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When another person tries to control one’s decisions, some people might comply, but many will feel the urge to act against that control.
This control aversion can lead to suboptimal decisions and it affects social interactions in many societal domains. To date, however, it has
been unclear what drives individual differences in control-averse behavior. Here, we address this issue by measuring brain activity with
fMRI while healthy female and male human participants made choices that were either free or controlled by another person, with real
consequences to both interaction partners. In addition, we assessed the participants’ affects, social cognitions, and motivations via
self-reports. Our results indicate that the social cognitions perceived distrust and lack of understanding for the other person play a key
role in explaining control aversion at the behavioral level. At the neural level, we find that control-averse behavior can be explained by
functional connectivity between the inferior parietal lobule and the dorsolateral prefrontal cortex, brain regions commonly associated
with attention reorientation and cognitive control. Further analyses reveal that the individual strength of functional connectivity com-
plements and partially mediates the self-reported social cognitions in explaining individual differences in control-averse behavior. These

findings therefore provide valuable contributions to a more comprehensive model of control aversion.
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ignificance Statement

Control aversion is a prevalent phenomenon in our society. When someone tries to control their decisions, many people tend to act
against the control. This can lead to suboptimal decisions such as noncompliance to medical treatments or disobeying the law. The
degree to which individuals engage in control-averse behavior, however, varies significantly. Understanding the proximal mech-
anisms that underlie individual differences in control-averse behavior has potential policy implications, for example, when
designing policies aimed at increasing compliance with vaccination recommendations, and is therefore a highly relevant research
goal. Here, we identify a neural mechanism between parietal and prefrontal brain regions that can explain individual differences in
control-averse behavior. This mechanism provides novel insights into control aversion beyond what is accessible through self-reports.

~

Introduction

When others try to control our decisions, many of us will feel the
urge to counteract and thereby reestablish our valued freedom of
choice. This aversive reaction to the exogenous control of one’s
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freedom of choice, or in short control aversion, puts a strain on
many societal domains, for example, in the form of patient non-
compliance to psychiatric therapy (De las Cuevas et al., 2014),
adolescent defiance against parents (Van Petegem et al., 2015), or
employees’ reduced work performance when faced with a restric-
tive employer (Falk and Kosfeld, 2006). Critically, the degree to
which individuals engage in control-averse behavior varies largely,
which has been documented in numerous studies (Falk and Kosfeld,
2006; Ziegelmeyer et al., 2012; Schmelz and Ziegelmeyer, 2015).
What drives these individual differences in control-averse behavior,
however, has remained an open question.

Previous work has shown that individuals whose decisions are
controlled by another person often report thoughts about the
other person’s motives such as distrust and lack of understanding
for the other person’s decision to control (Falk and Kosfeld, 2006).
For example, when an employer requests a minimum effort from
her employee, the employee may perceive this as a signal of dis-
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trust in her intrinsic work motivation. A separate line of work has
highlighted the motivation to restore one’s freedom of choice,
termed reactance, as the key player in driving control-averse be-
havior (Brehm, 1966; Miron and Brehm, 2006). For example, the
elimination of a choice option can lead to an increased desire for
that option, which is interpreted as an indirect strategy of free-
dom restoration (Miron and Brehm, 2006). Moreover, reactance
is assumed to be accompanied by negative affects such as anger
(Dillard and Shen, 2005). Therefore, negative affects and individ-
ual tendencies to express one’s anger outward might contribute
to the display of control-averse behavior. The literature thus
delivers several plausible variables that might drive individual
control-averse behavior. Much of the support to date, however,
comes from post hoc self-reports or measures of behavioral
intentions in hypothetical scenarios. Here, we use a neuro-
physiological measure of the decision processes during real
restrictions of the subjects’ freedom of choice. By doing so, we
aimed to identify the proximal mechanisms that give rise to
individual differences in control-averse behavior. Specifically,
we tested whether activation in and functional connectivity
with the brain regions that are differentially activated during
the restriction of the freedom of choice can explain individual
differences in control-averse behavior. Moreover, we investi-
gated to what degree this neurophysiological measure comple-
ments and mediates self-report data in predicting individual
control-averse behavior.

We combined fMRI with a control aversion task (see Fig. 1) in
which subjects make decisions that are either free or controlled by
another person (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer,
2015). For each decision, subjects allocate money between them-
selves and another person by choosing between options that
increase in fairness and generosity, called generosity levels. Cru-
cially, the options were designed to establish an intrinsic motiva-
tion to choose a high level when subjects can decide freely. When
the other person requests a minimum level and thereby tries to
control the subject’s choice, control-averse behavior is defined as
choosing a lower level (Falk and Kosfeld, 2006; Schmelz and
Ziegelmeyer, 2015). Therefore, the decrease of average chosen
levels when the other person tries to control the subject’s deci-
sion as opposed to the free decisions serves as a measure of
individual control-averse behavior. Critically, the decisions in
the task are not hypothetical, but rather have real conse-
quences for both interaction partners and thus share an im-
portant quality with control-averse behavior outside the
laboratory. This setup allowed us to not only measure control-
averse behavior in an ecologically valid fashion, but also to
investigate the neural responses during the actual decision-
making process. We found that a neural mechanism involving
parietal and prefrontal brain regions complements and par-
tially mediates self-reported social cognition in explaining in-
dividual differences in control-averse behavior.

Materials and Methods

Participants

We recruited 61 students from the University of Bern for participation in
this study. Students of economics, psychology, and social sciences were
excluded from participation to reduce the possibility of prior knowledge
of the concept of control aversion. All participants were right-handed,
nonsmokers, and reported no history of psychological disorders or neu-
rological or cardiovascular diseases. After data acquisition, 10 partici-
pants were excluded due to excessive movements during fMRI scan (>5
mm in translation or >5 degrees in rotation), noncompliance to instruc-
tions, or technical problems. The remaining 51 participants (23 female;
mean age 22 * 3 SD years) were included in the analysis. All participants
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received a compensation of CHF 50 (=50 USD) for participation in the
study in addition to the payoff from the control aversion task described in
the next section. The study was approved by the Bern Cantonal Ethics
Commission and all participants gave informed, written consent.

Experimental design

Control aversion task. The control aversion task (see Fig. 1) is designed to
confront subjects with real restrictions of their freedom of choice by
another person and is based on previous work in behavioral economics
(Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). The gist of the
task is that the subject is asked to allocate money between herself and
another person, called player A. However, before the subject makes a
decision, player A can decide to let the subject choose freely (free condi-
tion) or request a minimum amount of money (controlled condition).

For the purpose of this study, subjects were presented with 16 anony-
mous other persons’ (players A’s) decisions from a pilot study in random
order. The small number of trials was chosen to increase credibility and
reduce possible habituation effects. To ensure equal estimation power of
the blood oxygen level-dependent (BOLD) signal across conditions, the
players A’s decisions were preselected such that the subjects engaged in
the same number of trials in the free and in the controlled condition; that
is, eight trials per condition. All subjects were informed that the players
A’s decisions had been prerecorded for logistic reasons and they were
asked to decide as if the respective person was present. To remind sub-
jects of this instruction, we presented the line “A new player A is decid-
ing” for a jittered interval of 2.4-8.6 s at the beginning of each trial.
Subjects were also informed that their choices had real consequences in
the sense that one trial would be randomly selected and paid out to them-
selves and the corresponding player A. None of the subjects voiced sus-
picions about the existence of the players A. After a jittered fixation
display of 2—6 s, subjects learned whether the player A let them choose
freely (free condition) or whether the player A requested a minimum
amount of monetary units (MUs) (controlled condition). After a delay of
3 s, subjects made a choice between sets of monetary allocations, called
generosity levels, ranging from a selfish (subject: player A, 99:1 MUs) to
a more generous, equal allocation (80:80 MUs) (all possible generosity
levels are depicted in Fig. 1). Subjects made their choice by moving a red
selection frame from a random position to their desired option and
pressing an OK button. Response times were not constrained to motivate
deliberate decisions; however, subjects were asked to respond as soon as
they had come to a decision (response times, mean 5 *= SD 4.3 s). Note
that, for the fMRI analysis, we separated the times before and after sub-
jects started to move the selection frame to capture the decision window
and the motor responses separately. The durations as used in the fMRI
analysis are shown in Figure 1. In the free condition, subjects had the
choice between generosity levels one to five (from left to right). In the
controlled condition, subjects’ choice was restricted to generosity levels
two (97:30 MUs) to five. A central feature of the task is that the player A’s
payoff increases as a concave function of the generosity levels with rela-
tively small and convex costs for the subject. Moreover, the most gener-
ous level (level five) also represented the fairest and equal option and the
highest sum of payoffs. These features were added to ensure that subjects
are intrinsically motivated to choose a high level, which is a prerequisite
for control aversion in this task (Schmelz and Ziegelmeyer, 2015). Last,
the subject’s payoff remains constant for levels two to three. This was
done to motivate subjects to choose level three over level two in the free
condition, and to provide space for the choice of a lower level in the
controlled condition that is independent of economic self-interest. The
difference between a subject’s mean chosen level in the free condition
minus the subject’s mean chosen level in the controlled condition served
as the measure of the individual level of control-averse behavior.

After another jittered fixation display of 5-8 s, subjects were asked to
indicate how they had felt during the decision by rating their unhappi-
ness and anger on 5-point pictorial Self-Assessment Manikin (SAM)
scales (Bradley and Lang, 1994), each separated by a jittered fixation
display of 1-4 s. The unhappiness scale ranged from 1 = “happy” to 5 =
“unhappy” and the anger scale ranged from 1 = “calm” to 5 = “angry.”
As a manipulation check, we implemented a third scale, the having con-
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Control aversion task. For every trial, the subject is presented with the decision from a new player A and the available generosity levels. Each generosity level represents an

allocation of monetary units between the player A (top value) and the subject (bottom value). In the free condition (blue frame), player A lets the subject choose freely between level one
to five (from left to right). In the controlled condition (orange frame), player A requests a minimum of level two and thereby restricts the subject’s choice to the levels two to five. The
decision window that is highlighted in the figure is defined as the time between the onset of the choice options and the initial movement of the red selection frame. Last, the subject is
presented with three pictorial assessment scales, which range from unhappy to happy (left to right), from calm to angry, and from being controlled to having control. The durations of

the fixation displays were jittered.

trol scale, which ranged from 1 = “being controlled” to 5 = “having
control.” Finally, a fixation cross was displayed for 1.2—6.4 s before the
next trial began.

Before scanning, subjects read the instructions and were quizzed to
ensure that they had understood the task and its payoff scheme. Subjects
then practiced four simulated trials of the control aversion task outside
of the scanner to familiarize themselves with the task timing and the
response buttons. Then, subjects completed the scanning task in one
continuous session of ~12 min. At the end of the task, one trial was
randomly selected for payoff to the subject and the matched player A.
Therefore, all trials were incentive compatible to motivate subjects to
decide according to their true preferences. The profits in the selected trial
were converted into CHF (with 1 MU = CHF 0.20 =~ USD 0.20). Based
on the task, the subjects received a mean CHF 18.30 = 1.40 SD and the
players A received a mean CHF 11.10 = 3.80 SD.

Ratings of perceived distrust, understanding, freedom restoration, and
fairness. Directly after scanning, we assessed subjects’ thoughts during
the control aversion task with a list of items. For each item, subjects were
asked to rate how strongly the described thought had influenced their
decisions on a 7-point Likert scale ranging from 1 = “not atall” to 7 =
“absolutely.” Based on the seminal study by Falk and Kosfeld (2006), we

assessed subject’s perceived distrust and understanding with the items
“When player A requests a minimum of generosity, he distrusts me and
I dislike that” (“perceived distrust”) and “I understand when player A
requests a minimum of generosity” (“understanding”). Based on reac-
tance theory (Brehm, 1966; Miron and Brehm, 2006), we assessed sub-
jects’ motivation to restore their freedom of choice in the controlled
condition with the item “When player A restricts the generosity levels, I
want to use my remaining freedom of choice all the more” (“freedom
restoration”). In addition, we asked subjects whether fairness had played
a role in their own decisions with the item, “I think that my payoff and
player A’s payoff should not be too far apart” (“fairness”).

Assessment of outward directed anger expression. To assess subjects’
general tendency to direct their anger outward, we asked subjects to fill in
the German version of the State-Trait Anger Expression Inventory (STAXI)
(Spielberger, 1988; Schwenkmezger et al., 1992). The STAXI is composed
of the five subscales state anger, trait anger, inward-directed anger ex-
pression, outward-directed anger expression, and controlling one’s an-
ger expression. Here, we focused on the subscale for outward-directed
anger expression (AO). The AO subscale consists of 8 items that describe
ways of expressing one’s anger; for example, “I fly off the handle.” Sub-
jects rated these items on a 4-point Likert scale ranging from 1 = “almost
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never” to 4 = “almost always.” Based on the subjects’ ratings, the sum
scores were computed. In our sample, the AO subscale had an acceptable
internal consistency (Cronbach’s @ = 0.73). On average, subjects had an
AO score of mean 12.24 *+ SD 3.02 (range 8—22), which is similar to the
norm student sample reported in Schwenkmezger et al. (1992).

MRI data acquisition and preprocessing

All MRI data were acquired on a Siemens Trio 3.0 tesla whole-body
scanner using a 12-channel head coil. The functional session started off
with a localizer scan followed by the control aversion task implemented
in E-Prime 3.0 (Psychology Software Tools). The task was projected onto
a screen that the subjects viewed through an angled mirror mounted to
the head coil. Subjects made their responses on a two-button response
box in each hand. While subjects were playing the task, we acquired
gradient echo T2*-weighted echoplanar images (EPIs) with BOLD con-
trast (~400 volumes per subject, 32 slices per volume, ascending order,
field of view 192 X 192 X 110 mm, slice thickness 3 mm, gap 0.45 mm,
repetition time 2190 ms, echo time 30 ms, flip angle 90°). Volumes were
acquired in axial orientation at a +15° tilt to the anterior commissure—
posterior commissure line. After the functional session, T1-weighted
3D-modified driven equilibrium Fourier transformation (MDEFT) im-
ages were acquired from each subject (176 slices, field of view 256 X
224 X 176 mm, slice thickness 1 mm, no gap, repetition time 7.92 ms,
echo time 2.48 ms, flip angle 16°).

Preprocessing of the functional images was implemented in the
MATLAB-based software Statistical Parametric Mapping 12 (SPM12,
version r6685; http://www.fil.ion.ucl.ac.uk/spm). Preprocessing included
motion correction (realignment to the mean EPI), segmentation of the
T1 image into six tissue classifications (gray matter, white matter, CSF,
bone, soft tissue, and air tissue), application of this segmentation to the
mean EPI, coregistration of all EPIs to the mean EPI using the pullback
procedure in the SPM12 deformation tool and normalization of all EPIs
to MNI standard space (Montreal Neurological Institute, http://www.
bic.mni.mcgill.ca) (Evans et al., 1993). Finally, we smoothed the EPIs
with a 4 mm full width at half maximum Gaussian kernel.

Analysis aim and structure

The central aim of our analyses was to identify a neurophysiological
mechanism that can explain individual differences in control-averse be-
havior in addition to or beyond self-report data. To this end, our analyses
followed a hierarchical structure. First, we identified the best predictor of
individual control-averse behavior based on self-report data. Second,
we identified a neurophysiological mechanism that predicts individual
control-averse behavior. Third, we identified the best combination of
predictors based on both self-reported and neural data. Fourth, we tested
whether the neural predictor mediates the self-report data in predicting
individual control-averse behavior.

Behavioral data analyses

All behavioral data were analyzed using the MATLAB Statistics and
Machine Learning Toolbox (R2015b; The MathWorks). Because the
behavioral data did not follow normal distributions as assessed by Kol-
mogorov—Smirnov tests, nonparametric tests were applied. Paired sam-
ples were compared using the Wilcoxon signed-rank test. Correlations
were assessed using Spearman’s p as well as bisquare robust regressions.
For all behavioral analyses, two-tailed p-values are reported.

Identifying the best predictor of individual control-averse behavior based
on self-report data. We first identified the best predictor of individual
control-averse behavior based on self-report data. To this end, we ran a
series of generalized linear models using the function fitglm as imple-
mented in the MATLAB Statistics and Machine Learning Toolbox
(R2015b; The MathWorks). For each model, the dependent variable was
the individual level of control-averse behavior, as measured by the mean
chosen level in the free condition minus the mean chosen level in the
controlled condition. The self-report variables served as predictors. For
conciseness, we report only models with predictors that showed a signif-
icant correlation with individual control-averse behavior. To reduce
multicollinearity among the predictors, we computed two new variables
using principal component analysis as implemented in the MATLAB
function pca. The new variable “social cognition” is the first principal
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component of the normalized ratings of the item “perceived distrust”
(coefficient 0.88) and the reversed item “understanding” (coefficient 0.48).
The second new variable, “negative affect,” is the first principal compo-
nent of the normalized mean unhappiness rating (coefficient 0.80) and
the normalized mean anger rating in the controlled minus the free con-
dition (coefficient 0.59). As predictors, we used combinations of main
effects and interactions of social cognition, negative affect, and the nor-
malized ratings of the item freedom restoration. The most relevant mod-
els are illustrated in Figure 4. We compared the models using the
Bayesian information criterion (BIC) and R? to identify the best model
fit. Lower values in BIC and greater values in R? indicate better model
fits.

fMRI data analyses

The statistical analysis of the fMRI data was also performed in SPM12
(version r6685). We modeled each subject’s BOLD response with a gen-
eral linear model (GLM) that was estimated using SPM12’s standard
hemodynamic response function and a high-pass filter of 128 Hz, as well
as correction for intrinsic autocorrelations. SPM12’s internal masking
threshold for the estimation of the 8 parameters was set to 0.4 to ensure
inclusion of subcortical brain regions. The GLM contained two regres-
sors of interest as boxcar functions: (1) decisions in the controlled con-
dition and (2) decisions in the free condition (each with a duration from
the respective onset of the choice options until the first button press,
illustrated as “decision window” in Fig. 1). Note that, due to a high
consistency in the subjects’ choices and therefore in the subjects’ and
player A’s payoff within each condition and subject (see Fig. 2B), it was
not feasible to additionally control for the subjects’ or player A’s payoffin
the GLM. As nuisance regressors, we also modeled the following: (3) the
display of the text “A new player A is deciding . . " (duration 2.4-8.6 s);
(4) motor response (duration from the first button press until press of the
OK button); (5) unhappiness rating (duration = reaction times); (6)
anger rating (duration = reaction times); (7) manipulation check, that s,
feeling of having control rating (duration = reaction times); and (8) six
motion parameters. For every subject, we created contrast images for the
two regressors of interest.

At the group level, we used random effects analyses, in which we ap-
plied whole-brain correction for multiple comparisons at the cluster
level. We calculated the corrected cluster extent (ki) for each ¢ test using
Gaussian random-field theory as implemented in SPM12 with a cluster-
defining individual voxel threshold of t = 2.68 (p < 0.005) to achieve an
FWE-corrected statistical threshold of ppy < 0.05 (minimum k; > 40,
range 40—44).

The aim of the fMRI analysis was to identify a neurophysiological
mechanism that can predict individual differences in control-averse be-
havior. Specifically, we investigated whether activations in and interac-
tions with the brain regions that are differentially activated for decisions
in the controlled and the free condition correlate with individual control-
averse behavior. We did so in three fMRI analysis steps, which will be
described in the following sections.

Step 1: Localization of brain regions differentially activated for decisions
in the controlled and the free condition. To identify the brain regions that
are differentially activated during decisions in the controlled and the free
condition, we tested the corresponding contrast images in a paired ¢ test
at the group level. Because we had no strong anatomical hypotheses, we
applied whole-brain corrected analysis. Based on the paired ¢ test, we
created two masks for all suprathreshold voxels within a 10 mm sphere
around the group peak voxel in the right and left inferior parietal lobule
(IPL), respectively, at a threshold of p < 0.005, uncorrected (peak MNI
coordinates for right IPL: 39 —40 40; for left IPL: —42 —40 47, illustrated
in Fig. 5). The spheres were applied to isolate the activation in the IPL
from more posterior activation. The masks were used to extract and
illustrate the mean 3 estimates as implemented in the MarsBaR toolbox
(Brett et al., 2002), as well as for search volumes in the functional con-
nectivity analyses and time course analyses (which are described in step 3
of the fMRI analysis below).

Step 2: Covariate analysis of activation differences for decisions in the
controlled and the free condition and control-averse behavior. The second
step of the fMRI analysis was to investigate whether individual control-
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averse behavior could be predicted by activation differences for decisions
in the controlled and free condition. To test this, we included the indi-
vidual level of control-averse behavior as a covariate in the paired ¢ test
(random effects analysis) using a whole-brain analysis. The individual
level of control-averse behavior was computed as the mean chosen level
in the free condition minus the mean chosen level in the controlled
condition, with the result that increasing values reflect increasing levels
of control-averse behavior.

Step 3: Covariate analysis of the functional connectivity seeded in the IPL
and control-averse behavior. The third step of the fMRI analysis was to
investigate whether individual control-averse behavior could be explained
by neural interactions with the brain regions that are differentially active for
decisions in the controlled and free condition. For this purpose, we con-
ducted functional connectivity analyses seeded in the right and left IPL as
identified in the paired ¢ test for decisions in the controlled > free con-
dition. To assess the functional connectivity, we used psychophysiologi-
cal interaction (PPI) analysis with two psychological factors of interest
that were derived from the GLM: (1) decisions in the controlled condi-
tion and (2) decisions in the free condition. We extracted single-subject
time courses in the right and the left IPL, respectively, as follows: using
the search volumes derived from the paired t test for decisions in the
controlled > free condition at the group level (illustrated in Fig. 6), we
identified, for each subject, the peak Z-value for the contrast of decisions
in the controlled > free condition and extracted the first BOLD signal
eigenvariate from a 5 mm sphere around this individual peak. This
approach was chosen to account for between-subject variability in the
spatial location of the peak activation. The extracted BOLD signal eigen-
variate was then deconvolved and multiplied with the two psychological
factors of interest to create the PPI terms (controlled PPI, free PPI),
which were then convolved with the standard SPM12 hemodynamic
response function. Last, for each seed, the two PPI terms, the BOLD
signal eigenvariate, and all regressors described in the GLM were entered
into a new GLM (GLM-PPI). For all subjects, we created contrast images
for the two PPI terms. To identify brain regions that show an increased
functional connectivity with the right and left IPL, respectively, we tested
the associated contrast images controlled PPI > free PPI in two separate
paired ¢ tests at the group level (random effects analyses). Finally, to test
whether the functional connectivity seeded in the IPL predicts control-
averse behavior, we included the individual level of control-averse be-
havior as a covariate in the paired ¢ tests of controlled PPI > free PPI
(random effects analyses) using whole-brain analyses.

Based on the covariate analysis, we created two new masks for all
suprathreshold voxels in the right and left dorsolateral prefrontal cortex
(dIPFC)/middle frontal gyrus, respectively, at a threshold of p < 0.005,
uncorrected (see Fig. 6, Table 1). These masks were used to extract and
illustrate the mean f3 estimates as implemented in the MarsBaR toolbox
(Brett et al., 2002) (Fig. 5) and as search volumes for additional time
course analyses (see Fig. 6) as follows.

To further examine individual differences in the temporal character-
istics of the BOLD signal underlying the decisions in the controlled and
free condition in the seed (bilateral IPL) and target regions (bilateral
dIPFC/middle frontal gyrus) of the functional connectivity analysis, we
performed post hoc time course analyses using the search volumes de-
scribed above. For each subject and each search volume, we identified the
peak Z-value for the contrast of decisions in the controlled > free con-
dition and extracted the raw event-related BOLD response from a 5 mm
sphere around this individual peak, which was identical to the procedure
used in the PPI analysis. Event-related BOLD responses were estimated
by two finite impulse response models for decisions in the controlled
condition and the free condition, respectively, adjusted for nuisance
effects of the motion regressors and resampled to time bins of 0.5 s as
implemented in the rfxplot toolbox (Gldscher, 2009). We then divided
the subjects into groups of not control-averse subjects (with levels of
control-averse behavior = 0, n = 10) and control-averse subjects (with
levels of control-averse behavior > 0, n = 41) and plotted the averaged
time courses across subjects in each group separately for decisions in the
controlled and the free condition (see Fig. 6). Note that the raw event-
related BOLD signal is independent of any model assumptions. The time
course analyses therefore provide additional insights into the temporal
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characteristics of the BOLD signal in the target regions. Due to the use of
non-independent masks, however, it is important to note that the time
course analyses were not used to infer the magnitude of the effect con-
trolled > free condition.

Identifying the best combination of predictors of individual
control-averse behavior based on self-report and neural data
Building upon the behavioral results and the result of the functional
connectivity analysis, we next investigated whether models based on self-
report data could be improved by including neural data. To this end, we
ran a new series of generalized linear models using the function fitglm as
implemented in the MATLAB Statistics and Machine Learning Toolbox
(R2015b; The MathWorks). For each model, the dependent variable
was the individual level of control-averse behavior, as measured by
the mean chosen level in the free condition minus the mean chosen
level in the controlled condition.

We compared the best model based on self-report data with models
based on the neural data and combinations of neural and self-report data.
As a neural predictor, we used the difference between the subjectwise
estimate of the connectivity between right IPL and right dIPFC during
decisions in the controlled and the free condition (controlled PPI — free
PPI). This neural predictor was combined with main effects of and inter-
actions with the predictors social cognition, negative affect, and freedom
restoration. The most relevant models are illustrated in Figure 7. Again,
we compared the models with regard to the BIC and R>.

Mediation analysis of self-report and neural predictors of
individual control-averse behavior

Building upon the result of the model comparisons, we next investigated
the association among social cognition, right IPL-dIPFC connectivity, and
control-averse behavior. To this end, we performed a mediation analysis
using the MATLAB-based mediation toolbox described by Wager et al.
(2008) available at: https://github.com/canlab/MediationToolbox. We
based the test on three criteria, which are illustrated in the three-variable
path model in Figure 8. First, the predictor must be related to the medi-
ating variable (path a). Second, the mediator must be related to the
outcome after controlling for the predictor (path b). Third, the media-
tion effect defined as product of the a and b path coefficients (a*b) must
be significant. A significant mediation effect indicates that the mediator
significantly reduces and therefore explains the predictor-outcome rela-
tionship (difference between path c and ¢’). If the predictor still explains
significant variance in the outcome after controlling for the mediator
(path ¢'), we speak of a partial mediation.

A mediation analysis is conceptually different from a moderation anal-
ysis (see model 10 in Fig. 7), which tests whether the level of the moder-
ating variable can predict the strength of the relationship between the
predictor and the outcome (Baron and Kenny, 1986; Wager et al., 2008).
In other words, a moderator indicates when a predictor-outcome asso-
ciation occurs, whereas a mediator explains how or why such an effect
occurs (Baron and Kenny, 1986). We therefore ran the mediation anal-
ysis to test whether the right IPL-dIPFC connectivity represents the
mechanism through which social cognition affects control-averse be-
havior.

As the predictor, we used the subject-specific variable social cognition.
The mediator was the difference between the subjectwise estimate of the
connectivity between right IPL and right dIPFC during decisions in the
controlled and the free condition (controlled PPI — free PPI). The out-
come was the individual level of control-averse behavior, as measured by
the mean chosen level in the free condition minus the mean chosen level
in the controlled condition. Statistical significance was assessed using a
bootstrap test with 1000 samples.

Results

Behavioral results

Control-averse behavior and its association with negative affect,
perceived distrust, understanding, and freedom restoration

While lying in the fMRI scanner, subjects made choices under
two conditions (Fig. 1). In the free condition, subjects could
choose freely among five allocation options, called generosity levels,
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corrected for a bottom effect following the
procedure by Falk and Kosfeld (2006).
Subjects demonstrated high consistency
in their choice preferences: they showed a
variance of mean 0.31 * 0.33 SD, median
0.21, in the controlled condition and a
variance of mean 0.33 = 0.37 SD, median
0.21, in the free condition (Fig. 2C). We
therefore averaged each subjects’ choices
within each condition and used the differ-

Controlled

vy)

ence between each subject’s mean chosen
level in the free condition minus the sub-
ject’s mean chosen level in the controlled
condition as the measure of the individual

chosen level
w

level of control-averse behavior. The indi-
vidual levels of control-averse behavior var-
ied from —0.25 to 2.13 (mean 0.82 = 0.64
SD, median 0.88), a variation that stems
mostly from the mean chosen levels in the
controlled condition rather than the free
condition as illustrated in Figure 2, B and
C. In other words, subjects chose similarly
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Figure 2.

ranging from selfish to more generous and equal monetary
allocations between themselves and another person. In the con-
trolled condition, the other person requested a minimum of level
two and thereby eliminated the most selfish and unequal option.
A manipulation check showed that subjects indeed indicated hav-
ing more control in the free condition (mean 4.42 = SD 0.73, me-
dian 4.75) than in the controlled condition (mean 3.88 * SD
0.88, median 4.00; Wilcoxon signed-rank test, two-tailed, Z =
4.69, p < 0.001, Hodges—Lehmann estimator of differences 0.63,
95% confidence interval (CI): 0.38 to 0.94; Fig. 2A).

First, we tested whether the restriction of the freedom of choice
had an effect on subjects’ generosity as measured by the chosen gen-
erosity level. As expected, subjects chose, on average, lower gen-
erosity levels in the controlled condition (mean 3.50 * 0.78 SD,
median 3.50) than in the free condition (mean 4.34 * 0.57 SD,
median 4.50; Wilcoxon signed-rank test, two-tailed, Z = —5.64,
p < 0.001, Hodges—Lehmann estimator of differences —1.00,
95% CI: —1.19 to —0.81; Fig. 2B). Note that the statistical test was

variance(chosen level)

Choice behavior. A, B, boxplots of the ratings of having control and chosen generosity levels, respectively, in the
controlled and the free condition. The central mark of each box shows the median, the box edges show the 25th and 75th
percentiles, and the whiskers represent the limit beyond which a data point is considered an outlier (denoted as cross). The
connected data points in the center show individual subject’s means. €, Histograms showing the distribution of subjects’ mean and
variance of chosen levels in the controlled and the free condition. Data from n = 571 subjects are shown.

high levels in the free condition, whereas
choices were more heterogeneous in the
controlled condition. For two subjects,
the level of control-averse behavior was
—0.25, which did not result from systematic
choices, but rather from a single outlier
choice of alower level in the free condition.
Because these subjects otherwise demon-
strated zero difference in their choices
between the two conditions, they were
treated as not being control averse.

Second, we tested whether subjects’ in-
dividual control-averse behavior was as-
sociated with negative affects (Dillard and
Shen, 2005). To capture negative affects,
we used trial-by-trial ratings of unhappi-
ness and anger on pictorial 5-point SAM
scales (Bradley and Lang, 1994). Indeed,
we found a significant association of
control-averse behavior with both nega-
tive affect ratings: the unhappier (Spear-
man’s p = 0.49, p < 0.001; robust R* =
0.26, p < 0.001) and the angrier (Spear-
man’s p = 0.46, p = 0.001; robust R* = 0.23, p < 0.001) subjects
were in the controlled compared with the free condition, the
greater was their individual level of control-averse behavior
(Fig. 3A). To additionally assess trait anger expression, we used a
task-independent anger expression inventory (STAXI; Schwenk-
mezger et al., 1992). Subjects’ general tendency to direct anger
expression outward, however, did not correlate significantly with
the individual level of control-averse behavior (Spearman’s p =
—0.01, robust R* < 0.01, both p > 0.9; Fig. 3A). Other subscales
of the STAXT also showed no significant association with control-
averse behavior.

Third, we tested the association between subjects’ individual
control-averse behavior and their self-reported thoughts as as-
sessed by ratings after scanning. For each rating, subjects were
asked to indicate how strongly the described thought had influ-
enced their decision in the control aversion task. Consistent with
previous work (Falk and Kosfeld, 2006), we found that subjects
demonstrated more control-averse behavior the more they per-
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Correlation of control-averse behavior with negative affects, perceived distrust, understanding, freedom restoration, and faimess. A, Mean unhappiness and anger ratings in the

controlled minus the free condition and individual tendencies for outward-directed anger expression, respectively, plotted against the individual control-averse behavior, computed as the difference
between the mean chosen level in the free minus the controlled condition. B, Individual ratings of perceived distrust, understanding, freedom restoration and fairness plotted against individual
control-averse behavior. Observations are jittered along the x-axis to reduce overlap for visualization. Regression lines were fitted with bisquare robust regressions. Data from n = 51 subjects are

shown.

ceived the choice restriction as a signal of distrust by the other
person (Spearman’s p = 0.60, robust R?=0.32, both p < 0.001;
Fig. 3B). In contrast, subjects demonstrated less control-averse
behavior the higher they rated understanding the other person’s
request in the controlled condition (Spearman’s p = —0.66, ro-
bust R* = 0.37, both p < 0.001). We next tested whether the
motivation for freedom restoration had influenced the subjects’
decisions. Consistent with reactance theory (Brehm, 1966; Miron
and Brehm, 2006), our subjects’ self-reported motivation to use
their remaining freedom of choice correlated significantly and
positively with their level of control-averse behavior (Spearman’s
p = 0.37, p = 0.008, robust R* = 0.17, p = 0.003; Fig. 3B). Last,
we asked subjects whether fairness had played a role in their
decisions; that is, the thought that their own payoff and the other
person’s payoff should not be too far apart. Interestingly, fairness
correlated positively with the average chosen level within both the
controlled condition (Spearman’s p = 0.51, robust R*> = 0.28,
both p < 0.001) and the free condition (Spearman’s p = 0.48,
robust R? = 0.26, both p < 0.001), but was not significantly
associated with control-averse behavior (Spearman’s p = —0.20,
p = 0.163, robust R* = 0.04, p = 0.144; Fig. 3B).

Social cognition is the best self-report predictor of individual
control-averse behavior

Next, we aimed to identify the best predictor of individual
control-averse behavior based on self-report data. To this end, we
computed and compared a series of generalized linear models. As
predictors, we focused on the self-reported variables that showed
a significant correlation with control-averse behavior (Fig. 3). To
reduce multicollinearity among the predictors, we applied prin-
cipal component analyses and computed the new variables social
cognition and negative affect. The normalized ratings of the item
freedom restoration served as a third predictor. Model compari-
sons revealed that, based on the self-report data, the following
model had the best model fit (Fig. 4, Table 2):

yi = Bo + By SocialCognition; + &;

where y is the level of control-averse behavior for subject i and
SocialCognition is the first principal component of the normal-
ized ratings of the items perceived distrust and the reversed item
understanding. This model performed better in predicting indi-
vidual control-averse behavior than any model that included
negative affect or the motivation for freedom restoration either as
main effects or interaction terms.

Neuroimaging results

Control-averse behavior is predicted by neural interactions
between the right IPL and the dIPFC

The aim of the fMRI analysis was to identify a neurophysiological
mechanism that can predict control-averse behavior. Specifically,
we aimed to test whether neural responses and their interactions
could explain individual differences in control-averse behavior. To
do this, we ran covariate analyses between the individual control-
averse behavior and neural activity in the brain regions that are
differentially activated during decisions in the controlled and the
free condition, as well as the functional connectivity seeded in
these brain regions.

In a first step, the brain regions that are more strongly acti-
vated during decisions in the controlled than in the free condition
were localized. We estimated a GLM that models the BOLD
responses for decisions in the controlled and the free condition,
respectively. The respective single-subject contrast images were
then compared in a paired ¢ test. We found that the right IPL
(peak MNI coordinates 39 —40 40, t = 3.99, ppwe < 0.001,
whole-brain FWE corrected at the cluster level), the left IPL (peak
MNI coordinates —42 —40 47, t = 3.76, ppwe = 0.042), clusters
in the bilateral superior parietal lobule extending into the occipital
cortex (peak MNI coordinates right 15 —73 57, t = 4.42, ppywi <
0.001; left —21 —64 43, £ = 4.43, prye < 0.001), and the right
occipital cortex (peak MNI coordinates 39 —79 33, t = 4.01, ppwi;
= 0.042) were more strongly activated during decisions in the con-
trolled than in the free condition.

In a second step, we tested whether these activation differ-
ences between decisions in the controlled and in the free
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Figure4. Models based on self-report data. These diagrams show seven models predicting individual control-averse behavior
(y), based on self-reports of social cognition (S), freedom restoration (F), and negative affect (A). Arrows indicate main effects. The

bar graphs show the BIC and R2 for each model, with the winning model highlighted in black.

condition could explain individual differences in control-
averse behavior by including the individual level of control-
averse behavior as a covariate in the paired ¢ test of the contrast
images for decisions in the controlled and the free condition. This
covariate analysis revealed no significant association between
control-averse behavior and the activation differences between
decisions in the controlled and the free condition, even at a more
liberal statistical threshold of p < 0.005, uncorrected.

In a third step, we investigated whether individual differences
in control-averse behavior could instead be explained by func-
tional connectivity patterns. As the seed region of the functional
connectivity, we focused on the bilateral IPL due to its suggested
role in subjective choice restrictions (Filevich et al., 2013) and
attention reorientation (Corbetta et al., 2008). Accordingly, the
above described peak activation clusters in the bilateral IPL were
used as search volumes for individual subjects’ seeds for the func-
tional connectivity analyses (Figs. 5, 6). To assess the functional
connectivity, we performed two PPI analyses that included sepa-
rate interaction terms between the right and left IPL BOLD time
series, respectively, and regressors indicating decisions in the
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behavior

= social cognition

= freedom restoration
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1234567
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controlled and the free condition (con-
trolled PPI, free PPI). We searched for
brain regions in which functional con-
nectivity with the IPL predicted con-
trol-averse behavior by including the
individual level of control-averse behav-
ior as a covariate in the paired ¢ test of the
contrast images for controlled PPI > free
PPI. Whereas the covariate analysis
seeded in the left IPL revealed no signifi-
cant results, we found that, for controlled
PPI > free PP]I, the right IPL showed in-
creased functional coupling with the right
dIPFC/middle frontal gyrus (ppwe <
0.001), the left angular gyrus (ppwe <
0.001), the right precuneus ( ppywg = 0.047),
the left dIPFC ( ppywg = 0.042), and the left
IPL (ppwe = 0.033) as a function of
control-averse behavior (Fig. 5, Table 1).
No significant negative association was
observed. Complementary PPI analyses
seeded in the superior parietal lobule and
the occipital cortex revealed no significant
association with control-averse behavior.
To determine whether the positive corre-
lation was driven by either one of the con-
ditions, we extracted the mean (8 estimates
across the functional clusters of the bilat-
eral dIPFC for the controlled PPI and the
free PPI regressor separately and plotted
them against the individual level of
control-averse behavior (Fig. 5). This in-
spection revealed that right IPL-dIPFC
connectivity during the decisions in-
creased with control-averse behavior in
the controlled condition and decreased
with control-averse behavior in the free
condition. Therefore, the higher the indi-
vidual level of control-averse behavior,
the greater the change in right IPL-dIPFC
connectivity during decisions in the con-
trolled compared with the free condition. In
addition, time course analyses showed that
activation in the bilateral IPL increases immediately after the onset of
the choice options, regardless of individual control-averse behavior
(Fig. 6). In contrast, activation in the bilateral dIPFC synchronizes
with activation in the IPL only for control-averse subjects and only
during decisions in the controlled condition.

Connectivity between right IPL and dIPFC complements
self-reported social cognition in predicting individual
control-averse behavior

Next, we aimed to identify the best combination of predictors of
control-averse behavior based on both self-report and neural
data. Specifically, we tested whether the functional connectivity
with the IPL complements or exceeds the self-reports in predict-
ing control-averse behavior. To this end, we computed a set of
new generalized linear models that included the neural data. As
the neural predictor, PP, we used the subjectwise 3 estimate of
the controlled PPI minus the free PPI regressor between the right
IPL and the right dIPFC. We focused on the connectivity of the
right IPL with the dIPFC because of their frequent coactivation
during attention reorientation (Corbetta et al., 2008) and
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Table 1. Regions in which the connectivity for decisions in the controlled minus the
free condition (controlled PPl — free PPI) seeded in the right IPL is positively
associated with individual control-averse behavior

MNI coordinates

Cluster ~ Max
Region Side x y 7 osize, kg stat b Pre
dIPFC/middle frontal gyrus R 42 47 22 105 488  <<0.001
24 5 5 4.58
48 35 29 4.16
Angular gyrus L —33 =55 36 4N 480  <<0.001
6 —70 50 4.67
27 =73 50 4.40
Precuneus R 18 —67 29 40 4.80 0.047
3 —67 29 3.10
21 —58 26 3.01
dIPFC/middle frontal gyrus L —45 29 29 4 4.54 0.042
-39 38 26 3.10
—45 35 19 2.95
IPL L -39 -5 5 & 4.22 0.033
—33 =58 57 335
—24 —64 60 2.95

Results from the covariate analysis are shown (sample size, n = 51 subjects). Height threshold ¢ 4 = 2.68, extent
threshold k; > 40. All activations survived whole-brain correction for multiple comparisons based on FWE control at
the cluster level.
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context-dependent decision making (Daw et al., 2006; Boorman
et al., 2009; Rudorf and Hare, 2014). This neural predictor was
combined with main effects of and interactions with the predictors
social cognition, negative affect, and freedom restoration. Model
comparisons revealed that a model that combined main effects of
social cognition and PPI had the best overall model fit (model 9;
Fig. 7, Table 2):

yi = Bo + Bi SocialCognition; + B, PPI; + ¢;

This model performed better than any combination of the neural
predictor with any other predictors based on self-report data (Fig. 7).
Moreover, it performed slightly better than a model including the
interaction of social cognition and PPI (BIC = 65, R?=0.60, model
10 in Fig. 7), which revealed no significant interaction and there-
fore no moderation effect (8 = —0.40, t,5, = —0.38, p = 0.702,
95% CI: —2.52 to 1.71). When we added the other self-report
predictors (model 13 in Fig. 7), the main effects of social cogni-
tion and PPI remained robust, whereas the other predictors
showed no significant effect. Accordingly, the increase of connec-
tivity between the right IPL and right dIPFC in the controlled
compared with the free condition explains variance in individual
control-averse behavior that exceeds model predictions based on
self-report data.
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Figure 5.

Connectivity between right IPL and dIPFC predicts individual differences in control-averse behavior. The figure illustrates that the functional connectivity during decisions in the

controlled as opposed to the free condition (controlled PPl — free PPI) between the right IPL (seed) and regions in the dIPFC/middle frontal gyrus and the posterior parietal cortex increases as a
function of individual control-averse behavior. Left, Statistical parametric maps of the covariate analysis color coded for the ¢ values as indicated by the color bar, thresholded at pp, << 0.05, and
projected on atemplate brain in MNI space. Right, Graphs showing the individual level of control-averse behavior (x-axes) plotted against the single-subject means of the 3 estimates extracted from
the functional clusters in the right and left dIPFC (circled on the left) for the controlled PPl — free PPI effect, the controlled PPI effect, and the free PPI effect seeded in the right IPL (y-axes).
Observations are jittered along the x-axis to reduce overlap for visualization. Regression lines were fitted with bisquare robust regressions. Data from n = 51 subjects are shown.
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BOLD time courses of decisions in the controlled and free condition. The IPL shows a similar pattern for not control-averse subjects (with levels of control-averse behavior < 0,n = 10)

and control-averse subjects (with levels of control-averse behavior > 0, n = 41), whereas the dIPFC shows a distinct pattern for control-averse subjects. The graphs show averaged time courses of
BOLD activation in the bilateral IPL (top row) and the bilateral dIPFC/middle frontal gyrus (bottom row) for decisions in the controlled (orange) and the free condition (blue). The brain maps in the
center depict the search volumes used for the time course extractions. The horizontal lines at the top of the graphs indicate time points at which the conditions differ significantly (Wilcoxon
signed-rank test, two-tailed, p << 0.05). The dashed vertical lines mark the onset of the decision window at which the time courses were mean-corrected. The transparent areas show SEM. Note that

these plots were not used to infer the main effect of controlled > free condition.

Connectivity between right IPL and dIPFC partially mediates the
association of social cognition with control-averse behavior

After having identified social cognition and the right IPL-dIPFC
connectivity as the best predictors of individual control-averse
behavior, we investigated whether the connectivity might reflect
the mechanism through which these social cognitions affect control-
averse behavior and therefore capture joint variance. To investi-
gate this, we ran a mediation analysis using a three-variable path
model (Fig. 8; Baron and Kenny, 1986; Wager et al., 2008) in
which the predictor was social cognition, the mediator was the
subjectwise B estimate of the controlled PPI minus the free PPI
regressor between the right IPL and the right dIPFC, and the out-
come was the individual control-averse behavior. Following con-
vention (Baron and Kenny, 1986), we considered the mediation
to be significant if three conditions were met: the predictor must

Table 2. Model comparison

be related to the mediator (path a), the mediator must be related
to the outcome after controlling for the predictor (path b), and
the mediation effect, that is, the product of the a and b path
coefficients (a*b = c—c’), must be significant. The mediation
analysis revealed that the relationship between social cognition
and control-averse behavior is partially mediated by the connec-
tivity between right IPL and right dIPFC; that is, the mediator
significantly reduces the association between predictor and out-
come (total effect, path c), but the predictor still explains signif-
icant variance of the outcome (direct effect, path ¢’; Fig. 8). In
other words, the right IPL-dIPFC connectivity explains a significant
part of the relationship between social cognition and control-averse
behavior, but the predictor and mediator each also explain indepen-
dent variance.

Model 1 Model 9
95% (I 95% Cl

B SE t p Lower Upper B SE t p Lower Upper
Social cognition 1.36 0.19 7.19 <<0.001 0.98 1.74 1.06 0.20 5.39 <<0.001 0.66 1.45
IPL— dIPFC connectivity 0.92 0.28 3.8 0.002 0.36 1.49
(Intercept) 0.84 0.06 13.51 <0.001 0.72 0.97 0.43 0.14 3.6 0.003 0.16 0.71
BIC 68.1 61.7
R? 0.51 0.60
Observations 51

The dependent variable was control-averse behavior. Individual differences in control-averse behavior were predicted by social cognition and right IPL— dIPFC connectivity in the controlled minus the free condition (models 1and 9in Fig. 7).
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Discussion model 1
People value their freedom of choice highly.
Interestingly, though, if another person
tries to restrict one’s choice, some people
will comply, whereas others will act
against the restriction. These individual
differences in control-averse behavior
have been well documented, but their
driving factors have remained a puzzle.
Previous work has suggested several
potential predictors of control-averse be-
havior based on self-reports. To date,
however, we know very little about the
mechanisms that underlie control-averse
behavior at the neural level. Here, we
identify a neural mechanism that comple-
ments and exceeds self-reported social
cognitions, affects, and motivations in ex-
plaining individual differences in control-
averse behavior.

We combined fMRI with a control
aversion task (Falk and Kosfeld, 2006;
Schmelz and Ziegelmeyer, 2015) in which
subjects’ freedom of choice is controlled
by another person and subjects’ subse-
quent monetary allocation to that person
serves as a measure of control-averse be-
havior. Specifically, we aimed to identify
neural mechanisms that could explain in-
dividual differences in control-averse be- 100
havior. Our results both replicate prior 75
behavioral studies and provide novel in-
sights into the neurobiological basis of
control-averse behavior. We replicated 25
that control of one’s freedom of choice by
another person reduces the willingness to
allocate money to that person (Falk and
Kosfeld, 2006; Schmelz and Ziegelmeyer,
2015). This effect was augmented in sub-
jects who had little understanding for the
other person’s behavior or who perceived
the restriction of their freedom of choice
as a signal of distrust in their intrinsic mo-
tivation to choose a generous and fair al-
location (Falk and Kosfeld, 2006). We also
found that control-averse behavior was accompanied by negative
affects (Dillard and Shen, 2005) and the motivation to restore
one’s freedom of choice (Brehm, 1966; Miron and Brehm, 2006).
This is consistent with previous research on reactance that has
focused on behavioral intentions in hypothetical scenarios (Sit-
tenthaler et al., 2015) or behavior in nonsocial settings (Chartrand
etal.,2007). Our study complements and extends this research by
providing evidence of the motivation to act against the restriction
of one’s freedom of choice during social decisions with actual
consequences. A direct comparison of the predictors based on the
self-report data revealed that a combination of the social cogni-
tions perceived distrust and understanding explained individual
control-averse behavior best at the behavioral level.

At the neural level, we found that control-averse behavior
could be predicted by functional connectivity between the right
IPL and the bilateral dIPFC/middle frontal gyrus. Our finding is
specific to the right IPL, which corroborates previous work ex-

model 10

Figure7.
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Models based on self-report and neural data. These diagrams show seven models predicting individual control-averse
behavior (y), based on self-reports of social cognition (S), freedom restoration (F), negative affect (A), and subjectwise estimates of
right IPL— dIPFC connectivity in the controlled minus the free condition (PPI). Arrows indicate main effects and the line with a
circular endpoint in model 10 indicates an interaction effect. The bar graphs show the BIC and R* for each model, with the winning

amining its role in subjective choice restrictions (Filevich et al.,
2013). The involvement of both IPL and dIPFC in control-averse
behavior could be attributed to their functions suggested in pre-
vious neuroimaging studies. The IPL has traditionally been asso-
ciated with the reorienting of attention to both social and
nonsocial stimuli (Corbetta et al., 2008), as well as number pro-
cessing (Dehaene et al., 2003). In addition, more recent work has
linked the IPL to social distance encoding (Chiao et al., 2009;
Parkinson et al., 2014), suggesting that the IPL might perform
analogous operations in visuospatial and social contexts (Ya-
mazaki et al., 2009; Parkinson et al., 2014). Therefore, it seems
plausible that the differential IPL activation during decisions in
the controlled compared with the free condition might reflect the
encoding of or attention reorientation to the context (i.e., being
controlled or not) that is relevant for the decision (i.e., to coun-
teract or not). The differential IPL activation alone, however, did
not explain individual differences in control-averse behavior,
suggesting that the IPL encodes the difference between the
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Figure 8.

Results of the mediation analysis testing the relationship among social cognition, right IPL— dIPFC connectivity, and control-averse hehavior. Left, Model showing the path coefficients

with SEM in parentheses, significant at *p << 0.01, **p << 0.005, ***p << 0.001. Right, Histogram of the bootstrapped distribution of the mediation effect (a*b = c—c’). The lighter gray portion
of the histogram denotes the 95% Cl for the effect. Data from n = 51 subjects were included in this analysis.

controlled and the free condition regardless of the subjects’ indi-
vidual control aversion. Instead, individual differences in control-
averse behavior could be explained by the connectivity of right
IPL with the dIPFC, two regions that are connected directly through
fiber tracts (Mars et al., 2012). Moreover, the IPL and regions in the
lateral PFC show robust intrinsic functional coupling (Mars et al.,
2011) and increased task-based coupling during changes of choice
strategy (Daw et al., 2006; Boorman et al., 2009). Follow-up studies
should investigate whether individual differences in anatomical or
resting-state functional connectivity between the IPL and dIPFC
might contribute to control-averse behavior.

The dIPFC has commonly been associated with cognitive con-
trol (MacDonald et al., 2000; Miller and Cohen, 2001) and over-
coming conflicts in decisions that require self-control (Knoch et
al., 2006; Hare et al., 2009; Figner et al., 2010; Baumgartner et al.,
2011). Correspondingly, the notion that control-averse behavior
requires cognitive control is supported by our behavioral data:
Although all subjects demonstrated an intrinsic motivation to
choose a high level, control-averse subjects were more likely to
dislike the restriction of their freedom of choice and to feel the
urge to use their remaining freedom of choice. This suggests that
control-averse subjects perceived the decisions in the controlled
condition as a conflict between the general motivation to choose
a high level and the condition-specific motivation to act against
the restriction. Given its suggested role in cognitive control, this
could explain why the dIPFC was more strongly recruited by
control-averse subjects during decisions in the controlled condi-
tion, as indicated by the connectivity analysis and illustrated in
the time course plots.

Furthermore, model comparisons indicate that the right IPL—
dIPFC connectivity explains additional variance of the individual
control-averse behavior that has remained unexplained by self-
reports alone. More specifically, we find that the neural data com-
plement the self-reports of social cognitions. Together, these two
predictors explain a sizable amount of variance in the control-
averse behavior and provide the best data fit among the tested
models. The IPL cluster that we find lies in close proximity to the
temporoparietal junction (Mars et al., 2012; Igelstrom et al.,
2015), which is considered a key region in social cognition (De-
cety and Lamm, 2007; Cabeza et al., 2012; Carter and Huettel,
2013; Krall et al., 2015). It has been proposed that the IPL shares
information with the temporoparietal junction via joint connec-
tions in the dIPFC/middle frontal gyrus (Corbetta et al., 2008),
matching the target region of our connectivity analysis. Consis-

tent with this notion, we found that the right IPL— dIPFC connec-
tivity partially mediates the association between social cognition
and control-averse behavior. The partial mediation and model
comparisons further suggest that the right IPL- dIPFC connectiv-
ity explains variance that could not be captured by self-reports.
This emphasizes once more that, for a comprehensive under-
standing of a complex human behavior such as control-averse
behavior, it is essential to incorporate neurophysiological factors.
Although the IPL and dIPFC certainly have intricate roles in de-
cision making, together, our data provide evidence that the con-
trolled condition represents a socially salient event and that the
right IPL-dIPFC connectivity might contribute to the integra-
tion of social cognition into control-averse behavior.

Last, it is important to acknowledge the limitations of our
study and provide suggestions on how to address them in future
work. First, it would be interesting to see whether our results
generalize to nonsocial scenarios. Falk and Kosfeld (2006) have
demonstrated, however, that replacing player A with a computer
algorithm eliminates control-averse behavior, suggesting that the
aversion to the choice restriction might be confounded with the
social aspect in our task. Therefore, designing a study that anal-
ogously varies the degree of choice restrictions in both a social
and nonsocial context could be an interesting future endeavor.

Furthermore, we opted for a small number of trials to increase
credibility and to limit possible habituation and attention biases.
This means that, whereas our neuroimaging results survive whole-
brain correction, some brain activation might have gone unde-
tected. Using a greater number of trials, however, would have
come at the risk of a less robust measure of control-averse behav-
ior. In the current data, the robustness of our measure of control-
averse behavior is supported by the consistent correlations with
the affect and self-report ratings. Similar sanity checks should be
incorporated in future neuroimaging studies on control-averse
behavior.

In conclusion, this study provides first insights into the neural
drivers of individual differences in control-averse behavior, a
social phenomenon that is ubiquitous in our society. The preva-
lence of control-averse behavior and its potential negative conse-
quences have become evident in previous behavioral studies.
Advancing our understanding of the mechanisms that give rise to
individual differences in control-averse behavior therefore rep-
resents an important research goal. Here, we have approached
this goal by identifying a neural mechanism that can explain
individual differences in control-averse behavior. Our results
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suggest that a key driver of control-averse behavior is the connec-
tivity between brain regions that are reliably, albeit not exclu-
sively, involved in attention reorientation and cognitive control.
This connectivity complements what could be measured by self-
reports alone and thereby improves our understanding of the
mechanisms underlying control-averse behavior. Although more
work is needed to investigate the exact neural computations and
extend these findings to more complex social interactions, this
study has brought us a significant step forward in unraveling the
drivers of individual differences in control-averse behavior.
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