
1Scientific RePorTs |  (2018) 8:8415  | DOI:10.1038/s41598-018-26422-4

www.nature.com/scientificreports

Predators and nutrient availability 
favor protozoa-resisting bacteria in 
aquatic systems
A. Andersson1,2, J. Ahlinder3, P. Mathisen1, M. Hägglund3, S. Bäckman3, E. Nilsson3,  
A. Sjödin   3 & J. Thelaus3

The long co-existence of bacteria and protozoa has led to the development of bacterial protozoa 
resistance strategies, which are suggested to serve as drivers for the evolution of pathogenic bacteria. 
However, the ecological mechanisms underpinning selection for protozoa-resistance in aquatic bacteria 
are poorly known. To assess the role of nutrient availability and predation-pressure on selection for 
protozoa-resisting bacteria (PRB), an enrichment-dilution experiment was designed using laboratory 
microcosms containing natural lake water. PRB was monitored by screening 16S rRNA amplicon 
sequence data for reads assigned to bacteria that previously has been shown to resist degradation by 
amoebae. To estimate the effects of the microbial food web dynamics (microscopy of; heterotrophic 
bacteria, phytoplankton, protozoa and rotifers) and physicochemical variables on the PRB abundance 
in the study system, a joint species distribution modelling approach was used. The predation-pressure 
(ratio between predator and bacterial biomass) had a positive effect on the abundance of the PRB genus 
Mycobacterium, while perturbation (enrichment and dilution) favored the PRB genus Pseudomonas that 
dominated the bacterial community in the disturbed systems. Our results show that PRB with different 
ecological strategies can be expected in water of high and intermediate nutrient levels and after major 
disturbances of an aquatic system.

The potential for transmission of pathogenic bacteria from environmental reservoirs to susceptible hosts depends 
on the pathogens’ environmental distributions and the hosts’ behaviour. Knowledge of pathogens’ environmen-
tal persistence is limited, largely because it is difficult to study these microbes in their natural environments. 
However, a better understanding of pathogens’ long-term fates in natural ecosystems is needed to accurately 
assess risks of exposure and design effective strategies for responding to emerging diseases1,2.

The long co-existence of bacteria and bacterivorous protozoa in aquatic and terrestrial ecosystems has led 
to the evolution of antipredator strategies in many bacterial groups3. Bacteria that can survive protozoan pre-
dation, i.e. protozoa-resisting bacteria (PRB), frequently exhibit traits such as morphological adaptation (e.g. 
elongation, aggregation, and filament or biofilm formation), increased growth rates, motility, toxicity and ability 
to replicate or avoid degradation in eukaryotic cells using specific outer membrane structures4–9. Interactions 
between bacteria and bacterivores have been suggested to serve as a driver or selective force for pathogen evolu-
tion3,10–14. Pathogenic bacteria contain virulence factors that enable them to colonize a niche in their hosts, evade 
or suppress the host’s immune response, enter and exit host cells, or obtain nutrition from the host. Several of 
these abilities are similar to those of PRB; it is widely believed that many traits that render bacteria pathogenic in 
susceptible hosts were shaped by evolutionary forces outside the context of human-pathogen interactions, and 
should be seen as colonization factors that produce “accidental virulence”15.

Bacteria in natural aquatic systems are exposed to diverse stressors that vary over time and over spatial scales. 
In addition to protozoan predation and viral lysis, aquatic bacterial communities are exposed to bottom-up 
forces such as limited nutrient availability16–18. Consequently, these communities experience highly variable con-
ditions, creating fluctuations in their selection dynamics i.e. variation in the bottom-up and top-down control 
of the microbial communities19,20. The heterogeneity of the aquatic environment may create niches that enable 
the co-existence of bacteria with different defense traits. Therefore, PRB could theoretically occur in any aquatic 

1Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden. 2Umeå Marine 
Sciences Centre, SE-905 71, Hörnefors, Sweden. 3Division of CBRN Defence and Security, Swedish Defence Research 
Agency, FOI, SE-901 82, Umeå, Sweden. Correspondence and requests for materials should be addressed to A.A. 
(email: agneta.andersson@umu.se)

Received: 1 September 2017

Accepted: 8 May 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-5350-4219
mailto:agneta.andersson@umu.se


www.nature.com/scientificreports/

2Scientific RePorTs |  (2018) 8:8415  | DOI:10.1038/s41598-018-26422-4

system. However, the ecological mechanisms underpinning selection for protozoa-resisting bacteria with varying 
ecological strategies are poorly known.

We performed a controlled experiment with the aim to elucidate effects of bottom up (nutrient level) and 
top-down forces (predation) on the occurrence of PRB genera in natural aquatic microbial communities. 
The presence of PRB was monitored by amplicon sequencing of the 16S rRNA gene. PRB were defined as 
amoeba-resisting bacteria13, which comprises bacteria shown to resist amoeba degradation with varying ecolog-
ical strategies (amoeba associated and free-living). We hypothesized that increased nutrient load would increase 
the predation-pressure on the bacteria, leading to selection for PRB.

Results
Dynamics of nutrients, plankton and predation-pressure on bacteria.  The dissolved organic car-
bon (DOC) and total nitrogen (TN) concentrations for the highest and lowest nutrient levels (levels 3 and 1) 
differed ~20–30-fold, while TP concentrations differed by a factor of ~10 (Fig. 1). At nutrient level 3, the DOC 
and TN concentrations decreased over time, but at lower levels (2 and 1), DOC and TN were stable throughout 
the experiment. TP increased between days two and four and then remained relatively stable.

The biomass of autotrophic and mixotrophic plankton was lowest at nutrient level 1 and highest at levels 2 and 
3 (Fig. 2). Initially their biomasses were highest in BP2, but decreased over time. Despite incubation in darkness, 
the biomasses of autotrophic and mixotrophic plankton increased in B3. Heterotrophic predator biomass were 
high in BP2, intermediate in BP3, and very low or absent in BP1 (Fig. 2). Heterotrophic predators in the BP2 and 
BP3 included rotifers, amoebae, ciliates and heterotrophic nanoflagellates (HNF) (Fig. 3). The B treatments were 
generally free of predators, although HNF were detected in B2 and B3 (Fig. 3).

The bacterial biomass increased steadily over time in BP3, but gradually decreased from an initially high level 
in BP2 (Fig. 2). Similar patterns occurred in B2 and B3. Conversely, the bacterial biomass remained low through-
out in both nutrient level 1 treatments (B1 and BP1).

Initially the predation-pressure on bacteria in BP2 and BP3 were equally high (Fig. 2). However, over time the 
pressure increased in BP2. Towards the end of the experiment, the predation-pressure on bacteria was 20 times 
higher in BP2 than in the other treatments.

Bacterial community composition.  The 16s rRNA amplicon sequencing yielded 12,509,951 reads, 
11,176,076 (89.3%) of which remained after OTU picking. The reads were clustered into 6,463 OTUs. After filtra-
tion, 10,882,635 reads remained, clustered into 544 OTUs; the number of reads per sample ranged from 19,471 
to 243,297 (Appendix A). The rarefaction curves, representing the estimated diversity within the different treat-
ments, reached an asymptote at a sequencing depth equal to the minimum number of reads per sample (Suppl. 
Figure 2). This indicates that the sequencing depth was sufficient for further analysis and most of the samples’ 
expected diversity was captured.

Eleven major phyla (including sub-classes of Proteobacteria) were identified: Actinobacteria, 
Alphaproteo-bacteria, Bacteroidetes, Betaproteobacteria, Cyanobacteria, Deltaproteobacteria, Firmicutes, 
Gammaproteobacteria, Gemmatimonadetes, Planctomycetes and Verrucomicrobia (Suppl. Figure 3). Sub-classes 
of the phylum Proteobacteria were included because most of the reads (39.0–97.8% per sample) were classi-
fied to that phylum. Betaproteobacteria was the dominant group at the lowest nutrient levels (1 and 2), but 
Gammaproteobacteria dominated at nutrient level 3.

Figure 1.  Concentrations of dissolved organic carbon (DOC), total nitrogen (TN) and total phosphorus (TP) 
during the experiment. Treatments: B = bacteria, BP = bacteria + predators and nutrient level = 1 (diluted), 2 
(in situ), or 3 (enriched). Error bars indicate standard deviations.
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The bacterial community’s alpha diversity was higher in the undisturbed in situ cultures (nutrient level 2) than 
in the diluted or enriched treatments (estimate 5.25, SE 0.72, p = 2.57E-9). Presence of heterotrophic predators 
resulted in higher alpha diversity in BP2 and BP3 than in other treatments (estimate 4.72, SE: 0.72, p = 9.74E-9).

Factors promoting the occurrence of protozoa-resisting bacteria (PRB).  OTUs associated with 
three genera of PRB were identified from the 16S rRNA sequence data: Pseudomonas (Gammaproteobacterium), 
Rickettsia (Alphaproteobacterium) and Mycobacterium (Actinobacterium). The proportion of reads assigned to 
Mycobacterium and Rickettsia increased over time in BP2 (Fig. 4), which had the highest predation-pressure 
(Fig. 1). However, these PRB genera constituted a relatively small proportion of the total bacterial reads (~0.1%) 
in all samples. Pseudomonas was promoted in the enriched treatments B3 and BP3 (Fig. 4). In these sam-
ples, Pseudomonas quickly became dominant, constituting 30–50% of the total bacterial reads. A PCA biplot 

Figure 2.  Carbon biomasses of autotrophic plankton (Autotrophs), mixotrophic plankton (MX eukar.), 
heterotrophic predators (HET eukar.), heterotrophic bacteria (HET bacteria) and predation pressure on 
bacteria (PredPress) during the experiment. Treatments: B = bacteria, BP = bacteria + predators and nutrient 
level = 1 (diluted), 2 (in situ), or 3 (enriched). Error bars indicate standard deviations.

Figure 3.  Biomass concentrations of heterotrophic predators, i.e. heterotrophic nanoflagellates (HNF), ciliates, 
amoebae and rotifers during the experiment. Treatments: B = bacteria, BP = bacteria + predators and nutrient 
level = 1 (diluted), 2 (in situ), or 3 (enriched). Error bars indicate standard deviations.
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of measured variables indicated that Pseudomonas was linked to high DOC and TN concentrations and low 
predation-pressure (Suppl. Figure 4A), while Mycobacterium and Rickettsia were linked to heterotrophic nano- 
and microplankton and high predation-pressure, TP and alpha diversity. Pearson correlation analysis showed that 
Pseudomonas correlated negatively with Rickettsia and Mycobacterium (Suppl. Figure 4B).

The JSDM analysis showed that predation-pressure had a strong positive effect on Mycobacterium abundance 
(β̂51 = 2.61; 95% CI: 1.68, 3.55) (Fig. 5). This corresponds to a greater than 13-fold predicted increase in abun-
dance if the predation-pressure ratio increased by 50% while all other conditions were unchanged. The same 
analysis revealed a negative association for Mycobacterium abundance with both dilution and enrichment com-
pared to the undisturbed condition (Fig. 5). The association with dilution was weak (β̂211 = −2.17; 95% CI: −5.05, 
0.71) but that with enrichment was more obvious (β̂213 = −1.53; 95% CI: −2.85, −0.22). The relatively rare occur-
rence of Rickettsia resulted in wide estimated 95% CI ranges for all parameters: none of the corresponding param-
eters was statistically significant. However, given that Rickettsia was only detected in predator-rich samples, 
predation-pressure seemed to be a favorable predictor (β̂52 = 2.53; 95% CI: −0.71, 5.76). The biomasses of both 
amoebae (Fig. 3) and Rickettsia peaked on the last day of the experiment (Fig. 4), suggesting potential 
co-occurrence. Both dilution and enrichment had strong positive effects on the abundance of Pseudomonas  
(β̂231 = 1.22; 95% CI: 0.73, 1.70 and β̂233 = 2.40; 95% CI: 2.04, 2.76). This implies that going from the undisturbed  

Figure 4.  Proportion of reads assigned to protozoa-resisting bactreial (PRB) genera Mycobacterium, Rickettsia 
and Pseudomonas during the experiment. Treatments: B = bacteria, BP = bacteria + predators and nutrient 
level = 1 (diluted), 2 (in situ), or 3 (enriched). Error bars indicate standard deviations.

Figure 5.  Summary statistics of the joint species distribution model (JSDM) analysis for experiment days 
2–8, including effect sizes and 95% effect size confidence intervals for the nutrient and predation pressure 
(PredPress) parameters. Blue and red colors indicate negative and positive effect directions, respectively. 
Statistical significance at the α = 0.05, α = 0.01 and α = 0.001 levels is denoted by *, ** and ***, respectively. 
Treatments: Diluted (nutrient level 1), Enriched (nutrient level 3).
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in situ state to the enriched state without changing any other predictors would increase the Pseudomonas abun-
dance ten-fold. Similarly, a change from the undisturbed in situ state to the diluted state would increase abun-
dance three-fold. Predation-pressure was shown to be less important (β̂53 = 0.07; 95% CI: −0.15, 0.30).

The JSDM analysis revealed a negative correlation between the occurrence of Pseudomonas and the two other 
PRB genera (r = −0.27 and r = −0.30 for Mycobacterium and Rickettsia, respectively), but there was a positive 
correlation between Mycobacterium and Rickettsia (r = 0.60). These inferred correlations were obtained after 
adjusting for treatment effects, time and replicate dependencies, and are therefore lower than the corresponding 
Pearson correlations (see Suppl. Figure 4B). There was, on average, a predicted decay in the abundance of PRB in 
the diluted samples over time that manifested as a negative slope effect. In all other cases, the predicted abundance 
of PRB genera increased over time. A JSDM analysis of only the last-day data resulted in parameter estimates that 
almost always included zero within the 95% CI (results not shown). This result suggested that all the data from 
day’s two to eight should be included in the modelling. Excluding rotifers in the calculation of predation pressure 
on bacteria, yielded similar results in the JSDM analysis (Suppl. Figure 5). However, one difference was that the 
predation pressure had less distinct influence on the occurrence of Mycobacterium, indicated by a wider 95% 
confidence interval of the regression coefficient (Suppl. Figure 5).

Discussion
Contradicting our hypothesis, the predation-pressure did not increase in parallel with the nutrient load in nat-
ural lake water. This was unexpected because a previous field study identified a weak but general increase in 
predation-pressure with increasing productivity21. Here, the predation-pressure increased >1000-fold from the 
diluted to the undisturbed in situ state, and >100-fold from the diluted state to the highest nutrient load. The 
DOC concentrations in the experiment ranged from ~3 to 50 mgC l−1, with carbon concentrations in the diluted, 
in situ, and enriched treatments corresponding to those of drinking water or oceanic water, eutrophied waters and 
hypertrophic aquatic systems22–24, respectively. Predation-pressure had a strong positive effect on Mycobacterium, 
while nutrient availability had a negative effect on this bacterial genus. The opposite was observed for the oppor-
tunistic Pseudomonas, which was greatly promoted by nutrient enrichment. Our results thus imply there is a 
threshold beyond which the predation-pressure on bacteria does not increase further. This may be due to changes 
in the bacterial community composition that could arise if predation-resistant bacteria have negative effects on 
their predators.

Mycobacterium was favored by in situ conditions with nutrient concentrations matching those found 
under eutrophic conditions. The predator biomass, the predation-pressure on bacteria, and the alpha diversity 
of bacteria were all high under these circumstances. The genus Mycobacterium is divided into the tuberculo-
sis and non-tuberculous complex, both of which have obligate or facultative intracellular lifestyles25. Species 
within the Mycobacterium tuberculosis complex (MTC) cause tuberculosis in mammals and humans, predom-
inantly as a result of direct host-to-host contact26,27. Non-tuberculous mycobacteria (NTM) are responsible for 
community-acquired and focal health-care associated infections, and have been isolated from natural waters, 
water distribution systems, drinking water, soil, food, biofilms, aerosols and dust28,29. In keeping with previous 
studies, our results show that top-down control of the microbial community favors the occurrence of mycobacte-
ria25,30–33. Rotifers and protozoa are both potential predators of bacteria. Omnivory is very common among both 
ciliates and rotifers34–36, so it is likely that they fed on both bacteria and HNF in the in situ and enriched treat-
ments. In the present study, it is not clear whether the Mycobacterium were growing intracellularly in the protozoa 
or saprozoically (extracellularly), as shown for Mycobacterium avium in co-culture with amoeba37. Nevertheless, 
our results indicate that predatory protozoa have important effects on the persistence and dissemination of 
Mycobacterium in aquatic systems as a source of human infection32.

The obligate intracellular Rickettsia spp. appeared to be promoted by high predation-pressure, but this could 
not be proven by statistical analysis. Rickettsia spp. are obligate intracellular bacteria associated with eukaryotes, 
mainly arthropods, and range from being harmless to etiologic agent of severe disease in humans38,39. In our 
study, Rickettsia showed a marked covariation with Mycobacterium, indicating that they have similar ecological 
niches in the system. This suggests that both genera exist in association with protozoa and other predators, and 
are therefore favored under systems subject to strong top-down control. Notably, under in situ conditions, the 
abundance of both Rickettsia and amoebae peaked on the last day of the experiment (Figs 3 and 4). This may 
indicate that Rickettsia depend on amoebae as hosts39,40. It would be interesting to further elucidate if Rickettsia 
use specific species or groups of species as hosts in natural systems.

Pseudomonas spp. dominated the enriched treatment constituting 20–40% and 50–60% of the bacterial 
sequences in the presence and absence of protozoa, respectively. Bacteria from this genus can grow on a wide 
range of organic compounds due to their vast metabolic capabilities41,42. Consequently, they can colonize diverse 
environmental niches and species within this genus are among the most widespread opportunistic pathogens, 
causing infections in hosts including insects, plants, animals and humans42. Several Pseudomonas strains respond 
to grazing by inducing resistance traits such as colony and biofilm formation and activation of the type III secre-
tion system, which mediates the secretion of effector toxins43–46. Pathogenic Pseudomonas aeruginosa has been 
shown to kill the amoeba Acanthamoeba castellani by producing toxins mediated by the type III secretory sys-
tem45,47. The opportunistic ability to compete for nutrients and fast growth together with the ability to form 
biofilms and micro-colonies enables Pseudomonas to monopolize the bacterial community in disturbed systems. 
In our study, nutrient enrichment greatly increased the abundance of Pseudomonas, which in turn reduced the 
general predation-pressure on bacteria. This is consistent with previous findings showing that Pseudomonas is 
promoted in eutrophic and disturbed systems such as streams receiving effluents from hospital waste and ferti-
lized soils48,49.

The definition of PRB is based on amoeba-resisting bacteria (ARB), i.e. bacterial taxa that resist uptake by 
amoebae and can survive, grow inside, and exit free living amoeba after internalization13,38. These ARBs include 
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established pathogens such as Legionella pneumophila, Mycobacterium avium, Francisella tularensis and Rickettsia 
sp. Advancements in genome sequencing have made it possible to monitor the presence of traits associated 
with bacterial pathogenicity, i.e. virulence genes and pathogenicity islands, in complex environmental samples. 
Bacterial traits linked to pathogenicity (protein secretion systems, toxins and pathogenicity islands) are known to 
be widespread in marine bacteria, being present in up to 8% of oceanic metagenomic data50. Previous studies have 
related the presence of virulence genes to environmental factors such as productive waters, polycyclic aromatic 
hydrocarbons, and pH, but have not linked these genes to the occurrence of pathogenic bacterial taxa or asso-
ciated them with infectious disease50,51. This suggests that bacterial gene homologues associated with virulence 
in humans commonly enhance persistence in natural environments. We therefore suggest that analysis of PRB 
genera, could be useful to gain knowledge on ecological drivers that influence the long-term fates of pathogens 
in natural ecosystems.

This study shows that the generative model may be useful in risk assessment frameworks because it inte-
grates environmental data (i.e. microbial food web dynamics and physiochemical data) with predictive model-
ling of bacterial abundance in aquatic systems. We have shown that the relationship between organic load and 
predation-pressure on bacteria is non-linear: there seems to be a tipping point beyond which PRB with extracel-
lular lifestyles start to control the predators. Above this threshold, disturbances enable opportunistic bacteria such 
as strains within the Pseudomonas genus to monopolize the system, causing very little energy to be transferred up 
the food web. Conversely, the high predation-pressure on bacteria associated with undisturbed in situ conditions 
promotes other types of PRBs’, including the slow-growing intracellular Mycobacterium spp. and Rickettsia spp., 
which depend on eukaryotic cells for survival and replication. Our results thus indicate that waters of all nutrient 
states can harbor PRB, but that bacteria with different ecological strategies can be expected in water of high and 
intermediate nutrient levels and after major disturbances of the aquatic system.

Material and Methods
Microcosm experiment.  A microcosm experiment was performed using water from a small eutrophic lake 
in southern Sweden (Suppl. Material 1). The experiment consisted of six triplicated treatments, including three 
different nutrient levels (1 - diluted, 2- in situ and 3- enriched) with or without predators (BP and B, respectively) 
(Suppl. Figure 1). The dilution treatment was designed to mimic oligotrophic conditions, while the enrichment 
treatment was intended to simulate hypertrophic environments. Bacterial composition and plankton biomass 
were analyzed on day 0, 2, 4, 6 and 8, while chemical analyses were performed on day 2, 4, 6 and 8.

Chemical analyses.  TP and TN were measured using a Braan & Luebbe TRAACS 800 autoanalyzer, accord-
ing to standard analytical methods52. Dissolved organic carbon (DOC) was analyzed in water filtered through a 
0.22 µm Supor Membrane Syringe Filter (non-pyrogenic; Acrodisc®) and acidified to 18 mM HCl, final concen-
tration. Samples were analyzed with a Shimadzu TOC-5000 instrument.

Bacterial abundance and biomass.  Samples for bacterial counts were preserved in 0.1% glutaraldehyde 
(final concentration), frozen at −80 °C53 and analyzed with a BD FACSVerseTM flow cytometer (BD Biosciences). 
Samples were stained with SYBR Green I (Invitrogen) at a final concentration of 1:10 00053. As internal standard, 
1 μm microspheres (Fluoresbrite plain YG, Polysciences) were added to each sample. The bacterial carbon bio-
mass was calculated using a conversion factor of 20 fg C cell−1 according to Lee and Fuhrman54.

Nano and microplankton abundance and biomass.  Samples were preserved with alkaline Lugol’s solu-
tion (2% final concentration) and analyzed using Utermöhl technique. Briefly, samples (10 ml) were added to 
sedimentation chambers and plankton allowed to settle for 12 hours before being counted with a Nikon inverted 
microscope (TMS) using phase contrast. Nanoplankton were counted in one transect at 400 times magnification, 
while microplankton were generally counted in half a chamber at 100 times magnification. Generally >100 cells 
per sample were counted. Phytoplankton, protozoan, and rotifer biovolumes were calculated from cell geom-
etries as described by Olenina et al.55 and Ruttner-Kolisko56. Carbon biomasses were calculated according to 
Menden Deuer and Lessard57. Plankton were grouped according to nutritional strategy: autotrophy, mixotrophy 
or heterotrophy.

Results of chemical analyses and carbon biomasses of heterotrophic bacteria, phytoplankton, and predators 
were visualized using the R package ggplot2, version 2.1.058,59.

DNA extraction.  Four ml of each water sample were centrifuged at 16 000 × g for 1 h, 3.9 ml of the resulting 
supernatant were discarded, and DNA was extracted from the remaining volume using the SoilMaster DNA 
Extraction Kit according to the manufacturer’s recommendations for environmental water samples (Epicentre 
Biotechnologies, Madison, WI, USA). The resulting DNA pellet was resuspended in 60 µl of TE buffer and either 
frozen and stored or immediately subjected to PCR analysis. Sample preparation, PCR reaction preparation, and 
thermal cycling were performed in different rooms.

Amplicon preparation and sequencing.  Amplicons were generated targeting the V4 region of the bacterial  
16S rRNA gene60. Briefly, the V4 region was amplified using primers F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) 
and R806 (5′-GGACTACHVGGGTWTCTAAT-3′). Forward and reverse primers were modified to incorporate 
a 12 bp Golay error-correcting barcode that enabled sample multiplexing with both primers60. Amplicons were 
prepared in triplicate and the resulting PCR products were pooled and analyzed on 1% agarose gel pre-stained 
with GelRed (1:10,000, GelRed™ Nucleic Acid Gel Stain, Biotium). Concentrations were determined with a Qubit 
dsDNA BR Assay Kit on a Qubit fluorometer (Invitrogen). The amplicons were pooled at equimolar concentra-
tions and purified using the UltraClean PCR Clean-Up Kit (MoBio), then sequenced on the MiSeq platform 
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(Illumina) with 500 bp paired-end reagent kits according to the manufacturer’s recommendations (MiSeq System 
User Guide, Part # 15027617 Rev. C).

Amplicon sequence analysis.  The Quantitative Insights Into Microbial Ecology (QIIME) pipeline61, ver-
sion 1.7, was used to process the sequenced data. Reads were quality-filtered based on their Phred scores and 
remaining adapter sequences were removed with Cutadapt62. Overlapping read pairs were merged using FLASH63. 
Merged reads were matched to the reference database Greengenes version 13.864 and clustered into opera-
tional taxonomic units (OTUs) through a closed-reference OTU picking approach using UCLUST65. Reference 
sequences were obtained by searching Greengenes for OTUs with at least 97% similarity to the target sequences66. 
Taxonomies were assigned to all OTUs within the OTU-picking workflow, which also includes removal of chi-
meric sequences using uchime67. Source code of scripts used in this work can be found in Appendix B.

A representative set of sequences was obtained in which each OTU was represented by its reference sequence 
from Greengenes. The representative set was aligned using the PyNAST method68 to the Greengenes core refer-
ence alignment. A phylogenetic tree was inferred using an approximately-maximum-likelihood method imple-
mented in the software FastTree 2.1.369. Singletons and low abundant OTUs with frequencies below 0.005% of 
the total reads were removed70. OTUs observed in at least three samples were retained. Alpha diversity was deter-
mined using the metric of phylogenetic diversity71. Differences in alpha diversity between nutrient and protozoa 
levels were estimated using a linear model fitted within R.

PRB were identified as previously suggested by Bertelli and Greub (Amoeba-resisting bacteria, 13). In short, 
the Bertelli and Greub definition includes; bacteria that has been isolated from amoebae or shown growing within 
amoebae, bacteria shown to resist amoebae phagocytosis in vitro and intracellular and fastidious bacteria13. Reads 
assigned to OTUs of PRB genera were extracted from the sequence data and concatenated at genus level for fur-
ther analysis after removing singletons and low abundant OTUs.

Statistical analyses.  Predation-pressure.  We tested whether the predation-pressure on bacteria was a key 
factor for the occurrence of PRB. Predation-pressure on bacteria was calculated in two different ways:

	 1)	 Ratio between the carbon biomasses of heterotrophic protozoa+eukaryotes and heterotrophic bacteria:

= +Bact (Protozoa Metazoa )/BacterialsPredPres Het Het Het

	 2)	 Ratio between the carbon biomasses of heterotrophic protozoa and heterotrophic bacteria72,73:

=Bact Protozoa /BacterialPredPress Het Het

Principal component analysis.  To visualize the treatments’ effects, principal component analysis (PCA) was per-
formed using data from the last day of the experiment (day 8), and the R package ade474. Variables included were 
proportion of reads assigned to PRB, TN, TP, DOC, alpha diversity, and carbon biomasses of heterotrophic bacteria, 
autotrophs, mixotrophs, heterotrophic protozoa, and metazoa. The alpha diversity and proportion of reads assigned 
to PRB were square root transformed, while the other variables were log transformed. If the data contained zeros, a 
value of 0.001 was added prior to log transformation. Furthermore, Pearson correlations between the proportions of 
reads assigned to different PRB on the last day of the experiment were visualized with a heat map.

Joint species distribution model.  Inferential insights into effects of nutrient availability and protozoan predation 
on the abundance of PRB were drawn by fitting a joint species distribution model (JSDM)75: based on a gener-
alized linear mixed model (GLMM) framework, implemented in the lme4 package (version 1.1-12) in R76. Total 
abundance of PRB sequence data was included as the (multivariate) response variable, while total sequence abun-
dance was included as a covariate to control for differences in sampling depth. Thus, we modelled the 16S rRNA 
sequence data as compositional rather than absolute abundance data. To access residual correlations among PRB 
reads, a multivariate random intercept at each sample was included in the model. Nutrient level (diluted, in situ 
and enriched) was included in the model as a group-level predictor (coded with n = 1, 2, 3, respectively).

The model was set up hierarchically to adjust for dependencies over time and among replicates. Each treat-
ment group (i.e. combination of experimental predictors, such as enrichment, dilution, and/or protozoan fil-
tering) was treated as a random effect with varying intercept and slope: this constituted the second level of the 
hierarchy, which ensured that the time dependency was acknowledged. The replicates for a given combination of 
time point and treatment were modelled with a random intercept, and constituted the first level in the model. For 
each sample i = 1, …, 72, for each PRB j = 1, 2, 3, for each treatment group k = 1, …, 6, and for each combination 
of treatment and time point l = 1, …, 24, the multilevel model can be written as:

= β + β + β + β + β + β + β +g(m ) x x ui i iijkl 0i 1j 2jn 3k[ ] 4l[ ] 5i 5j 6i 6k[ ] ij

g() is the log link function defining the mean of the linear function of predictors, mijkl is the PRB abundance, 
β0i is the effect of the total sample sequence abundance for sample i, β1j is the intercept for the j:th PRB, β2jn is the 
n:th nutrient level effect on PRB j, β3k[i] is the varying intercept of the k:th treatment for sample i in treatment k, 
β4l[i] is the varying intercept of the triplicate for group l, β5j is the effect of predation-pressure on PRB j, β6k[i] is the 
varying slope of treatment k at time t = 2, 4, 6, 8 days, x5i is the estimated predation-pressure for sample i, and x6i is 
the time point when sample i was collected. Varying intercepts and slopes (i.e., β3k, β4l, β6k) are assumed to be nor-
mally distributed with mean zero and variance among the PRB abundance in each treatment group, respectively. 
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The residual uij is assumed to be multinormally distributed with zero mean vector and an unstructured covari-
ance matrix. The predation-pressure predictor, x5i, was log-transformed and scaled to unit variance prior to the 
analysis. Default values of the parameters controlling convergence of the glmer function in the lme4 package was 
used. Confidence intervals (CI) were calculated using the Wald method. To visualize the estimated effect size of 
the regression coefficients, the R package sjPlot77 was used. The data for days two to eight of the experiment was 
used to fit the JSDM model.

Data availability.  Sequence data, data set and source codes in appendix A and B.
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