by more than 28% for the remaining

oil adulterants.

Artificial neural networks and prediction model

analysis (ANN)

Similar to the PLSR, ANN process large amounts of data in

order to obtain a model with lowest error. ANN starts by

input signals; in this experiment the wavelengths were

designed to receive various absorbance values from the

whole or part of the spectrum. The network processed the

data in order to give an output signal which corresponded

to the % concentration of olive oil in the adulterated

mixture. In this experiment we tested three different kinds

of cross validation in the neural network. It was found that

on using wavelengths which had a VIP[ 0.8 as previously

determined by the PLSR, the model reached its optimal

performance on using the excluded row validation

(Table 2). This confirms that the concentrations chosen by

the experimenter for cross validation covered a good con-

centration range for modelling and testing. For the majority

of the seed adulterants the excluded row cross validation

method had a lower RMSE, RMSD, MBE and higher R2

when compared to the other cross validation methods.

Table 3 shows that on using the whole synchronised

spectrum, the model reached optimum prediction on using

cross validated using k-fold or CV-10 rather than on using

the excluded row holdback. This indicates that whilst

PLSR improved on using variables which could explain the

maximum variation, in the case of ANN the validation

method was more dependent on the type of data.

Conclusion

We present a first report that coupling a single synchro-

nised fluorescence spectra rather than the entire EEM to

chemometrics can provide a quick and easy, determination

of seed oil adulterants in Maltese EVOOs without the need

for any sample pre-treatment of the oil sample. The results

also show that application of a variable selection process

greatly improved the PLSR models based on synchronised

spectra for detecting the % amount of EVOO in veg-

etable oil blends, with a lower RMSE than those observed

on using PLSR on the whole spectrum. This study also

showed that ANN has use as an alternative chemometric

tool for the detection of olive oil adulteration, with the

performance of the model generated by the ANN being

however highly dependent both on the type of data input

and the mode of cross validation.
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