Skip to main content
. 2018 May 14;8(5):326. doi: 10.3390/nano8050326

Table 1.

Optimization of the reaction conditions a.

graphic file with name nanomaterials-08-00326-i001.jpg

Entry Catalyst Solvent Additive Yield(%) b
1 CP@Cu NPs toluene -- NR c
2 CP@Cu NPs Et2O -- NR c
3 CP@Cu NPs THF -- trace
4 CP@Cu NPs toluene MeOH 7
5 CP@Cu NPs Et2O MeOH 6
6 CP@Cu NPs THF MeOH 32
7 CP@Cu NPs acetone MeOH 66
8 CP@Cu NPs MeOH -- 70
9 d CP@Cu NPs THF/H2O = 2/1 -- 75
10 d CP@Cu NPs MeOH/H2O = 2/1 -- 89
11 d CP@Cu NPs acetone/H2O = 2/1 -- 91
12 d CP@Cu NPs acetone/H2O = 4/1 -- 95
13 d CP@Cu NPs acetone/H2O = 1/4 -- 76
14 d -- acetone/H2O = 4/1 -- NR c
15 d,e CS@Cu acetone/H2O = 4/1 -- 35
16 d,f CS/PEG@Cu NPs acetone/H2O = 4/1 -- 75
15 d,g CP@Cu NPs acetone/H2O = 4/1 -- 89
16 c,h CP@Cu NPs acetone/H2O = 4/1 -- 94

a Reaction conditions: substrate 2 (0.2 mmol), B2(pin)2 1 (1.2 equiv), catalyst (1 mol % Cu loading), Solvent (2 mL), room temperature, air, 12h; b Isolated yield of product; c NR = no reaction; d Ratio of volume to volume; e Chitosan supported Cu was used; f Chitosan/poly (ethylene glycol) composite film supported Cu nanoparticles were used; g 0.5 mol % Cu loading was used; h Performed under Ar atmosphere.