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Abstract 
Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important 

concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning 

models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the 

performance of current clinical NER systems. This study examined two popular deep learning architectures, the 

Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical 

texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields 

(CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. 

The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the-

art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported 

system that used both manually defined and unsupervised learning features. This study demonstrates the advantage 

of using deep neural network architectures for clinical concept extraction, including distributed feature 

representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to 

compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for 

clinical NER. 

Introduction 

Clinical studies often require detailed patients’ information documented in clinical narratives. Named Entity 

Recognition (NER)1 is a fundamental Natural Language Processing (NLP) task to extract entities of interest (e.g., 

disease names, medication names and lab tests) from clinical narratives, thus to support clinical and translational 

research.2,3 Researchers have developed computational models and applied them in general clinical NLP systems. 

Most of the general clinical NLP systems such as MetaMap4, MedLEE5, and KnowledgeMap6, applied rule-based 

methods that rely on existing medical vocabularies for NER. The clinical NLP community has organized several 

challenges to examine the performances of state-of-the-art methods.7-10 Most of the top-performed systems11-13 are 

primarily based on supervised machine learning models with manually defined features. To further improve the 

performance, researchers have explored various strategies within the current infrastructure of conventional machine 

learning models, including ensemble models that combine multiple machine learning methods14,15, hybrid systems 

that combine machine learning with high-confidence rules,16 unsupervised features generated using clustering 

algorithms 17,18 (e.g., Brown clustering19), and domain adaptation20,21 to leverage labeled corpora from other 

domains.  

Machine learning methods formulate the clinical NER task as a sequence labeling problem that aims to find the best 

label sequence (e.g., BIO format labels) for a given input sequence (individual words from clinical text).  

Researchers have applied many machine learning models, including Conditional Random Fields (CRFs)22, 

Maximum Entropy (ME), and Structured Support Vector Machines (SSVMs)23. Many top-ranked NER systems 

applied the CRFs model, which is the most popular solution among conventional machine learning algorithms. A 

typical state-of-the-art clinical NER system usually utilizes features from different linguistic levels, including 

orthographic information (e.g., capitalization of letters, prefix and suffix), syntactic information (e.g. POS tags), 

word n-grams, and semantic information (e.g., the UMLS concept unique identifier). Some hybrid models16 further 

leverage the concepts and semantic types from the existing clinical NLP systems such as MetaMap, cTAKES24. To 

further improve the performance, researchers have also utilized ensemble methods to combine different machine 

learning models, such as re-ranking14,15. More recently, researchers17,25 also start to examine the unsupervised 

features derived from large volumes of unlabeled corpora, such as the word clusters generated using Brown 

clustering19 and random indexing. The continuous and intensive hard work from the clinical NLP community have 

boosted the performance of clinical NER, while also identified several bottlenecks that impede further improvement, 

including:  

1) Fragile feature representation.26,27 Initially, the dominant feature representation in clinical NER is the bag-of-

word model, which is a simplified representation of a piece of text based on the presence/absence of its words 
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irrespective of the orders between words, grammatical relation, and semantic information. The bag-of-word model is 

fragile for clinical NER due to the sparsity problem. For example, the following two similar clinical entities: “mildly 

dilated right atrium” and “somewhat enlarged left ventricle” have nothing in common using the bag-of-word feature 

representation. However, they are two related concepts. There is a need for more robust feature representations. 

2) Task-specific and time-consuming human feature engineering.27,28 The typical machine learning based clinical 

NER is composed of two steps: feature extraction and parameter optimization, where feature extraction is the most 

critical but time-consuming step. In the conventional machine learning solutions, the feature extraction heavily 

depends on humans while the machine can only handle the parameter optimization supervised by the gold-standard 

annotations. Researchers manually screen the positive/negative samples to identify possible features (e.g., tokens 

containing capitalized letters are more likely to have special meanings) and design feature combinations (e.g., body 

location followed by a disorder mention), commonly referred to as “human feature engineering”. The human feature 

engineering has several problems. First, the features extracted by human are either incomplete – human cannot 

enumerate all possible features, or over specified – the same information is repeated in many complex features and 

feature combinations. Second, researchers must engineer the features again for a different task or different data 

source. There is an increasing need for automatic feature learning algorithms to release researchers from the time-

consuming manual feature engineering. 

3) Lack of long-term dependencies.28-30 The typical CRFs based NER systems usually require the set up of a word 

window for the input sequence of tokens. Many studies that examined the system prediction errors have reported 

false negatives caused by the lack of long-term dependencies. However, simply increasing the window size cannot 

solve this problem as it may dilute the signal with more noise into the feature space and greatly increase the training 

time. The clinical NER need a better architecture to capture long-term dependencies from clinical texts. 

Recently, there have been increasing efforts to explore a new emerging technology, deep learning31 (or deep neural 

networks), to improve the current clinical NLP systems. Deep learning is a sub-domain of machine learning that 

uses deep architectures to learn high-level feature representations. Currently, deep neural networks are commonly 

used as the unique deep architecture for high-level feature learning. Deep learning models introduced word 

embedding28,32 as a critical technique to train densely-valued vector representation of words to replace the fragile 

bag-of-word representation. Each row of the matrix is associated with a word in the vocabulary and each column of 

the matrix represents a latent feature. The input word sequence can be transformed into a vector by concatenating 

the corresponding word vectors from the embedding matrix. Deep neural network architectures can learn high-level 

features automatically to release researchers from time-consuming human feature engineering. To capture long-term 

dependencies in a word sequence, researchers designed two popular deep architectures, including the Convolutional 

Neural Networks (CNN)28,33 and the Recurrent Neural Networks (RNN)34. Recent research from the general NLP 

domain reported that the CNN and RNN developed using only the word embeddings achieved comparable 

performance as the state-of-the-art CRFs with human engineered features and knowledge from dictionaries.28,34 In 

the clinical NLP domain, in one of our previous works35, we examined the word embedding trained using a neural 

network and applied the embeddings to an SVMs model for word sense disambiguation (WSD)36 and a CRFs model 

for clinical NER35. The evaluation results showed that the word embeddings could be used as useful features to 

improve the state-of-the-art performances of conventional machine learning models for WSD and NER. Later, we 

developed a CNN based NER method37 and applied it to the Chinese clinical notes, which outperformed a state-of-

the-art CRFs model. Jagannatha et al.38 applied RNN for medical event detection from clinical notes and later 

compared several RNN models with different loss functions. The experimental results using annotated cancer patient 

notes showed that the RNN outperformed a baseline CRFs model with context features.  

However, the previous study by Jagannatha et al.38 compared RNN with a baseline CRFs with only context word 

features and the evaluation corpus is not openly accessible. Our previous CNN study37 was evaluated using Chinese 

clinical corpus. It is still not clear which deep architecture is better and whether they could outperform the state-of-

the-art clinical NER systems for English clinical corpora. Therefore, it is necessary to further examine the two 

popular deep architectures, CNN and RNN, using an open challenge corpus and compare them with the most state-

of-the-art clinical NER systems. This study is one of the first studies to compare the two widely used deep learning 

models using an open clinical corpus – the i2b2 2010 clinical concept extraction dataset. We compared the two deep 

learning models with the state-of-the-art clinical NER systems with human designed features and demonstrated the 

superior performance of RNN model.  
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Methods 

Data sets 

In this study, we reused the word embeddings developed in our previous study35 using the unlabeled Multiparameter 

Intelligent Monitoring in Intensive Care (MIMIC) II corpus39. The MIMIC II corpus is composed of 403,871 notes 

from four different note types including discharge notes, radiology notes, ECG and ECHO notes. Table 1 shows the 

detailed information about the MIMIC II corpus. We used the labeled corpus developed for the Concept Extraction 

task of the 2010 i2b2 NLP challenge for model training and evaluation. We used the same training and test data sets 

as in the challenge, which consisted of 349 notes for training and 477 notes for testing. For each note, annotators 

manually extracted entities about Problem, Treatment, and Test. Table 1 shows detailed information for both the 

training dataset and the test data set.  

 

Table 1. Descriptive statistics of MIMIC II corpus and i2b2 dataset. 

Data set  Notes  Entities  Entity types 

i2b2 2010 Training 349 27,837 

 

Problem, Treatment 

Test 477 45,009 

 

Test 

MIMIC II N/A 403,871 N/A N/A 

 

Machine learning models 

Baseline CRFs systems 

The CRFs model approaches clinical NER as a sequence labeling problem that tries to find the best label sequence 

Y*=y1 y2…yN for a given input sequence X=x1 x2… xN. The clinical concept extraction task can be converted into a 

sequence labeling problem by assigning the annotated entities with appropriate tag representations. This study used 

the standard "BIO" schema to convert the named entity annotations into sequence labeling tags, in which each word 

is assigned to a label as following: B = beginning of an entity, I = inside an entity, and O = outside of an entity. As 

the i2b2 2010 concept extraction challenge focused on three types of clinical concepts, we used a total number of 

seven different tags (B-problem, B-test, B-treatment, I-problem, I-test, I-treatment, O). For comparison, we 

constructed three CRFs baseline systems using features extracted at different levels. The first system used only the 

context word and n-gram features. Based on the basic features, the second systems further added linguistic features 

and document level features (section names). Similarly, the third system further added knowledge features derived 
from general clinical NLP systems (MedLEE, MetaMap and KnowledgeMap) and dictionary match features from 

existing vocabularies (UMLS). All the baseline systems were developed using the CRFs implemented in the CRF++ 

package.  

State-of-the-art NER systems 

To challenge the deep learning models, we selected two state-of-the-art systems among all studies regarding the i2b2 

2010 clinical concept extraction challenge dataset. The first system is the best-performed system developed by 

Debruijn et al.11. This system explored many typical NER features including word features from different linguistic 

levels, knowledge from existing clinical NLP systems, and Brown clustering.  Authors proposed a semi-supervised 

Markov model solution and achieved the best F1 score during this challenge. The second system25 applied SSVMs 

model and further examined the distributional word representation feature generated by Random Indexing 

algorithm. To the best of our knowledge, this system achieved the best after-challenge performance on the i2b2 2010 

dataset up until now. 

Deep learning based NER system 

Similar to the CRFs model, deep learning models formulate the clinical concept extraction task into a sequence 

labeling problem using the same “BIO” tagging schema. The input of deep learning models is quite different with 

conventional machine learning models. The input of CRFs model is human designed features represented in bag-of-

word style vector. Whereas, the input for deep learning model is the raw sequence of words in the sentence without 

human engineering. We applied a word embedding layer to transform the sequence of words into densely-valued 

vectors, where most of the values are non-zero. Next, we train a deep neural network to learn high-level feature 
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representations, capture long-term dependencies, and global features to help identify clinical entities. This study 

explored two deep architectures including CNN and RNN. 

CNN architecture: This study adopted a popular CNN architecture using sentence level log-likelihood approach 

proposed by Dr. Ronan Collobert.28 This architecture consists of a convolutional layer, a non-linear layer using the 

hard version of the hyperbolic tangent (HardTanh), and several standard linear layers. This architecture achieved 

state-of-the-art NER performance in the general English domain and later was applied to many other NLP tasks 

later.  Using word embeddings, each word in the input window can be mapped to an N-dimension vector (N is the 

embedding dimension). Then, a convolution layer captures the long-term dependencies (or global features) in the 

hidden nodes. Both the local features and the global features are then concatenated together and fed into a standard 

neural network trained using stochastic gradient descending. Finally, the classification layer utilized a sentence level 

log-likelihood approach to calculate the loss supervised by gold-standard annotations. Detailed information for this 

CNN architecture can be found from our previous study. 

RNN architecture: RNN is an emerging new deep architecture for sequence data. Recent studies have shown that 

RNNs have good ability to capture long-term dependencies for sequence data. In this study, we adopted a RNN 

architecture implemented using the Long Short Term-Memory (LSTM) by Lample et al.34 The LSTM is the most 

popular implementation of RNN architecture. A basic LSTM unit is composed of three multiplicative gates, 

including an input gate to control the proportion of input information transferred to a memory cell; a forget gate to 

control the proportion of historical information from the previous state; and an output gate to control the proportion 

of output information to pass on to the next step. We also applied several standard deep learning techniques 

including character embedding and dropout. For the input layer, we combined the word embeddings and the 

character embeddings in an input vector. The word embeddings were pre-trained from the MIMIC II corpus and the 

character embeddings were initiated with random values. The final classification layer of the RNN used a CRFs loss 

function, which is similar to the CNN architecture examined in this study. 

Experiments and Evaluation 

This study used word embeddings with 50 dimensions, which was pre-trained from the MIMIC II corpus in one of 

our previous studies35. We used a neural network with negative sampling to train the embeddings as our previous 

study showed that this embedding is better or at least comparable to the word2vec algorithm. For CNN, we used a 

Java implementation developed in one of our previous study37. We compared several combinations of network 

parameters based on our previous study and finally used the following parameters for CNN: learning rate at 0.01, the 

word embedding dimension at 50, and hidden node number at 300.  For RNN, we adopted a Python implementation 

using Theano package. Based on the parameters reported by Lample et al.34, we examined the character embedding 

sizes and learning rates. The final RNN model used the following parameters: word embedding dimension at 50; 

character embedding dimension at 25; the LSTM layer for word level is 100 and the LSTM layer for the character 

level is 25; learning rate at 0.005; dropout probability is 0.5. A Nvidia Tesla K40 GPU was used to train the RNN 

model. The official evaluation scripts provided by the i2b2 organizers were used to calculate the strict micro-

averaged precision, recall, and F1-score.  

Results 

Table 2 compares the performances of the baseline CRFs, the Semi-Markov (best system during the challenge), the 

SSVMs (current best system developed after the challenge), the CNN and RNN using the i2b2 2010 test dataset. All 

evaluation scores were based on exact matching. For the baseline CRFs, the linguistic and document level features 

improved the baseline F1 score from 77.33% to 79.87%. The knowledge base features further boosted the score to 

83.60%. For the state-of-the-art systems, the semi-Markov model developed by Debruijn et al. during the challenge 

further explored a semi-supervised word cluster feature using Brown clusters and applied a semi-supervised Markov 

model, which achieved the best F1 score at 85.23%. Later, Tang et al. explored the SSVMs model and distributional 

word representation from the Random Indexing algorithm and further improved the F1 score to 85.82%, which is the 

best performance score reported using the i2b2 2010 dataset. For deep learning models, the CNN with only word 

embeddings outperformed the baseline CRFs with word, linguistic and document level features. However, the 

performance of CNN did not outperform the baseline CRFs further combined with knowledge features. The RNN 

architecture implemented using bi-direction LSTM neurons outperformed the current best system and achieved the 

best F1 score (85.91%) on this data set using only the word/character embeddings. 
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Table 2. Performance comparison of all machine learning models. 

Approach Feature  Precision 

(%)  

Recall 

(%)  

F1 Score 

(%) 

 

CRFs baselines 

Word 82.32 72.92 77.33 

Word+Linguistic+Discourse 83.25 76.75 79.87 

Word+Linguistic+Discourse+ 

MedLEE+KnowledgeMap+DST 

86.52 81.04 83.60 

SSVMs by Tang et 

al. (Current best) 

All features in CRF baselines 

+Brown clustering + Random indexing 

87.38 84.31 85.82 

Semi-Markov 

(Best in challenge) 

Word+context+sentence+section+cTAKES 

+MetaMap+ConText+Brown clustering 

86.88 83.64 85.23 

CNN Word embedding 84.91 80.73 82.77 

RNN Word embedding 85.33 86.56 85.94 

Word: bag-of-word, orthographic such as capitalized letters and special symbols; Discourse: sections, note types; 

Linguistic: part of speech tags, prefix, and suffix; DST: Dictionary-based Semantic Tagger using UMLS 

 

Discussion 

This study examined two deep learning architectures to extract concepts from clinical texts. We constructed three 

baseline systems using the CRFs model with different levels of features. Two deep learning architectures, including 

a CNN and an RNN, were developed. We compared the deep learning architectures with the state-of-the-art clinical 

NER systems using i2b2 2010 corpus. The experimental results using the standard training, test and evaluation 

showed that the RNN model trained with only word embeddings achieved the new state-of-the-art performance for 

clinical NER, which outperformed the best system during the challenge and the current best system based on an 

SSVMs model. This study shows the advantage of using deep neural network architectures for information 

extraction from clinical texts. To the best of our knowledge, this is the first study comparing two popular deep 

learning architectures (CNN and RNN) for clinical concept extraction.  

All deep learning models developed using only word embeddings outperformed the baseline CRFs with basic word 
level, linguistic level, and document level features, showing the efficiency of automatic feature learning from large 

unlabeled corpora. The performance improvements of the deep learning architectures are mainly from the recall 

(from 72.92% to 86.56% for RNN), showing that the unsupervised feature learning can capture extra features that 

did not exist in the training dataset to boost the recall. The RNN outperformed other systems with a new state-of-

the-art F1 score at 85.94%. To the best of our knowledge, this is the best performance ever reported for the i2b2 

2010 clinical concept extraction dataset. The RNN architecture outperformed CNN, another deep neural network 

architecture designed to learn high-level feature representations, showing that the RNN architecture is more efficient 

for sequence labeling tasks. 

As an emerging technology, deep learning provides distributed word representation to replace the fragile bag-of-

word model, automatic high-level feature learning to release researchers from time-consuming feature engineering, 

and deep architectures to capture long-term dependencies. We do observed differences between the general NLP and 

clinical NLP when applying deep learning models. For example, the clinical NLP have more knowledge bases (e.g., 

UMLS) with decent coverage. However, it is very hard to generate such comprehensive knowledge bases with 

decent coverage in the general NLP domain. Therefore, we can see that most of the top-performing clinical NER 

systems utilized the knowledge from dictionaries and integrated with other clinical NLP systems, which may make it 

hard for the deep learning models using only word embeddings to compete with the traditional clinical NER models 

in the clinical domain. For example, the CNN architecture outperformed the state-of-the-art NER systems on both 

the general English NER dataset and the Chinese clinical corpus, where there are limited knowledge bases. Whereas, 

the CNN model did not outperform the state-of-the-art clinical NER systems on the i2b2 corpus, where the top 
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systems utilized many knowledge bases and were hybrid systems using multiple general clinical NLP systems. The 

success of the RNN architecture shows the promise of using deep learning architectures for clinical NLP: machines 

can learn features better than humans, given the correct deep neural network architectures and advanced 

optimization algorithms. 

This study has limitations. We only explored hidden layer dimension and learning rate but used arbitrarily selected 

network parameters according to previous studies. More robust and efficient parameter tuning strategy is needed. 

We compared RNN with the current best NER system and reported a new state-of-the-art performance on the i2b2 

data set. Although the numeric improvement looks small, this study demonstrated the efficiency of RNN using the 

minimal feature engineering. Deep learning architectures provide a unified solution for clinical NLP, which may 

simplify the complex system architecture of current state-of-the-art clinical NLP systems to speed up their 

application in practical NLP systems. With the distributed word representation and high-level feature abstraction, 

deep learning may achieve the state-of-the-art performance without the requirement of combining with other models 

and systems. It worth further investigating on how the deep learning models can be applied to practical clinical NLP 

systems. 

Conclusion 

This study compared two deep learning models, including the CNN and RNN, to extract clinical concepts from 

clinical texts. We compared CNN and RNN with baseline CRFs using different levels of features as well as the 

state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The experimental 

results show that the RNN outperformed the best clinical NER system based on SSVMs with a new state-of-the-art 

F1 score at 85.94%.  The RNN model can be adapted to other clinical NLP tasks to improve their performances and 

to release researchers from time-consuming feature engineering. 
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