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mGluR5 mediates post-radiotherapy
fatigue development in cancer patients
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Brian S. Wolff4 and Leorey N. Saligan1

Abstract
Cancer-related fatigue (CRF) is a common burden in cancer patients and little is known about its underlying
mechanism. The primary aim of this study was to identify gene signatures predictive of post-radiotherapy fatigue in
prostate cancer patients. We employed Fisher Linear Discriminant Analysis (LDA) to identify predictive genes using
whole genome microarray data from 36 men with prostate cancer. Ingenuity Pathway Analysis was used to determine
functional networks of the predictive genes. Functional validation was performed using a T lymphocyte cell line, Jurkat
E6.1. Cells were pretreated with metabotropic glutamate receptor 5 (mGluR5) agonist (DHPG), antagonist (MPEP), or
control (PBS) for 20 min before irradiation at 8 Gy in a Mark-1 γ-irradiator. NF-κB activation was assessed using a NF-κB/
Jurkat/GFP Transcriptional Reporter Cell Line. LDA achieved 83.3% accuracy in predicting post-radiotherapy fatigue.
“Glutamate receptor signaling” was the most significant (p= 0.0002) pathway among the predictive genes. Functional
validation using Jurkat cells revealed clustering of mGluR5 receptors as well as increased regulated on activation,
normal T cell expressed and secreted (RANTES) production post irradiation in cells pretreated with DHPG, whereas
inhibition of mGluR5 activity with MPEP decreased RANTES concentration after irradiation. DHPG pretreatment
amplified irradiation-induced NF-κB activation suggesting a role of mGluR5 in modulating T cell activation after
irradiation. These results suggest that mGluR5 signaling in T cells may play a key role in the development of chronic
inflammation resulting in fatigue and contribute to individual differences in immune responses to radiation. Moreover,
modulating mGluR5 provides a novel therapeutic option to treat CRF.

Introduction
Persistent fatigue is a debilitating condition that affects

up to 80% of cancer patients1. It is not uncommon for
fatigue to persist long after cancer treatment, and to
negatively impact the quality of life in these patients1,2.
Although the underlying mechanisms of persistent fatigue
remain elusive, emerging evidence suggests that unre-
solved inflammation after cancer treatment plays a role in
the chronicity of cancer fatigue3–7.
Radiotherapy is a highly effective standard of care

treatment for many types of cancer8. However, post-

treatment complications such as fibrosis and inflamma-
tion often occur as a result of repeated stress9. Reactive
oxygen species (ROS) produced by ionizing radiation can
lead to point mutations in mitochondrial and genomic
DNA, mitochondrial dysfunction, genomic instability,
oxidative stress, release of pro-inflammatory cytokines,
and a prolonged inflammatory state9–11. Subsequently,
unresolved inflammation triggered by repeated stress has
been shown to result in “sickness behavior,” a cluster of
symptoms including fatigue, depression, and increased
sensitivity to pain5,12,13.
The association between inflammation and fatigue after

repeated stress from daily exposure of ionizing radiation
warrants further investigation to determine causality. It is
possible that transcriptional activation of nuclear factor
kappa B (NF-κB), which is a ubiquitous transcription

© The Author(s) 2018
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Leorey N Saligan (saliganl@mail.nih.gov)
1National Institute of Nursing Research, National Institutes of Health, Bethesda,
MD, USA
2Universidad de Oviedo, Oviedo, Spain
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-4758-2832
http://orcid.org/0000-0002-4758-2832
http://orcid.org/0000-0002-4758-2832
http://orcid.org/0000-0002-4758-2832
http://orcid.org/0000-0002-4758-2832
http://orcid.org/0000-0001-8555-3832
http://orcid.org/0000-0001-8555-3832
http://orcid.org/0000-0001-8555-3832
http://orcid.org/0000-0001-8555-3832
http://orcid.org/0000-0001-8555-3832
http://creativecommons.org/licenses/by/4.0/
mailto:saliganl@mail.nih.gov


factor that regulates expression of various genes including
those involved in inflammation14, may provide the miss-
ing link. In fact, NF-κB activation has been found in
cancer and after exposure to ionizing radiation15. It is the
most studied transcription factor because of its central
role in regulating the expression of various pro-
inflammatory cytokines11.
Our aim was to explore novel gene signatures that can

identify cancer patients who are at risk for developing
post-radiotherapy fatigue. We have previously shown that
worsening of fatigue 1–2 years post-radiotherapy was
related to chronic inflammation6. In this study, we
investigated genetic vulnerabilities that lead to fatigue
development, as well as underlying mechanisms of
chronic inflammation in fatigued patients. We hypothe-
sized that aberrant activation of NF-κB and pathological T
cell activation would help explain the development of
fatigue following repeated exposure to radiotherapy in at-
risk individuals.

Materials and methods
Participants
The current study (NCT00852111) was approved by the

Institutional Review Board (IRB) of the National Institutes
of Health (NIH), Bethesda, Maryland. All participants
enrolled in this study were euthymic men, 18 years of age
or older, who were diagnosed with non-metastatic pros-
tate cancer with or without prior prostatectomy, and were
scheduled to receive external beam radiation therapy
(EBRT). The entire EBRT treatment lasted 38–42 days,
depending on the clinical stage of the prostate disease.
Potential participants were excluded if they had a pro-
gressive disease that could cause significant fatigue, had
psychiatric disease within the past five years, had uncor-
rected hypothyroidism or anemia, or had a second
malignancy. Individuals who used sedatives, steroids, or
non-steroidal anti-inflammatory agents were also exclu-
ded. Participants were recruited from September 2009 to
November 2014 at the Magnuson Clinical Research
Center at the NIH. Signed written informed consents
were obtained prior to study participation.

Instruments
Prostate specific antigen (PSA) and C-reactive protein

(CRP) were measured from plasma samples sent to NIH
Clinical Center, Department of Laboratory Medicine for
routine laboratory analyses. Fatigue, as the primary out-
come measure, was assessed in all participants using the
13-item Functional Assessment of Cancer Therapy-
Fatigue (FACT-F), which is a frequently used, validated,
reliable, stand-alone measure of fatigue in cancer therapy
(coefficient alpha= 0.95–0.96)16. Each item response is
rated on a 0–4 scale, where a 0 represents “not at all” and
a 4 indicates that the respondent relates to the

corresponding statement “very much.” Total scores range
from 16–53 with lower scores reflecting high fatigue
intensity. Subjects were considered to be fatigued when
there was a clinically significant decrease (worsening of
fatigue symptom) in FACT-F score of ≥3 points from
baseline (prior to radiotherapy initiation) to 1-year post
radiotherapy17.

Gene expression profile by microarray and RT-qPCR
validation
RNA extraction and Affymetrix microarray chips (HG

U133 Plus 2.0, Santa Clara, CA) were processed as pre-
viously described6,18. Affymetrix GeneChip Command
Console (AGCC, 3.0 V) was used to scan images during
data acquisition. Affymetrix CEL files (GEO accession
GSE30174) containing raw intensity data were imported
into Partek Genomics Suite 6.6 (Partek Inc., St. Louis,
MO), log transformed, and normalized using the robust
multi-array average (RMA) algorithm. Partek batch
removal analysis of variance (ANOVA) was used to
eliminate differences due to batch variation. ANOVA with
false discovery rate (FDR) correction was used to identify
differentially expressed genes (FDR <5%). The gene of
interest was further confirmed with a TaqMan-based real-
time quantitative PCR (RT-qPCR) using gene-specific
primers (Thermo Fisher Scientific, Waltham, MA). Fol-
lowing genomic DNA elimination, a first-strand RNA-
cDNA PCR template was generated from 150 ng of RNA
using the High-capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific). RT-qPCR was performed on a
QuantStudio 6 Flex instrument (Thermo Fisher Scien-
tific), and the gene of interest was normalized to GAPDH
endogenous control.

Machine learning methodologies
The machine learning methodology used to identify the

most discriminatory genes is described in Fig. 1a. Feature
reduction and classification, as well as biomedical robots
for fatigue phenotype classification, were applied to
address the intrinsic uncertainty involved in the study19.
Briefly, for a given gene j in a two-class problem, c1c2:

FRjðc1; c2Þ ¼ μj1�μj2ð Þ2
σ2j1þσ2j2

;

μj1; μj2 are measures of the center of distribution
(means) of prognostic variables j in classes 1 and 2. σ2j1; σ

2
j2

are measures of the dispersion or variance within these
classes. This method identifies genes that separate the
classes furthest apart and are homogeneous within classes
with low intra-class variance. The most discriminatory
variables were determined and ranked in decreasing order
by discriminatory power. The algorithm then identified
minimum-size genetic signatures by recursive elimination
of lower discriminatory genes to optimize leave-one-out-
cross-validation (LOOCV) predictive accuracy. This
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method was based on the rationale that highly dis-
criminatory genes span main features of the classification,
whereas genes with lowest discriminatory power account
for details in phenotype discrimination. LOOCV involves
using a single sample from the original dataset as the
validation data (sample test), and the remaining samples
as training data to build the classifier. The class assign-
ment was based on a nearest-neighbor classifier in the
reduced base. Cross-validation was performed to deter-
mine predictive accuracy of the classifier for new samples
with unknown class assignment. A random sampler was
used to identify other networks of highly discriminatory
genes. The most discriminatory gene networks after
sampling were determined, and posterior sampling fre-
quencies of genes involved in these networks were ana-
lyzed. Pathway analysis of the most discriminatory genes
were analyzed using the “Core Analysis” function inclu-
ded in Ingenuity Pathway Analysis (IPA, Qiagen, Red-
wood City, CA).

Immunocytochemistry and fluorescence quantification
Jurkat, Clone E6–1 (T lymphocyte cell line, ATCC®

TIB-152™) cells were directly purchased from American
Type Culture Collection (ATCC, Manassas, VA),
authenticated by Short Tandem Repeat (STR) profiling
and tested mycoplasma free by ATCC. Jurkat cells were
cultured based on standard ATCC protocols. Jurkat cells
were pretreated with either control (PBS), 200 μM DHPG
(3,5-Dihydroxyphenylglycine hydrate, Sigma-Aldrich, St.
Louis, MO), or 20 μM MPEP (6-Methyl-2-phenylethynyl
pyridine hydrochloride, Sigma-Aldrich) 20 min before
irradiation at 8 Gy in a Mark-1 γ-irradiator (JL Shepherd
& Associates, San Fernando, CA). Twenty-four hours
after irradiation or sham treatment, cells were rinsed with
PBS and fixed in 4% paraformaldehyde and probed with
an anti-metabotropic glutamate receptor 5 antibody
[EPR2425Y] (mGluR5, catalog number: ab76316; Abcam,
Cambridge, MA). Antibody:antigen complexes were
visualized with Alexa Fluor 568-conjugated goat anti-
rabbit secondary antibody (catalog number: A-11011;

Fig. 1 Flow chart of the machine learning methodology. a Flow chart of the machine learning methodology. b Microarray dataset visualized as
log2. A total of 420 genes with Fisher’s ratio between [0.70, 1.72] and fold change between [−0.92, −0.15] and [0.09, 1.13] were selected using the
feature selection procedure. c Fisher’s ratio-fold change plot demonstrates that most differentially expressed genes were different from those with
the greatest Fisher’s ratio
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Thermo Fisher Scientific, Waltham, MA). Cell morphol-
ogy was visualized with Alexa Fluor 488 Phalloidin (cat-
alog number: A12379; Thermo Fisher Scientific). Nuclei
were stained with DAPI (4′,6′-diamidino-2 phenylindole;
catalog number: D1306; Thermo Fisher Scientific).
Immunofluorescent images are maximum projections of

optical slices (0.7 micron spacing) collected on a Leica
Biosystems SP5 confocal microscope (Leica Microsystems
Inc., Buffalo Grove, IL), using a 40 × 1.25 NA oil objective.
Alexa Fluor 488 Phalloidin was excited at 488 nm and the
emission collected was from 493 to 558 nm. mGluR5-
Alexa Fluor 568 was excited at 561 nm and the collect
emission range was 568–700 nm. DAPI was exited at
405 nm and the collected emission was 410–478 nm.
Images of 1024 by 1024 pixels (averaging of 4) were col-
lected sequentially for each color using the confocal
microscope.
NF-κB/Jurkat/GFP Transcriptional Reporter Cell Line, a

clonal Jurkat cell line with stably integrated lentiviral
transcriptional reporter vector with 30-fold NF-κB-
dependent activation of GFP reporter gene, was pur-
chased from System Biosciences (SBI, Palo Alto, CA) and
cultured based on standard ATCC protocols. NF-κB/
Jurkat/GFP Transcriptional Reporter Cell Line was trea-
ted as described above. Positive controls were treated with
recombinant TNFα (PeproTech, Rocky Hill, NJ). GFP
intensity, an indicator for NF-κB activation, was directly
quantified in each well of a 96-well microplate using a
fluorescence plate reader (Cytation 5 Cell Imaging Multi-
Mode Reader, BioTek, Winooski, VT).

Western blot analysis
Cells were collected 24 h after irradiation, washed with

PBS, and lysed on ice in modified RIPA buffer (50 mm
Tris–HCl pH 7.4, 1% NP-40, 0.25% sodium deoxycholate,
150mm NaCl) supplemented with protease inhibitor
cocktail (Sigma-Aldrich), using a hand-held homogenizer.
Lysates were centrifuged at 17,000×g 15min at 4 °C.
Supernatants were retained as the soluble lysate, boiled
for 5 min in the presence of Laemmli Sample Buffer (Bio-
Rad Laboratories, Hercules, CA). All protein samples were
subjected to denaturing SDS–polyacrylamide gradient gel
electrophoresis followed by transfer to polyvinylidene
difluoride (PVDF) membranes using the Trans-Blot
Turbo Transfer System (Bio-Rad Laboratories) and
Western blot analysis for mGluR5 [EPR2425Y] (catalog
number: ab76316; Abcam). Membranes were re-probed
with a primary antibody against GAPDH (catalog number:
ab9485; Abcam) as a loading control (n= 3 for each
condition). Immunoreactive complexes were visualized
using Super Signal West Pico Chemiluminescent Sub-
strate (Thermo Fisher Scientific), imaged and quantified
using the ChemiDoc MP Imaging Systems (Bio-Rad
Laboratories).

Statistical analysis
Descriptive analyses were used to describe demographic

characteristics of the sample. All data were expressed as
mean ± s.e.m. Normal distribution of data was confirmed
using the Shapiro–Wilk test. Using power analysis with an
alpha of 0.05 and power of 80%, the projected sample size
needed is approximately 13 subjects per group and a total
of 26 subjects. False Discovery Rate (FDR) adjustment
using the Benjamini-Hochberg procedure was applied for
analyses of whole transcriptome microarray and the
subsequent PCR validation. One-way analysis of variance
(ANOVA) was used to determine significant differences
in comparisons involving more than two groups, followed
by post hoc non-directional two-tailed t-test with Bon-
ferroni correction for between group comparisons (for
analyses of Western Blot optical density, GFP intensity
measurement, and RANTES concentrations). In vitro
experiments were performed with an n= 8 per treatment
group and repeated at least three times. p-values < 0.05
were considered significant. Statistical analyses were
performed with SPSS statistics software version 23 (IBM
SPSS, Purchase, NY).

Results
Gene signatures associated with fatigue intensification at
1-year post EBRT
Of the 36 subjects recruited to generate the predictive

algorithm, 33.3% of subjects experienced significantly
worsened fatigue at 1-year post radiotherapy, defined as a
decrease in FACT-F score of 3 points or greater from
baseline to 1-year post radiotherapy. We did not observe
any significant differences in clinical characteristics
between the two groups for age, body mass index (BMI),
Gleason scores, T stage, or PSA levels (Table 1). The acute
inflammatory marker, CRP, was significantly elevated (p
= 0.02) in fatigued subjects (5.2 ± 2.8 mg/ml) compared to
non-fatigued controls (1.3 ± 0.1 mg/ml) at baseline, but
did not differ (p= 0.21) 1-year post radiation therapy
(Table 1). Fatigue severity as measured by FACT-F 1-year
post radiotherapy correlated significantly with baseline
CRP (r=−0.34, p= 0.04), but not with CRP levels 1-year
post radiotherapy (r= 0.05, p= 0.75).
Whole genome transcriptome microarray data used to

identify the most discriminatory genes were visualized
with the heat map shown in log2 (Fig. 1b). The feature
selection procedure generated 420 genes with Fisher’s
ratio between [0.70, 1.72] and fold change between
[−0.92, −0.15] [0.09, 1.13] that were most predictive of
fatigue intensification at 1-year post radiotherapy (Fig. 1b;
complete list of the 420 genes is included in Supple-
mentary Table 1). Predictive genes with the highest fold
change were different from ones with the highest Fisher’s
ratio (Fig. 1c).
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Metabotropic glutamate receptor 5 and fatigue
Pathway analysis was performed to identify the top

canonical pathways associated with the most dis-
criminatory genes predictive of fatigue post-radiotherapy.
Canonical pathways were ranked by significance (Fig. 2a).
“Glutamate receptor signaling” was identified as the most
significant canonical pathway (FDR corrected p= 1.47 ×
10−7). “Glutamate receptor signaling” pathway genes that
are predictive of fatigue 1-year post radiotherapy are
shown in Fig. 2b. Within this pathway, GRM5 encoding
mGluR5 has a Fisher’s ratio of 0.8 and prediction accuracy
at 83.3%. Using RT-qPCR, we confirmed that GRM5 at a
detection threshold cut off at 35 cycles was detectable in
fatigued subjects, but not in non-fatigued subjects both at
baseline and at 1-year post radiotherapy (Fig. 2c).

mGluR5 activity affects T cell response to irradiation
To investigate the role of mGluR5 in fatigue develop-

ment, we utilized an in vitro model of T lymphocytes,
Jurkat cells. Confocal images demonstrated that mGluR5
was expressed constitutively both intracellularly and on
the cell membrane (Fig. 3a). Interestingly, clusters of
mGluR5 were most prominent in Jurkat cells irradiated at
8 Gy pretreated with group I mGluR agonist DHPG (Fig.
3a, 8 Gy, bottom panel). Treatment with either DHPG or
mGluR5 antagonist MPEP without irradiation did not
change mGluR5 distribution (Fig. 3a, sham, top panel).
Western blot analysis using whole cell protein lysates
revealed that mGluR5 protein levels increased in the
DHPG-treated cells irradiated at 8 Gy (Fig. 3b). RANTES
(regulated on activation, normal T cell expressed and
secreted), a chemokine released by activated T cells,
increased in cell culture media collected from DHPG-
treated irradiated cells (p= 0.02), whereas blocking
mGluR5 with MPEP prior to irradiation decreased
RANTES release (p= 0.0001) into the culture media (Fig.
3c).

mGluR5 agonist treatment enhances irradiation-induced
NF-kB activation
IPA interaction map analysis of the most differentially

expressed genes identified using microarray data collected

Table 1 Demographics and clinical characteristics of
sample population

Total (n=

36)

Fatigued (n=

12)

Non-fatigue

(n= 24)

Age (years) 66 ± 7.07 64 ± 7.50 67 ± 7.00

BMI 30 ± 4 31 ± 5.42 29.26 ± 3.75

Race

Asian 5.56% 8.33% 4.17%

Black 19.44% 16.67% 20.83%

Hispanic 5.56% 8.33% 4.17%

White 69.44% 66.67% 70.83%

Ethnicity

Hispanic/Latino 5.56% 8.33% 4.17%

Not Hispanic/Latino 83.33% 83.33% 83.33%

No Answer 11.11% 8.33% 12.50%

Education

Less than high

school

2.78% 0% 4.17%

9–12th, not a

graduate

8.33% 16.67% 4.17%

High school grad/

GED

8.33% 8.33% 8.33%

Associate degree/

some college

5.56% 16.67% 0%

Bachelor’s degree 36.11% 41.67% 33.33%

Advanced degree 11.11% 0% 16.67%

No answer 27.78% 16.67% 33.33%

T-stage

T1c 27.78% 16.67% 33.33%

T2, NOS 2.78% 0% 4.17%

T2a 27.78% 33.33% 25.00%

T2b 8.33% 16.67% 4.17%

T2c 16.67% 0% 25.00%

T3a 5.56% 16.67% 0%

Other 5.56% 8.33% 4.17%

Gleason score

6 11.11% 8.33% 12.50%

7 44.44% 33.33% 50.00%

6 25.00% 33.33% 40.83%

9 19.44% 25.00% 16.67%

PSA baseline (ng/ml) 7.58 ±

17.59

11.19 ± 29.67 5.78 ± 6.29

0.48 ± 1.08 0.531 ± 1.38 0.46 ± 0.93

Table 1 continued

Total (n=

36)

Fatigued (n=

12)

Non-fatigue

(n= 24)

PSA completion of

EBRT (ng/ml)

CRP baseline (mg/ml) 2.34 ± 0.77 5.24 ± 2.80 1.26 ± 0.18

CRP 1 yr post-EBRT

(mg/ml)

2.45 ± 0.38 1.74 ± 1.40 2.78 ± 3.25

BMI body mass index, EBRT external beam radiation therapy, ADT androgen
deprivation therapy, PSA prostate specific antigen, CRP C-reactive protein
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at 1-year post radiotherapy indicated that a commonality
in the pathways was the NF-κB pathway (Fig. 4a). Further,
IPA upstream analysis revealed NF-κB as a significant
upstream regulator of differentially expressed genes in
fatigued subjects (p= 0.00036). In fact, NF-κB target
genes include RANTES and TRAIL, which we had pre-
viously shown to be related to fatigue 1-year post radio-
therapy6. To investigate whether mGluR5 activation prior
to irradiation modulated NF-κB activity, we employed a
Jurkat reporter cell line that expresses GFP upon NF-κB
activation. NF-κB/GFP reporter cells were first treated
with increasing concentrations of recombinant TNFα, a
potent NF-κB inducer, to establish that NF-κB activation
led to GFP production in the reporter cell line (Fig. 4b).
The NF-κB/GFP reporter cells were then treated with
control, DHPG, or MPEP prior to irradiation at 8 Gy.
Irradiation alone induced NF-κB activation compared to
the sham irradiated cells. Pretreatment with DHPG

further increased NF-κB activation compared to the
irradiated control cells (p= 0.01), suggesting that mGluR5
activation amplified the effect of irradiation on NF-κB
transcription activation (Fig. 4c).

Discussion
Persistent fatigue is a common complaint that greatly

affects the quality of life of cancer survivors1. Little is
known about the underlying mechanism of fatigue, and
no therapeutic intervention is currently available to
address this debilitating disorder. Therefore, there is an
urgent need to understand the etiology of persistent
fatigue in cancer survivors to develop better treatment
options. Previous studies point to an inflammatory etiol-
ogy triggered by repeated stress such as oxidative stress
from radiotherapy6. In the current study, we found a novel
gene signature, “Glutamate Signaling Pathway,” that
identified patients at risk for developing fatigue one year

Fig. 2 Gene signatures predictive of fatigue 1-year post EBRT. a Top canonical pathways of the predictive genes. Values are expressed as −log
(p-value) indicating the significance of the enrichment of the predictive genes in each pathway. b GRM5 encoding metabotropic glutamate receptor
5 (mGluR5) was among the genes with the highest predictive accuracy for fatigue 1-year post EBRT. Genes involved in glutamate signaling were
found to be most predictive of fatigue 1-year post radiotherapy. c qRT-PCR validation demonstrating that GRM5 was only detectable in fatigued
subjects. ND, not detected. Error bars= s.e.m
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after radiotherapy. Transcripts of the predictive gene
GRM5 encoding mGluR5 were detectable in fatigued
subjects at both baseline and 1-year post radiotherapy, but
not in non-fatigued subjects. Consistent with previous
literature20, mGluR5 was constitutively expressed in Jur-
kat cells, and pretreatment with DHPG prior to irradia-
tion resulted in mGluR5 clustering. RANTES release by
irradiated T cells was enhanced by DHPG pretreatment,
whereas MPEP had the opposite effect. DHPG or MPEP
treatment in the absence of irradiation did not affect
RANTES release compared to control. These findings
suggest that mGluR5 activation may prime T cells to
irradiation-induced activation. Consistent with the

inflammatory hypothesis, pretreatment with DHPG
amplified radiation-induced NF-κB activation, suggesting
a role of mGluR5 in modulating T cell activation after
radiotherapy via NF-κB transcriptional activation (Fig.
4d). This hypothesis may help explain that baseline levels
of mGluR5, as part of the glutamate receptor signaling
pathway, predispose cancer patients to post-radiotherapy
fatigue. To our knowledge, this is the first evidence of the
involvement of mGluR5 in the pathogenic process of
cancer-related fatigue.
Glutamate is the major excitatory neurotransmitter in

the central nervous system (CNS), and signaling via glu-
tamate receptors mediate essentially all facets of

Fig. 3 mGluR5 activity enhances effects of irradiation on T cell activation. a Confocal microscopy images of sham and irradiated Jurkat cells
treated with control, DHPG, or MPEP. Red: mGluR5, Green: Phalloidin, Blue: DAPI. Scale bar= 7.5 μm. b Western blot data showing increased mGluR5
intensity in DHPG-treated irradiated Jurkat cells (p= 0.002). c DHPG pretreatment before radiation increased RANTES release into the culture media
(p= 0.02), whereas MPEP decreased RANTES production (p= 0.001). Error bars= s.e.m. * p < 0.05
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Fig. 4 mGluR5 modulation enhanced the effect of irradiation on NF-κB activation. a Pathway analysis network containing differentially
expressed genes from 1-year post radiotherapy identified around the NFKB gene. Red nodes indicate genes upregulated in fatigued subjects
compared to non-fatigued subjects, green nodes indicate downregulated genes. b GFP intensity increased with increasing concentrations of TNFα in
the NF-κB/GFP Jurkat reporter cell line. c Irradiation significantly increased NF-κB/GFP activation in the NF-κB/GFP Jurkat reporter cell line (p= 0.01).
DHPG pretreatment enhanced the effect of irradiation on NF-κB activation (p= 0.04). Error bars= s.e.m. d A schematic illustration of the role of
mGluR5 in post-radiotherapy fatigue in cancer patients. mGluR5 modulation amplified radiation-induced NF-κB activation, which predisposed cancer
patients to post-radiotherapy inflammation and persistent fatigue
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neurotransmission21. In recent years, the role of gluta-
mate signaling has been found to extend beyond the CNS
including playing a key role in immune regulation22–24.
Glutamate has been shown to be released by various cells
in the peripheral immune cells including T cells, neu-
trophils, dendritic cells, monocytes, and macrophages25–
29. In addition, glutamate has been shown to play a direct
role in regulating lymphocyte immune function and
cytokine release30. Moreover, mGluRs including mGluR5
have been identified in a variety of immune cells including
T lymphocytes20,23.
In our study, mGluR5 was found to be constitutively

expressed in T cells and DHPG pretreatment resulted in
cluster formation after irradiation. Although homo-
dimerization is required for mGluRs to function, aberrant
clustering of mGluR5 receptors in the brain has been
shown to elevate intracellular calcium and synapse dete-
rioration, which can be prevented by mGluR5 antago-
nist31. Long forms of Homer have been shown to induce
cell surface clusters of mGluR5 in neurons due to the
interaction with C-terminal tails of Homer, which brings
the complex in association with IP3 enhancing intracel-
lular calcium signaling32. It is possible that aberrant
clustering of mGluR5 in the DHPG-irradiation group
amplified downstream signaling of the receptor. mGluR5
activation via secondary messenger cAMP leads to
nuclear translocation of NF-κB subunit p65, allowing the
NF-κB dimer to translocate into the nucleus, where it
turns on transcription of its target genes33. One of the
downstream target genes expressed upon NF-κB tran-
scriptional activation is the pro-inflammatory chemokine
RANTES, which promotes chronic inflammation by
recruiting and activating cells involved in inflammation
such as monocytes, lymphocytes, eosinophils, and mast
cells34. Interestingly, another NF-κB target gene TRAIL
was previously shown to be upregulated in fatigued sub-
jects 1-year post radiotherapy6. In addition to directly
influencing the inflammation cascade, mGluRs may
interact with other receptors to modulate the inflamma-
tory tone. For example, although adenosine A2A receptors
(A2A-R) are considered anti-inflammatory, interactions
between A2A-R and mGluR5 in lymphocytes can trigger
proinflammatory responses via PLC-PKC signaling35.
Interestingly, treatment with DHPG and MPEP without

irradiation did not affect mGluR5 clustering, RANTES
release, or NF-κB transcription factor activation under
experimental conditions in this study. The role of
mGluR5 activation appeared to be enhancement of
irradiation-induced increase in NF-κB activation and pro-
inflammatory cytokine release. Indeed, baseline fatigue
levels in subjects that developed fatigue 1-year post
radiotherapy did not differ from non-fatigued subjects,
even though mGluR5 mRNA transcripts were sig-
nificantly higher in the fatigued subjects. It is possible that

higher levels of mGluR5 alone in this patient population
does not directly lead to fatigue. Instead, increased
mGluR5 gene expression primes the immune system to
develop chronic inflammation after the initial trigger of
oxidative stress from radiotherapy, which eventually leads
to a prolonged inflammatory state. Immune responses to
stressors are normally tightly regulated, and mechanisms
including activation-induced cell death (AICD) in T cells
are employed to control inflammation36. Interestingly,
glutamate has been shown to inhibit AICD in activated
T cells via group I mGluRs37. It is possible that mGluR5
activation prior to irradiation results in sustained T cell
activation and NF-κB transcription factor activation. By
doing so, individuals with higher levels of mGluR5 are
particularly vulnerable to developing chronic inflamma-
tion and fatigue after receiving cancer therapy.
An interesting observation in the current study is that

MPEP treatment prior to irradiation decreased RANTES
release (Fig. 3c) but did not significantly affect NF-κB
activation (Fig. 4c). While MPEP is commonly used as a
specific mGluR5 antagonist, previous studies have
reported possible off-target effects of MPEP on other
glutamate receptors, such as NMDA 1A/2B and kainate
Glu6-(IYQ)38. Although much remains unknown about
the role of glutamate receptors in immune signaling, it is
possible that MPEP modulation of other glutamate
receptors may exert additional influence on NF-κB acti-
vation in T lymphocytes24,39,40. Further contributing to
the complexity of RANTES transcriptional control, the
human RANTES/CCL5 promoter region appears to
contain binding sites for multiple transcription factors
including NF-κB, AP-1, C/EBP, and Ets-141–43. It is pos-
sible that MPEP pre-treatment influences RANTES
release via multiple transcription factors including NF-κB.
Future studies will investigate the relationship between
MPEP, RANTES, and other transcription factors that may
be involved.
The acute-phase inflammatory marker, CRP, has been

shown in previous studies as a predictive marker for post-
treatment survival in various malignancies including
prostate cancer44,45. In the current study, plasma CRP
levels between fatigued and non-fatigued subjects were
significantly different at baseline, but not at 1-year post-
radiotherapy. Interestingly, baseline CRP significantly
correlated with fatigue symptom severity 1-year post-
radiotherapy, suggesting that CRP may serve as a pre-
dictive marker for both post-treatment survival, as well as
fatigue. It is possible that CRP and mGluR5 may be
mediators of independent inflammatory events, as no
significant correlation between mGluR5 transcript levels
and baseline CRP concentrations was observed. Further-
more, CRP is a non-specific marker of systemic inflam-
mation, so it is not clear whether the elevated baseline
CRP levels in fatigued subjects was secondary to other
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causes of inflammation, which include cancer itself. Even
though all subjects recruited in the current study were
diagnosed with non-metastatic prostate cancer before
undergoing radiotherapy, it is possible that subtle differ-
ences in baseline inflammatory tone, perhaps related to
cancer severity, were further exacerbated by mGluR5-
related downstream events in response to radiotherapy
leading to persistent fatigue 1-year post-radiotherapy.
Future studies will explore the interplay between baseline
inflammation, as well as radiotherapy-induced inflam-
matory events in fatigue outcomes in a larger sample size.
It is worth pointing out that this study only investigated

the role of mGluR5 in irradiation-induced activation in T
lymphocytes. It is possible that immune cells other than T
lymphocytes contributed to higher levels of GRM5 tran-
scripts in fatigued subjects. Although many individual
differences may help explain the variability in response to
the same stressor, T cells have been well studied because
of their pivotal role in orchestrating the immune
response46. As the most important cells in adaptive
immunity, T cells are often implicated in initiating the
inflammatory cascade47,48. Therefore, we opted to inves-
tigate the role of mGluR5 in T cell activation. Future
studies will further explore the contribution to persistent
fatigue by other mGluR5-expressing immune cells.
Another limitation of the study is that we only investi-
gated T cell activation after global mGluR5 activity
modulation, regardless of the location of the receptor.
While the role of mGluR5 in immune regulation is still
emerging, studies on neuronal mGluR5 demonstrated
that intracellular and cell surface mGluR5 regulate tran-
scriptional activation and gene expression differently49,50.
Although it is beyond the scope of the current study,
future studies will investigate whether the role of mGluR5
in fatigue pathogenesis is related to the activities of
intracellular mGluR5 or cell surface receptors influencing
behavior by altering immune response to stressors.
Repeated stress in the form of ionizing radiation from

radiotherapy triggers different long-term responses in
different patients, as demonstrated by the observation that
only a subset of patients develop chronic inflammation
and persistent fatigue6. Accordingly, determining the
genetic susceptibility that leads to unresolved inflamma-
tion is crucial to understanding the underpinnings of
fatigue pathogenesis. Genetic vulnerability combined with
cancer and old age predispose cancer patients to devel-
oping chronic inflammatory conditions after receiving
repeated stress. We demonstrated that mGluR5 activation
prior to irradiation may lead to sustained T cell activation
and NF-κB transcription factor activation. Our study
demonstrates for the first time that glutamate receptor
signaling predicts the development of fatigue long after
treatment completion. The novel finding in this study will
not only lead to a greater understanding of fatigue and

other symptoms related to chronic inflammation, it will
also provide potential therapeutic targets to treat this
debilitating condition.
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