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To address issues with measured and unmeasured confounding in observational studies, we developed a unified
approach to using an instrumental variable inmore flexible ways to evaluate treatment effects. The approach is based
on an instrumental propensity score conditional on baseline variables, which can then be incorporated in matching,
regression, subclassification, or weighting along with various parametric, semiparametric, or nonparametric methods
for the assessment of treatment effects. Therefore, the application of the instrumental propensity score allows differ-
ent methods for outcome effect evaluations in addition to standard 2-stage least square models while controlling for
unmeasured confounders. Several properties of the instrumental propensity score are discussed. The approach is
then illustrated using subclassification along with a semiparametric density ratio model and empirical likelihood. This
method allows us to evaluate distributional and subgroup treatment effects in addition to the overall average treat-
ment effect. Simulation studies showed that themethodworks well. We applied our method to a study of the effects of
attending a Catholic school versus a public school and found that attending a Catholic school had significant benefi-
cial effects on subsequent wages among a subgroup of subjects.

distributional treatment effect; empirical likelihood; instrumental propensity score; instrumental variable;
observational studies; subgroup treatment effect

Abbreviations: 2SLS, 2-stage least squares; CACE, complier average causal effect; CDF, cumulative distribution function; ER,
exclusion restriction; IPS, instrumental propensity score; IV, instrumental variable; WLS,Wisconsin Longitudinal Study.

When randomized controlled studies are not feasible, obser-
vational studies offer an alternative way to evaluate the effec-
tiveness of a treatment compared with control, controlling for
measured confounders with matching, subclassification, and
regression, possibly through propensity scores (1–3) or unmea-
sured confounders with instrumental variable (IV) methods
when a valid IV can be found (4–9). Informally, a valid IV is a
variable that: 1) affects the choice of treatment; 2) is indepen-
dent of the unmeasured confounders; and 3) does not affect the
outcome directly other than through its effect on the treatment.

When a linear model for the (continuous) outcome holds,
the standard IV method based on 2-stage least squares (2SLS)
provides consistent estimates of treatment effects conditioning
on measured confounders (10, 11). Imbens and Angrist (12)
and Angrist et al. (4) showed that the 2SLS estimand is the
average treatment effect for a subgroup of subjects who adopt
the treatment suggested by the instrument, called complier

average causal effect (CACE). However, a linear model may
not be appropriate for other skewed outcomes, and some exist-
ing IV methods that adjust for measured confounders for such
outcomes may provide asymptotically biased estimates in
some settings (13, 14). Heckman and Vytlacil (15, 16) showed
identification and bounds of various treatment parameters
with their relationship within a latent index model for general
outcomes, and Carneiro et al. (17) considered additive struc-
tural models for continuous outcomes. Yau and Little (18),
Barnard et al. (19), and Frangakis et al. (20) developedmethods
with an ordinal instrument and missing data. Tan (7) used an
instrumental propensity score (IPS) in a weighting method to
extend the IV estimator of Angrist et al. (4) for CACEwith co-
variates. Recently, Baiocchi et al. (9) used optimal nonbipar-
tite matching to construct pairs such that the IV is effectively
random within each pair and then developed methods of per-
mutation inference for effect ratios.
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While most methods focus on average treatment effects
over a population, knowing the treatment effect on the entire
distribution of outcomes and on other functions of the out-
come distributions, along with its heterogeneous effects
across subgroups, can provide additional insights into how the
treatment works, help with policy decisions, and enable clini-
cians and patients to select a treatment strategy based on their
own situations. Abadie (5) estimated the cumulative distribution
functions (CDFs) of the complier potential outcomes under
treatment and control with the standard IV approach. However,
the standard IV estimates of the potential CDFsmay not be non-
decreasing functions (5) and might be less efficient because they
do not make full use of the mixture structure implied by the
latent compliance class model (21, 22). Cheng et al. (22) pro-
vided empirical likelihood estimates for the potential CDFs of
compliers in randomized trials with the randomization as an IV.
All of those methods on distributional treatment effects do not
adjust for measured confounders. In the present work, we eval-
uated the distributional treatment effects, other functions of out-
come distributions, and heterogeneous treatment effects across
subgroups in observational studies when the IV requires condi-
tioning onmeasured confounders to be valid.

Our approach was based on an IPS. The IPS not only retains
key advantages of the usual propensity score (1), such as reduc-
ing the dimensionality of the measured confounders, but it also
deals with unmeasured confounders by the use of an IV. The
IPS method parallels the blinding of a randomized trial; that is,
the analysis for the IPS model can be worked on before looking
at the outcome data. Diagnostics and adjustments can be done
until the IPS model is adequate, all without looking at the out-
come data. In other regression-based methods, such as 2SLS,
one has often looked at the outcome data and estimated causal
effects in the process of choosing covariate adjustment models,
and it can be difficult to be completely objective in comparing
different covariate adjustment models. Rubin (23) and Kang
et al. (24) offer discussion of the value of blinding in observa-
tional studies. Also note that a complex outcome model with
many covariates may make the estimation of treatment effects
complicated, and many nonparametric and semiparametric
causal methods for treatment effects do not incorporate co-
variates easily, especially when the dimension of covariates
increases. The IPS provides a unified approach that adjusts
for covariates for a valid IV for general types of outcomes.
After the IPS model is adequate in terms of balancing the
distributions of baseline covariates by the IV, different sta-
tistical methods (parametric, semiparametric, or nonparamet-
ric methods) can be used to estimate the treatment effects. We
discuss the properties of the IPS and then show the method
for distributional and subgroup treatment effects for general types
of outcomes when conditioning on measured confounders is
required for a valid IV.

Our work is motivated by studies on the effect of attending
a Catholic school versus a public school on achievement.
Coleman et al. (25) linked the higher achievement in Catholic
schools to Catholic schools’ placing higher academic demands
and imposing stricter discipline on their students than did pub-
lic schools, after adjusting measured confounders. However,
the finding was questioned with unmeasured confounders
such as prior cognitive achievement (26). Catholic religion
has then been considered as an IV in subsequent observational

studies (27–29). In this work, we used Catholic religion as an IV
conditioning on measured covariates to evaluate the distribu-
tional and subgroup effects of attending a Catholic school
versus a public school on students’ subsequent wages, using
data from theWisconsin Longitudinal Study (WLS) (30). Previ-
ously, among others, Kim (29) and Bitler et al. (31, 32) defined
a subgroup based on a single baseline covariate, and then used
ordinary regression to assess the subgroup effects. However,
such subgroup effects could be biased (29). Instead, our approach
used an IV analysis for the distributional and subgroup effects,
where the subgroups would be constructed based on several
baseline covariates such that within a subgroup the IV is effec-
tively random.

THE FRAMEWORK

We adopted the Neyman-Rubin potential outcome frame-
work (33, 34) and considered a binary IV and treatment. How-
ever, the results can be extended to a general IV and treatment.
We letXi, Zi,Di

z,Yi
z d, be baseline covariates, IV, potential treat-

ment received under z, and potential outcome under IV z and
treatment d, respectively, for subject i, where z = 1 (encourage-
ment to take treatment) or 0 (no encouragement) for a binary IV
and d = 1 (treatment) or 0 (control) for a binary treatment. We
make the regular IV assumptions (4): 1) Stable unit treatment
value assumption: One subject’s outcome or treatment received
is not related to other subjects’ IV assignment; 2) Independence
of IV (conditional on covariates): The IV is independent of con-
founders after conditioning on measured covariates; 3) Exclu-
sion restriction (ER): The IV affects subjects’ outcomes only
through its effect on the treatment subjects received; 4) IV pre-
dicts the treatment received; 5) Monotonicity assumption: No
subject would always take the treatment opposite of the treatment
IV suggests. Note that under the ER assumption, ≡Y Yi

d
i
z d, , and

the monotonicity assumption may not be needed if assuming no
heterogeneity of treatment effects among the compliance classes
(35) or if using a Bayesian approach and assuming that causal
parameters among the compliance classes follow some prior dis-
tributions (21, 36). We let Di and Yi be the observed treatment
received and outcome, respectively, and have = +D Z Di i i

1

( − )Z D1 i i
0 and = + ( − )Y D Y D Y1i i i i i

1 0 under assumptions
1–5; that is, we observe only one version of the potential treat-
ment received and outcome in a real study.

IPS AND ITS PROPERTIES

For general types of outcomes, we constructed a score for the
IV based on measured covariates, called IPS, such that the IV is
effectively random conditional on this score; then we do not
need to control for confounders further. Previously, Tan (7)
used an IPS in a weighting method to estimate CACEwith co-
variates. We discuss the properties of the IPS in this section.
Similar to the propensity score (function) (1, 37), we have:

DEFINITION: For a binary IV Z, the IPS is P(Z = 1|X = x) ≡ s(x) based on the
measured covariates X.

The IPS reduces the dimensionality of the measured con-
founders and also deals with unmeasured confounders with
the use of an IV. For general multilevel or continuous IVs,
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we can use the instrumental propensity function ( | )φp Z X char-
acterized by parameter φ. For example, for a normally distrib-
uted IV conditional on X, the instrumental propensity function
is the normal density function, φ β σ= ( ), 2 and mean μ ( ) =X

βXT (37).

RESULT 1: The IPS is a balancing score:

⊥ | ( )X Z s X .

Result 1 follows from ( | ( )) = ( | ) = ( )P Z X s X P Z X s X, and
∫( | ( )) = ( | ( )) ( | ( )) = ( )P Z s X P Z X s X P x s X dx s X,

x
and im-

plies that, conditional on s(X), the IV Z is effectively random.
That is, the conditional distribution of baseline covariates
given s(X) is the same for subjects with Z = 1 and Z = 0.

RESULT 2: Suppose that an IV is strongly ignorable given X: ( ) ⊥ |Y D Z X,z d z,

and < ( = | ) <p Z x0  1   1; then it is strongly ignorable given s(X):

( ) ⊥ | ( ) < ( = | ( )) <Y D Z s X p Z s X, and 0 1 1.z d z,

Please see Web Appendix 1 (available at https://academic.
oup.com/aje) for the proof. Result 2 implies that the adjust-
ment for s(X) is sufficient to replace the adjustment for X for
the ignorability of the IV.

RESULT 3: If the average effect of the IV on treatment is not zero conditional
on X, then its effect on treatment is not zero conditional on s(X). Suppose
that ( − | ) ≠′E D D X 0z z , for all X; then it is also true conditional on s(X):

( − | ( )) ≠ ( )′E D D s X s X0, for all .z z

Result 3 follows from ∫( − | ( )) = ( −′P D D s X P Dz z

x
z

| ) ( | ( ))′D x P x s X dxz and implies that the IV affects the treatment
conditional on s(X) if it affects the treatment conditional onX.

RESULT 4: Suppose that the ER assumption holds for an IV conditional on X:
( | ) = ( | )′P Y X P Y Xz d z d, , ; then it also holds conditional on s(X):

( | ( )) = ( | ( ))′P Y s X P Y s X .z d z d, ,

Result 4 follows from ∫( | ( )) = ( | ( )) =P Y s X P Y x s X dx,z d
x

z d, ,

∫ ∫( | ( )) ( | ( )) = ( | ( )) ( | ( )) =′P Y x s X P x s X dx P Y x s X P x s X dx, ,
x

z d
x

z d, ,

∫ ( | ( )) = ( | ( ))′ ′P Y x s X dx P Y s X, .
x

z d z d, , Note that Result 4 is a
weaker ER than in Angrist et al. (4) for assuming only that
the outcome distribution (rather than the outcomes them-
selves) is the same for fixed d. Robins (36) and Imbens and
Rubin (38) suggested that inclusion of covariates may only
have some subtle effect on the plausibility of the ER under
the stochastic version; this result implies only that when the
ER holds given covariates, the adjustment for s(X) is suffi-
cient to replace the adjustment for X.

RESULT 5: Suppose that the monotonicity assumption holds for an IV Z con-
ditional on X: ( ≥ | ) =′P D D X 1z z , for ≥ ′z z ; then it is also true conditional
on s(X):

( ≥ | ( )) = ≥ ′′P D D s X z z1, for .z z

Result 5 follows from ∫( ≥ | ( )) = ( ≥′P D D s X P Dz z

x
z

| ( )) ( | ( )) =′D x s X P x s X dx, 1z and implies that the adjustment
for s(X) is sufficient to replace the adjustment for X for the

monotonicity assumption. As discussed above, one may make
assumptions other than monotonicity for estimating a causal
effect in a study, for which the IPS can still be used to address
the confounding issue when an IV requires conditioning on
covariates to be valid.

AUNIFIEDAPPROACHBASEDON THE IPS

In real observational studies, investigators often include
numerous baseline covariates in models to control for con-
founding and have a valid IV. However, complicated models
with many covariates may fail for causal effect inferences,
and in many nonparametric and semiparametric methods it is
not easy to incorporate covariates (5, 22, 39). The use of IPS
allows complex models for the IV before looking at outcome
data but simplifies the models for causal effect inferences,
and the IPS can be incorporated into not only standard 2SLS
models but also other recently developed IV methods for con-
trolling for covariates.

Step 1.We estimate the IPS ( | = )P Z X x through a model

ηη( ) = ( | = ) = ( ( )) ( )s x P Z X x g Xm, , 1T

where g is a link function,m is a vector of functions and η
is a vector of parameters. For a binary IV, a natural choice
of the link function in equation (1) is −logit 1. Attention
should be paid to identifying as many covariates as possi-
ble and checking for model misspecification (37, 40).

Step 2. The estimated IPS η̂ˆ ( )s x, can then be incorporated
into different methods. For example, η̂ˆ ( )s x, can be easily
included in 2SLS models for continuous outcomes. For
other types of outcomes, η̂ˆ ( )s x, can be used in matching,
subclassification, weighting, or regression along with vari-
ous statistical methods.

Subclassification has been commonly used in propensity
score approaches for measured confounding (1, 37). We used
IPS-based subclassification to illustrate the use of IPS for
treatment effects while dealing with measured and unmea-
sured confounding. We estimated the IPS η̂ˆ ( )s x, by equa-
tion (1) for each subject, and checked the overlap of IV groups on
their estimated IPS distributions. Lack of overlap of IV groups
in estimated IPS relies on extrapolation and may lead tomis-
leading results. We then classified subjects with similar values
of η̂ˆ ( )s x, into a stratum such that within each stratum the IV
was effectively random. Strata can be constructed in different
ways, for example: 1) Fixed-range strata based on the fixed
cutoff values of η̂ˆ ( )s x ,i , (e.g., (0, 0.2], (0.2, 0.4], (0.4, 0.6],
(0.6, 0.8], (0.8, 1) for 5 strata); or 2) Prespecified-size strata:
The cut-off values of η̂ˆ ( )s x, vary such that each stratum has
specified size and similar scores. Equal-sized strata is a special
case. When the IPS is approximately uniformly distributed
between 0 and 1 in a study, it is easy to construct fixed-range
strata. Otherwise prespecified-size strata can be constructed to
avoid a stratum with few subjects while subclassifying subjects
with similar IPS.

In subclassification, treatment effects within each stratum can
be evaluated with an appropriate method. These stratum-specific
causal effects provide information on treatment effects for
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subgroups of subjects who have similar IV distribution condi-
tional on baseline covariates, and they therefore allow us to
understand potentially heterogeneous treatment effects across
subgroups defined by baseline covariates. The overall causal
effects for the population can then be estimated across the IPS
strata as a weighted average of stratum-specific effects with
appropriate weight (e.g., weight proportional to the relative
number of compliers in the subclass for estimating the pop-
ulation CACE).

Subjects in an IPS-stratum k have similar baseline character-
istics, so we do not have to worry about confounding in the stra-
tum k. In the IPS-stratum k, we define latent compliance classes
Ci

k based on their potential treatment behavior under each value of
a binary IV: = ( ) = ( )C D Dnever-taker if ,  0,0i

k
i i

k0 1 —these
are subjects who would never take the treatment regardless of
the IV value; complier if ( ) = ( )D D,  0,1i i

k0 1 —subjects who
would just follow the suggestion by the IV; always-taker if
( ) = ( )D D,  1,1i i

k0 1 —subjects who would always take the treat-
ment regardless of the IV level; and defier if ( ) =D D,i i

k0 1

( )1,0 —subjects who would always take the opposite of the IV-
suggested treatment (4). The set of defiers is empty under monoto-
nicity. Note that the latent compliance classes cannot be fully
observed in a real study. Some observed groups in a real study
are a mixture of 2 latent compliance classes (Table 1).

We allow the proportions of compliers, always-takers, and
never-takers ϕ ϕ ϕ, ,c

k
a
k

n
k be different across IPS strata. The

treatment effect on compliers is of interest to understand how
the treatment itself works. = ( − | = )CACE E Y Y C ck

i
k1 0k k

in stratum k is the average causal effect of receiving the treat-
ment for a subgroup of people whowould follow the suggestion
by the IV in stratum k defined by baseline characteristics and
can be estimated with different methods including standard
IV, nonparametric, and semiparametric approaches (4, 22, 39,
41). If investigators are interested in the overall CACE in the
population, the overall CACE across strata can be computed
as a weighted average of stratum-specificCACEk, =k K1,..., .

We estimated the distributional treatment effect and its gen-
eral functions in addition to the CACE. Under assumptions
1–5 and according to Table 1, within each stratum we have

λ λ

τ τ

( ) = ( ) + ( − ) ( ) ( ) = ( )

( ) = ( ) + ( − ) ( ) ( ) = ( )
( )

f y h y h y f y h y

f y h y h y f y h y

1 , ,

1 , ,

2

k k
c
k k

a
k k

n
k

k k
c
k k

n
k k

a
k

11 10

00 01

1

0

where fzd
k is observed outcome density under z and d, h

c
k
0,

h
c
k
1, hn

k, ha
k are potential outcome densities in stratum k for

compliers under control and treatment, never-takers, and

always-takers, respectively, and λ = =ϕ
ϕ ϕ

ϕ ϕ
ϕ+

− −
−

,k 1

1
c
k

c
k

a
k

a
k

n
k

n
k

τ = =ϕ
ϕ ϕ

ϕ ϕ
ϕ+

− −
−

.k 1

1
c
k

c
k

n
k

a
k

n
k

a
k Note that under the ER assumption,

potential outcome densities for always-takers and never-takers
are the same under treatment and control, so only one potential
outcome density is defined for them ( )h h,n

k
a
k . Considering a

semiparametric density ratio model (22, 42) in stratum k (k =
1, . . .,K), we have:

α β
( )
( )

= ( + ) = = … ( )
h y

h y
y j n c a k Kexp , , , ,  1, , , 3

j
k

c
k j

k
j
k 1

0

where the potential outcome densities are modeled nonparame-
trically except for being related by a parametric “exponential
tilt.” The idea is similar to Cox’s proportional hazards models,
although the computation is more complex. The density ratio
model (equation (3)) includes many well-known parametric
families (e.g., normal or Poisson) but also provides a good fit to
data that do not belong to any parametric families (43–46). The
empirical likelihood (47–49) will be used to make inferences
about the potential outcome densities in IPS-stratum k. Note
that the treatment effect can be different across strata, and when
α

c
k

1 andβc
k

1 are zero, there is no treatment effect for the compliers
in stratum k.

By maximizing the log empirical likelihood (see the Web
Appendix) we obtain estimates on distributions, where nk is the
number of subjects in the stratum k, and ˆ ( )H yc

k
0 and ˆ ( )H yc

k
1 are

CDFs of compliers under control and treatment in stratum k
respectively.

∑

∑

∑

ξ α β
ˆ ( ) =

+ ˆ { ( ˆ + ˆ ) − }

ˆ ( ) = ˆ ( ) ( ≤ )

ˆ ( ) = ˆ ( ) (α̂ + β̂ )

ˆ ( ) = ˆ ( ) (α̂ + β̂ ) ( ≤ ) ( )

h y
n y

H y h y I y y

h y h y y

H y h y y I y y

1 1

1 exp 1
,

,

exp ,

exp . 4

c
k

i k

j

j
k

j
k

j

k
i

c
k

i

n

c
k

i i

c
k

i c
k

i c
k

c

k
i

c
k

i

n

c
k

i c
k

c

k
i i

k

k

0

0 0

1 0 1 1

1 0 1 1

We can then compute causal effects as different functions
of the distributions, for example,

∑

ι ι ι

= ˆ ( ){ (α̂ + β̂ ) − }

( ) = ( ˆ ) ( ) − ( ˆ ) ( )
=

− −

CACE y h y y

CQCE H H

exp 1 ;

;

k

i

n

i c
k

i c
k

c

k
i

k
c
k

c
k

1

1 1

k

0 1 1

1 0





where ι( )CQCEk is the quantile treatment effect at quantile ι
in stratum k. Note that although theCACEk and CQCEk are a
linear difference in compliers’ potential outcome distributions
under treatment and control, we can use other functions of the

Table 1. Relationship BetweenObservedGroups and Latent
Compliance Classes in Instrumental Propensity Score Stratum k in a
Simulation Study

Instrumental
Variable Level Treatment Received Latent Compliance Class

1 1 Complier Always-taker

1 0 Never-taker Defiera

0 0 Never-taker Complier

0 1 Always-taker Defiera

a The set of defiers is empty under the monotonicity assumption.
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compliers’ potential outcome distributions estimated by equa-
tion (4) for other causal effects of interest. The overall treatment
effects for compliers can then be computed as a weighted aver-
age of stratum-specific effects with weight proportional to the
number of compliers in stratum k: ϕ ϕ( − − ) × n1 a

k
n
k k, where

nk is the number of subjects in stratum k.

SIMULATION STUDY

The baseline covariates were drawn independently from the
following distributions: ( )Normal 0,1 , ( )Bernoulli 0.5 , ( )Gamma 2,1 .
Zi was generated from: ( = | ) =P Z X1i i (− + +−logit X1.2 i

1
1

+ )X X0.5 0.5 .i i2 3 The latent compliance classCiwas generated
using probabilities varying with covariates-based IPS strata
(e.g., the proportion of compliers ranged between 50% and
90%, and future studies will develop methods for weak IVs).
The observed treatment Di was generated with the Zi and Ci,
based on the structure shown in Table 1.

We simulated the potential outcome distributions based on
the baseline covariates and latent compliance classes, and we
considered normal, log normal, exponential, and Poisson out-
come distributions. We simulated 2 settings: with and without a

treatment effect.WebTable 1 shows the true values of parameters
of potential outcome distributions generating the data. The true
values of causal effects were then calculated based on the true
values of parameters of potential outcome distributions. Please
see the detailed simulation information in the Web Materials.
Note that in a real study, we did not observe the latent compli-
ance classes and the corresponding potential outcomes but used
only the observed treatment and outcomes for analyses. IV
methods allow us to obtain consistent estimates on causal effects
of compliers of our interest when there is a valid IV.

For each setting, we performed 10,000 and 1,000Monte Car-
lo replications for Table 2 and Web Table 2 respectively. On
each replication, 5 fixed-range or 4 equal-sized IPS strata were
constructed for 1,000 subjects. One set of results for simulations
with 5 fixed-range and 4 equal-sized strata for selected distribu-
tions is presented; however, the result pattern is similar under
different settings.

Table 2 shows that the ordinary least square estimate adjusting
for covariates is biased, and the standard IV-estimated CACE
without covariates is also biased when the IV requires condition-
ing on covariates to be valid. Standard IV estimates with 2SLS
conditional on covariates or based on IPS are close to true values
for normal and Poisson outcomes, where IPS-based standard IV

Table 2. Ordinary Least Square and Standard Instrumental Variable Estimates for Compliers AverageCausal
Effect Without Covariates, With Covariates, andWith Instrumental Propensity Scores, Using Simulated Data

Distribution CACE

( )CACE SE

OLS
(With X)

SIV
(Ignoring X)

SIV
(With X)

SIV
(IPS-Based)

Normal

Overall 2.808 2.338 (0.114) 4.295 (0.180) 2.905 (0.178) 2.866 (0.202)

k = 1 1 1.127 (0.390)

k = 2 2 2.063 (0.252)

k = 3 3 3.035 (0.300)

k = 4 4 4.022 (0.471)

k = 5 5 5.011 (1.299)

Log normal

Overall 53.7 160.1 (27.3) 263.7 (53.7) 45.9 (48.9) 61.4 (75.1)

k = 1 2.8 4.1 (6.3)

k = 2 10.5 12.9 (11.1)

k = 3 31.5 36.6 (33.1)

k = 4 88.4 100.2 (128.3)

k = 5 243.0 176.2 (1,091.6)

Poisson

Overall 2.808 2.335 (0.159) 4.295 (0.230) 2.902 (0.239) 2.862 (0.261)

k = 1 1 1.129 (0.504)

k = 2 2 2.065 (0.346)

k = 3 3 3.028 (0.403)

k = 4 4 4.022 (0.616)

k = 5 5 4.973 (1.723)

Abbreviations: CACE, true complier average causal effect;CACE, estimated complier average causal effect; IPS, instru-
mental propensity score; k, instrumental propensity score stratum; OLS, ordinary least square; SE, standard error; SIV,
standard instrumental variable with 2-stage least square.
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estimates with uncertainty in estimated IPS have a slightly larger
standard error than 2SLS standard IV estimates conditional on
covariates, and the IPS-based standard IV also provides stratum-
specific estimates. However, even standard IV estimates condi-
tional on covariates or based on IPS could be biased for log normal
data when the distribution is skewed, indicating that when a lin-
ear model is not appropriate for the outcome data, a method not
based on a linear model should be considered. For example,
above we considered the use of IPS to deal with confounding
and then incorporated the IPS into the semiparametric method
to address the possible bias due to the use of a linear model for
skewed data.

Web Table 2 shows that the bias and root mean squared er-
rors of our semiparametric estimates on parameters of interest
are small under all settings. The semiparametric empirical like-
lihood ratio statistic R was used to test ( ) = ( )H h y h y:

c
k

c
k

0 0 1 or
equivalently α = β =H : 0

c
k

c
k

0 1 1 , and it had a null distribution of
χ1

2 (22). The empirical rejection rates showed that the test re-
jects the null hypothesis around the nominal level (0.05) under
the null and has good power (>0.80) under the alternative
hypothesis.

Estimates of overall and stratum-specific CACE and complier
quantile causal effect (CQCE) with the semiparametric and stan-
dard IV methods are included in Web Tables 3 and 4 respec-
tively, showing that the semiparametric estimates were more
efficient than the standard IV estimates.

APPLICATION TO THE EFFECTOFCATHOLIC VERSUS
PUBLIC SCHOOLS

In the WLS, students who graduated from Wisconsin high
schools in 1957 were randomly selected and followed in 1964,
1975, 1992, 2003, and 2011 to learn about their labor-market
experience (30). Table 3 shows that students who attended
Catholic schools had higher intelligence-quotient scores,
and their parents had higher income and educational levels
compared with students who attended public schools, indicat-
ing possible selection bias. Kim (29) used Catholic religion as
an IV to assess the average effect of attending a Catholic school

on subsequent wages in the WLS. Evans and Schwab (27) and
Neal (28) used Catholic religion as an IV for the same question
with other data sets.

We also used the family’s Catholic religion in high school
as an IV. We first estimated the 3,681 students’ IPS condi-
tional on observed baseline variables (intelligence-quotient
score, parents’ education, family income, number of siblings,
living with both parents, etc.) but not on posttreatment covar-
iates (e.g., years of schooling). Figure 1 shows box plots of
the estimated IPS of the family’s Catholic religion in high
school, which ranged between 0.17 and 0.76. Except for one
non-Catholic student with lower estimated probabilities of Cath-
olic religion than any Catholic student, almost every Catholic
student had a comparable non-Catholic student with a similar
estimated probability of Catholic religion. Because of the nonuni-
formly distributed IPS scores between 0 and 1, we constructed 4
equal-sized strata to avoid a stratum with few subjects. Table 4

Table 3. Descriptive Statistics for Participants in Public and Catholic Schools, Simulation Study Using Data From
theWisconsin Longitudinal Study, 1957–2011

Characteristics
Public School (n = 3,261) Catholic School (n = 420)

Mean (SD) % Mean (SD) %

Wages in 1974, $ 15,274 (7,900) 18,108 (9,643)

Intelligence-quotient score 100.56 (15.16) 106.10 (14.53)

Family income in 1957, $ 9,309 (5,656) 11,004 (7,737)

Father’s education, years 10.31 (2.99) 11.06 (3.08)

Mother’s education, years 10.63 (2.77) 11.17 (2.77)

Living with both parents 90.28 91.90

Catholic religion of the family 32.66 99.29

No. of siblings 3.23 (2.58) 3.11 (2.40)

Years of schooling 13.69 (2.77) 14.71 (2.60)

Abbreviation: SD, standard deviation.

Figure 1. Box plots of the estimated instrumental propensity score
of the participating family’s Catholic religion, from a simulation study
using data from theWisconsin Longitudinal Study, 1957–2011.
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shows that potential baseline confounders were balanced between
non-Catholic and Catholic students, indicating that Catholic reli-
gion was highly likely independent of confounders within each
stratum. Among the 420 students whowent to Catholic schools,
more than 99% of them had Catholic religion in high school.
The first-stage F statistic of 138.68 in 2SLS indicated that the
family’s Catholic religion in high school should work well as
an IV in this study.Within each stratum, the Catholic and non-
Catholic students had similar intelligence (intelligence-quotient
score), education (years of schooling), and socioeconomic fac-
tors, so it seems reasonable to assume that the family’s Catholic
religion in high school did not have a significant direct effect on
their subsequent wages through other pathways not captured in
Catholic schooling, because the education at a Catholic school
versus a public school encompassed all aspects of education in
high school given the comparable characteristics, total school-
ing years, and families’ socioeconomic factors. The 0.14% of
non-Catholic students going to Catholic schools represented
a mixture of always-takers and defiers, so it seems reasonable
to assume monotonicity for this data.

We then modeled the log of students’ wages in 1974 with
our method. Table 5 shows estimated overall average treatment
effect for all students from an ordinary least square model and
for compliers from 2SLS, controlling for baseline covariates
as well as estimated subgroup effects and quantile effects from
our semiparametricmethodwith IPS. By semiparametricmethod,
overall, the compliers, who would change their school choice
because of their religion in high school, had a $116 higher
average wage ( ( ) × )exp 0.147 $100 17 years after graduation
from high school if they went to a Catholic school rather than
going to a public school. In particular, the subgroup of com-
pliers in stratum 3, who had relatively higher intelligence-
quotient scores and whose mothers had relatively lower
education level, had significantly different wage distribution
(P = 0.0007) and had about a $135 higher average wage
( ( ) × )exp 0.301 $100 if they went to a Catholic school rather

Table 4. Selected Characteristics According to Presence of
Catholic Religion, Stratified by the Instrumental Propensity Score
Stratum, Simulation Study Using Data From theWisconsin
Longitudinal Study, 1957–2011

Characteristic and Stratum Non-Catholic Catholic

No. of subjects

1 636 284

2 560 360

3 520 400

4 483 438

Intelligence-quotient score

1 95.85 95.66

2 102.20 100.20

3 103.60 102.90

4 103.70 104.80

Family income in 1957, $

1 9,389 8,803

2 9,953 9,319

3 9,182 9,772

4 9,443 9,895

Father’s education, years

1 11.43 11.05

2 10.75 10.50

3 10.15 10.38

4 9.14 9.53

Mother’s education, years

1 12.78 12.65

2 11.23 11.07

3 9.87 9.97

4 8.83 9.09

Table 5. Effect of Attending a Catholic School on Log of Students’Wages per $100 in 1974 (Semiparametric Method with Instrumental
Propensity Score), Simulation Study Using Data From theWisconsin Longitudinal Study, 1957–2011

Effecta Methods Overall Stratum 1 Stratum 2 Stratum 3 Stratum 4
Estimate (95%CI) Estimate (95%CI) Estimate (95%CI) Estimate (95%CI) Estimate (95%CI)

CACE OLS 0.101 (0.052, 0.150)

2SLS 0.151 (0.034, 0.268)

SEM 0.147 (0.052, 0.257) 0.172 (−0.115, 0.370) 0.028 (−0.171, 0.357) 0.301 (0.038, 0.490) 0.066 (−0.065, 0.401)

CQCE SEM

0.10 SEM 0.105 (0.010, 0.223) 0.105 (−0.087, 0.347) 0 (−0.140, 0.355) 0.221 (0.018, 0.730) 0.054 (−0.105, 0.580)

0.25 SEM 0.083 (0, 0.167) 0.140 (−0.074, 0.254) 0.024 (−0.113, 0.250) 0.185 (0.008, 0.300) 0.025 (−0.051, 0.262)

0.50 SEM 0.102 (0, 0.134) 0.098 (−0.095, 0.222) 0.033 (−0.154, 0.208) 0.170 (0.012, 0.263) 0.007 (−0.030, 0.223)

0.75 SEM 0.105 (0, 0.201) 0.130 (−0.095, 0.288) 0.049 (−0.174, 0.272) 0.241 (0.029, 0.336) 0.040 (−0.042, 0.288)

0.90 SEM 0.197 (0, 0.310) 0.288 (−0.192, 0.464) 0.035 (−0.293, 0.460) 0.405 (0.041, 0.547) 0.087 (−0.049, 0.511)

Abbreviations: 2SLS, 2-stage least squares; CACE, complier average causal effect; CI, confidence interval; CQCE, complier quantile causal
effect; OLS, ordinary least squares; SEM, semiparametric method.

a Comparison on the treatment distributional effect between compliers under treatment and control: P = 0.5456 (stratum 1); P = 1.0000 (stratum
2); P = 0.0007 (stratum 3); P = 0.4647 (stratum 4).
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than to a public school. The quantile effects show that the bene-
ficial effect of attending a Catholic school in stratum 3 appeared
stronger in those students with relatively higher income in this
population.

Goodness of fit of the density ratio model (equation (3)) to
theWLS data was evaluated by comparing the estimated model-
based CDF with the empirical CDF (22, 50), showing no evi-
dence of lack of fit of the model in this study overall.

SUMMARY

We developed a unified approach to using an IV based on
IPS to evaluate treatment effects for general types of outcomes
when the IV requires conditioning on covariates to be valid,
and we tested it in a simulation study. The approach allows the
use of different methods for outcome effect evaluations in addi-
tion to standard 2SLSmodels. In a simulation, the subclassifica-
tion approach with a density ratio model provided information
on distributional and subgroup treatment effects in addition to
average effects in the overall population.
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