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Abstract

The completeness of a medical terminology system consists of two parts: complete content coverage and complete
semantics. In this paper, we focus on semantic completeness and present a scalable approach, called Spark-MCA,
for evaluating the semantic completeness of SNOMED CT. We formulate the SNOMED CT contents into an FCA-
based formal context, in which SNOMED CT concepts are used for extents, while their attributes are used as intents.
We applied Spark-MCA to the 201403 US edition of SNOMED CT to exhaustively compute all the formal concepts
and sub concept relationships in about 2 hours with 96 processors using an Amazon Web Service cluster. We found
a total of 799,868 formal concepts, within which 500,583 are not contained in the 201403 release. We compared
these concepts with the cumulative addition of 22,687 concepts from the 5 “delta” files from the 201403 release to
the 201609 release. 3,231 matches were found between those suggested by FCA and those from cumulative concept
addition by the SNOMED CT Editorial Panel. This result provides encouraging evidence that our approach could be
useful for enhancing the semantic completeness of SNOMED CT.

Introduction

Ontologies (a.k.a. terminology systems) serve as a knowledge source in many biomedical applications including
information extraction, information retrieval, data integration, data management, and clinical decision support.1 The
quality of an ontology is a key property that determines its usability. As evidenced by their fast paced evolution (e.g.,
SNOMED International releases a new version almost every 6 months), ontological systems are often incomplete
and under-specified. Therefore, one quality issue is semantic completeness.2–4 For example, in SNOMED CT, the
concept Structure of muscle acting on metatarsophalangeal joint (with identifier 707861009) was not present in the
201403 release but was added in the 201603 release. To study semantic completeness, Jiang and Chute4 used Formal
Concept Analysis (FCA) as a tool to construct contexts from normal form presentations in SNOMED CT and analyzed
the resulting lattice hierarchy for unlabeled nodes. These unlabeled nodes signify semantically incomplete areas in
SNOMED CT which can serve as candidate pool of new concepts for inclusion in SNOMED CT.

Given their size and complexity, performing such an FCA-based semantic completeness analysis for large ontologies
is computationally as well as methodologically challenging. In fact, constructing concept lattices from formal con-
texts is believed to be a PSPACE-complete problem. Hence, performing formal concept analysis on large biomedical
ontologies in their entirety, such as on SNOMED CT with over 300,000 concepts and 1,360,000 relations, was con-
sidered impractical. Because of the computational challenge, Jiang and Chute had to randomly select only 10% of the
contexts from the subbranches of two largest domains of SNOMED CT to perform an FCA-based analysis. Although
such a limited sample size may serve to demonstrate feasibility, an exhaustive analysis would be needed to achieve the
full potential of the approach.

Most existing algorithms for computing formal concepts are not scalable to very large contexts. The process of
generating formal concept hierarchies and constructing concept lattices from large contexts, after formal concepts are
identified, is an additional computationally costly step. Due to such challenges, no scalable approaches have been
proposed to exhaustively audit the semantic completeness of large biomedical ontologies using FCA, even with the
aid of cloud computing technology. To address the computational challenge involved in constructing concept lattices
from large contexts, we propose Spark-MCA, a Spark-based Multistage algorithm for Concept Analysis. Spark-MCA
implements our proposed new FCA-based algorithms within the Apache Spark distributed cloud computing framework
to provide a scalable approach for exhaustively analyzing the semantic completeness of large biomedical ontologies.

Another challenge that impedes the quality assurance of semantic completeness is the lack of reference standards.

1931



Because of the inherent discovery-oriented nature and associated challenges involved in quality assurance work for
ontological systems, there is an inevitable lack of “reference standards.” In semantic completeness auditing, case
studies are commonly used for validating proof-of-concept. However, for large scale ontological systems, case studies
may not be sufficient. We adopt RGT, Retrospective Ground-Truthing,5 as a surrogate reference standard for evaluating
the performance of auditing methods for semantic completeness. The key idea of RGT is to extract the cumulative
concept changes during the evolution of a developing ontology. In this study, for the purpose of evaluating semantic
completeness, we focused on the addition and deletion of concepts. We used the cumulative inserted concepts in
“delta” files of SNOMED CT between two releases, 201403 and 201609, as the RGT to evaluate the performance of
Spark-MCA.

The contributions of this paper are: (1) the introduction of Spark-MCA, scalable distributed algorithms for exhaus-
tively evaluating the semantic completeness within feasible computational times; (2) the application of RGT for val-
idating the performance of FCA-based semantic completeness auditing method. Our results show that Spark-MCA
provides a cloud-computing feasible approach for evaluating the semantic completeness of SNOMED CT using formal
concept analysis.

1 Background

SNOMED CT Release Cycle. Developed and maintained by SNOMED International, SNOMED CT6 is the premier
comprehensive clinical terminology for healthcare-related industries worldwide. As required by the meaningful use
provisions of the Health Information Technology for Economic and Clinical Health (HITECH) Act,7 SNOMED CT
is suited for use in clinical documentation in electronic health records (EHR). Clinical data coded in SNOMED CT
can be used for multiple purposes.8 For example, providers can send SNOMED CT encoded data securely during
transitions of care to other providers or upon discharge, or share data with patients themselves. This decreases barriers
to the electronic exchange of critical patient information and positively impact patient safety.

SNOMED CT adopted description logic (DL) to formally represent concept meanings and relationships. A normal
form of concept expression is a structured combination of subtype relationships (i.e. is-a) and attribute relationships
(e.g., associated morphology, causative agent, finding site, part of).9 For example, the definition of Shunt of cerebral
ventricle to extracranial site is shown in Figure 1 using such a normal form.10

Figure 1: SNOMED CT concept expression for Shunt of cerebral ventricle to extracranial site.

Each SNOMED CT release comes with a “delta” file, which identifies the individual changes that occurred between
releases. Table 1 is a fragment of the “delta” file in the SNOMED CT 201609 release. In the “active” column, an entry
1 denotes that a concept (e.g., 128282005) becomes active from this release (i.e., an addition), while 0 denotes that a
concept (e.g., 128570000) becomes inactive from this release (i.e., a deletion). We use this file to retrieve cumulative
concept changes between releases as RGT to evaluate our Spark-MCA.

id effectiveTime active moduleId definitionStatusId
128282005 20160731 1 900000000000207008 900000000000073002
128570000 20160731 0 900000000000207008 900000000000074008

Table 1: A fragment of the delta file in the SNOMED CT 201609 release.
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Formal Concept Analysis. Formal concept analysis (FCA) has been advocated as a mechanism to audit the quality
of SNOMED CT.4, 11–13 FCA is a mathematical method for knowledge engineering. It can be used to derive a concept
hierarchy or formal ontology from a collection of objects and their attributes.14, 15 The input data for FCA is a binary
relation between a set of objects and a set of attributes. This relation is represented in the form of a formal context,
I = (X,Y,R), where X is a set of objects, Y is a set of attributes, and R is a relation R ⊆ X × Y . Each formal
context I = (X,Y,R) induces two operators: ↑: 2X → 2Y and ↓: 2Y → 2X . The operators are defined, for each
A ⊆ X and B ⊆ Y :

A↑ = {y ∈ Y |∀x ∈ A: (x, y) ∈ R}, B↓ = {x ∈ X|∀y ∈ B: (x, y) ∈ R},

where A↑ is the set of all attributes shared by all objects in A, and B↓ is the set of all objects sharing all attributes in B.
A formal concept is a pair (A,B) with A ⊆ X and B ⊆ Y such that A↑ = B and B↓ = A. The collection of all such
pairs, together with the natural partial order (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (B2 ⊆ B1), form a complete lattice.14

The structure of the concept lattice corresponds to the hierarchy of formal concepts and provides generalization and
specialization between the concepts, i.e., (A1, B1) is more specific than (A2, B2) (or (A2, B2) is more general).

There are two basic algorithmic strategies for computing formal concepts: (a) forming intersections by joining one
attribute at a time, and (b) repeatedly forming pairwise intersections starting from the attribute concepts. Kuznetsov
and Obiedkov provided a survey and comparative evaluation of algorithms for FCA.16 Bordat17 used strategy (a), while
Chein18 used strategy (b). In this study, we use the idea of Troy, Zhang, Tian’s19 multistage algorithm for constructing
concept lattices (MCA) and adapt and extend it in order to take advantage of the scalable distributed Spark framework.

We use ontological definitions for constructing a formal context. One can think of ontological concepts as objects,
and ontological relationships as attributes in constructing a formal context. For example, with respect to Figure 1 we
can use [69483009|Shunt of cerebral ventricle to extracranial site (procedure)] as an object and the other lines as its
attribute entries.

Cloud Computing. Apache Spark is an advanced and high-end upgrade to Hadoop, aimed at enhancing scalability
and performance using Resilient Distributed Datasets (RDDs) which facilitates in-memory computations on large
clusters in a fault-tolerant manner.20 While both share the key-value conceptual framework, Spark is generally faster
than Hadoop for MapReduce because of the way it processes data. It completes the full data analytic operations in-
memory and in near real-time: reading data from the cluster, performing the requisite analytic operations, and writing
results to the cluster. The in-memory processing strategy makes Spark more suitable for iterative algorithms. However,
designing efficient algorithms in a distributed way requires a different strategy than that for the traditional approach,
with more attention paid to data locality, job break-down, and trade-offs between parallelism and communication
latency.

2 Method

2.1 Overview

In this paper, we introduce Spark-MCA, a distributed algorithm based on MCA, using the theoretical basis of FCA and
adapting it to the Spark framework. Spark-MCA contains two parts: distributed MCA for obtaining all concepts, and
distributed big set operation for lattice diagram construction. Spark-MCA takes in the original concepts and relations
from SNOMED CT in the format described in the previous section as source formal context and generates the entire
concept lattice from this context. We illustrate the main steps of our algorithm in the following subsections with the
help of an example dataset extracted from SNOMED CT (Table 2).

We performed two types of evaluation: (1) partial validity, and (2) computational performance. To demonstrate that
our Spark-MCA can be used in auditing semantic completeness and the results of our algorithm can provide a viable
candidate pool of new concepts in a developing ontological system, we apply RGT by comparing the results of Spark-
MCA with the concepts added to SNOMED CT versions. For computational performance, we tested our algorithm
for its scalability by comparing the running times for datasets of different sizes. We also evaluated our algorithm on
its performance on the same dataset but using different numbers of working computer processors.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a × × ×
b × × × ×
c × × × × × × × × × × ×
d × × × × × × × × × ×
e × × × × × × × × × ×

Table 2: a: Shunt of cerebral ventricle to extracranial site, b: Neck repair, c: Ventricular shunt to cervical subarachnoid space,
d: Creation of ventriculo-jugular shunt, e: Creation of subarachnoid/subdural-jugular shunt. 1: Creation of subarachnoid/subdural-
jugular shunt (isa), 2: Brain ventricle structure (Procedure site - Direct), 3: Shunt action (Method), 4: Operation on neck (isa), 5:
Surgical repair of head and neck structure (isa), 6: Repair - action (Method), 7: Neck structure (Procedure site - Direct), 8: Creation
of connection from ventricle of brain (isa), 9: Repair of spinal meninges (isa), 10: Cervical subarachnoid space (Procedure site
- Direct), 11: Spinal cord cerebrospinal fluid pathway operation (isa), 12: Cerebral ventricular shunt to venous system (isa), 13:
Structure of jugular vein (Procedure site - Direct), 14: Structure of meningeal space (Procedure site - Direct), 15: Creation of
vascular bypass (isa), 16: Anastomosis of veins (isa).

2.2 Model SNOMED CT Using the FCA

SNOMED CT uses name-value to describe composite expressions. Take
[405813007|Procedure site - Direct (attribute)| → 35764002|Brain ventricle structure (body structure)]

in Figure 1 as an example. Here, 405813007|Procedure site - Direct (attribute) is the name part, while
35764002|Brain ventricle structure (body structure)

is the value part. We use two steps to construct a formal concept from such SNOMED CT expressions. First, we
include SNOMED CT concepts objects and each of their name-value pair as one attribute. For example, Figure 1
is encoded as 69483009 : 116680003 → 88834003; 405813007 → 35764002; 260686004 → 424208002, where
we used identifiers for simplicity. Second, to enrich the attributes, we include its ancestors’ attributes by leverage
transitive closure of the isa relation (identifier 116680003). With the second step, Figure 1 is encoded as 69483009:
116680003 → 138875005; 405813007 → 35764002; 260686004 → 424208002; 260686004 → 129264002, where
138875005 is the root of the sub-hierarchy and dose not have any ancestors.

2.3 Spark-MCA

Algorithm for Distributed MCA
The distributed part of Spark-MCA is built on top of MCA.19 The idea behind MCA is to perform multistage inter-
section operations on each pair of concepts from the initial concept set consisting of all objects, until no more new
concept is generated. Each of the stages is independent of the previous ones and does not involve any concepts in the
previous stages. For notational preparation, define S e T := {s ∩ t|s ∈ S, t ∈ T}, where S and T are collections of
subsets. With respect to a given formal context (X,Y,R), the MCA algorithm involves the following iterative steps:

S0 := {X},
S1 := {{x}↑|x ∈ X}, and

Si+1 := (Si e Si)−
⋃

1≤k≤i

Sk

for i ≥ 1. One important intermediate step for each stage is to remove all existing concepts
⋃

1≤k≤i Sk when forming
Si+1. This way, only newly generated (and necessary) concepts are kept for subsequent stages, resulting in potentially
large savings in computational cost.

The strategy involved in designing a distributed algorithm is to decompose a complex job into a sequence of jobs and
to distribute particular parts of the data to be processed on different processing nodes. Our idea is to leverage the
independence of stages involved in MCA and design a distributed MCA in the following way: Instead of iteratively
performing intersections of object concepts pairs, (SieSi)−

⋃
1≤k≤i Sk on a single computer in each stage, we employ

the MapReduce paradigm to split the iteration of pairwise intersections into a number of partitions. Each partition is
then processed on an independent compute node by a Map function. The outputs from the Map functions are then
collected, shuffled, and sent to compute nodes to perform Reduce functions. The output of Reduce functions are split
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again to repeat the above steps. While iterations involved in MapReduce become very expensive in a standard Hadoop
MapReduce implementation due to the I/O latency between the MapReduce steps, the distributed MCA implemented
using the Spark framework can take advantage of in-memory processing to reduce the I/O latency.

Algorithm 1: Distributed MCA

Data: Formal context (X,Y,R)
Result: Formal concept set C

1 initialize S = {x↑|x ∈ X)
2 candidate = S
3 while |candidate| > 1 do
4 canditade = ∅
5 Pair < Int, Int >= S.combination(S)
6 Function Map(p ∈ Pair)
7 RDD< Int, Int > c = (p.1 ∧ p.2, 1)
8 Function Reduce((c, 1))
9 candidate = collect(c)

10 C =
⋃

candidate

11 end
12 return C

Data in Spark are generally represented in the form of MapReduce
key-value pairs <k, v> and stored as resilient distributed datasets
(RDDs). Algorithm 1 describes the concept formation phase in
Spark-MCA to generate all concepts from a given context. First we
initialize the primitive concept set using S = {x↑|x ∈ X}. Then,
each loop in the while block (lines 3 - 11) performs one pairwise
intersection. In each iterative step, we first obtain all pairs of cur-
rent concepts as the keys for the input to Map (line 5). Then we
split the pairs into a number of partitions and send them to com-
pute node. Every node performs Map tasks of intersection on x↑i
and x↑j (lines 6 and 7). The Reduce tasks collect all keys of Map’s
results as candidate concepts to perform next iteration, and add the
outcome to the final result (lines 8 - 10). When no new concepts
generated, the algorithm stops and returns the set of cumulated for-
mal concepts C.

Stage 0
C1 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
C2 {1,2,3}
C3 {4,5,6,7}
C4 {1,2,3,4,5,6,7,8,9,10,11}
C5 {1,2,3,4,5,6,7,12,13,14}
C6 {1,2,3,4,5,6,7,13,15,16}

Stage 1
C7 {1,2,3,4,5,6,7,13}
C8 {1,2,3,4,5,6,7}
Stage 2
C9 {}

Table 3: The newly generated formal concepts in each stage for the formal context in Table 2 using Algorithm 1.

Table 3 shows the result of new formal concepts generated in each stage. Stage 0 generates all primitive concepts
represented by intents. Stage 1 outputs two new concepts: C7 and C8. Stage 2 does not output any new concept, and
thus the concepts generation phase stops.

Algorithm for Performing Big Set Operations
One criterion for the well-formedness of an ontology is that its hierarchical structure forms a lattice.11 By constructing
lattice graphs, we can locate those newly generated concepts in the big picture of the entire ontology and help further
inspection of the concept neighbors. With lattice graphs, our result can be a used for other structure-based auditing
methods, as well as for visualization.

After all formal concepts are obtained, we have a nature transitively closed relationship with respect to set inclusion.
For graph rendering, we need to construct the minimal, irreducible set of subset relations as an irredundant represen-
tation of set inclusion (modular transitivity). To do so, we use distributed set operations to construct lattice graphs
from the output of the concept concept construction part of MCA (Algorithm 1). We design our lattice construction
algorithm by leveraging distributed big set operations using the following strategy adapted from Zhang et al.:13, 21

(1) get all subset relations of one concept, (2) remove other relations except for the minimal supersets. More for-
mally, given a set X in a collection of subsets C, we use ⇑X to denote the set of all common ancestors of X , i.e.,
⇑X := {a ∈ C | ∀x ∈ X,x ⊂ a}. Thus, ⇑X represents the strict upper closure of X . When X is a singleton, i.e.,
X = {x}, we write ⇑x for ⇑{x}. Similarly, we define ↑X := {a ∈ C | ∃x ∈ X,x ⊂ a}. We have,13, 21 for any set
X,Y ⊆ C,

⇑X =
⋂
a∈X

⇑a, and ↑Y =
⋃
b∈Y

↑b.

Hence, the set of minimal upper bounds of X can be obtained using the formula ⇑X − ↑(⇑X).
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The distributed big set operations involve two MapReduce jobs: Marking Subset Relations (Algorithm 2) and Transi-
tive Reduction (Algorithm 3). The input of Algorithm 2 is the collection of all formal concepts (intents, say) obtained
from Algorithm 1. First we initialize a HashSet C ′ to store all concepts and distributed to all computational com-
puters (line 2). Then all concepts are split into partitions to perform MapReduce tasks. In each task, we collect the
subsets of concept ci by iteratively checking each element in C ′ to see if it is a subset of ci (lines 3-12). The output of
Marking Subset Relations is a collection of concept-subsets pairs (ci, ac), which will serve as the input of Transitivity
Reduction. In Algorithm 3, concept and subsets pairs are first cached in CS′ and sent to all nodes (line 2). Then each
MapReduce task removes those subsets that are the subsets of the current concept on each pair. This is achieved by
removing the union of the subset list Si for each subset i with concept c in Sc (lines 3-10).

Algorithm 2: Marking Subset Relations

1 Function Marking Subset Relations(C)
Data: Formal concept set C
Result: Concept-subsets pairs S

2 initialize HashSet C ′ = Cache(C)
3 Function Map(c ∈ C)
4 a = ∅
5 foreach el ∈ C ′ do
6 if el ⊂ c then
7 a← el
8 end
9 end

10 RDD< Int, Set[Int] > ca = (c, a)

11 Function Reduce(ca(c, a))
12 CS ← (c, a)
13 return CS

Algorithm 3: Transitivity Reduction

1 Function Transitive Reduction(CS)
Data: Concept-subsets pairs CS
Result: Edge Pairs E

2 initialize HashMap CS′ = Cache(CS)
3 Function Map(cs(c, s) ∈ CS)
4 s′ = ∅
5 foreach el ∈ s do
6 s′ ← CS′[el]
7 end
8 RDD< Int, Set[Int] > pair = (c, s− s′)

9 Function Reduce(pair)
10 E ← pair
11 return E

12

13

Table 4 lists all the formal concepts of the formal context given in Table 2. If we equip the associated order on the
concepts collection, we obtain the concept lattice shown in Figure 2. In the lattice graph, C1 contains all the intents
and C9 contains all the extents. Concepts C1, C2, C3, C4, C5, in blue, are primitive concepts. Concepts C7, C8, in
red, are suggested new concepts.

Concept Extent Intent

C1 {} {1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16}

C2 {a} {1,2,3}
C3 {b} {4,5,6,7}
C4 {c} {1,2,3,4,5,6,7,8,9,10,11}
C5 {d} {1,2,3,4,5,6,7,12,13,14}
C6 {e} {1,2,3,4,5,6,7,13,15,16}
C7 {d,e} {1,2,3,4,5,6,7,13}
C8 {c,d,e} {1,2,3,4,5,6,7}
C9 {a,b,c,d,e} {}

Table 4: The list of formal concepts generated from the formal
context given in Table 2.
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Figure 2: The rendering of concepts in Table 4 as a lattice dia-
gram.

In Spark-MCA, each concept is represented by its intent (and refers neither to the original context, nor to any extent).
One can easily incorporate a data structure for looking up the extent of a concept, after all concepts are determined.
In this study, we maintain two hash maps: one is C, which, for each concept x ∈ X , collects all its attributes;
similarly, the other is A, which, for each attribute y ∈ Y , collects all concepts that contain a particular attribute.
Hence, the intersection

⋂
a↓i , where ai is the attribute of concept ci, contains all extents of a concept. To identify the

labels of formal concepts, we compare their attributes with the primitive concepts list. Concepts corresponding to the
primitive concepts are naturally labeled, while the others concepts can be treated as a candidate pool of new concepts
for enhancing semantic completeness.
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2.4 Evaluation Method

SNOMED CT provides a “delta” file, which contains changes of concepts and relations associated with each release.
To evaluate the performance of Spark-MCA, we constructed RGT by obtaining concepts that were added in the re-
leases. Obtaining an appropriate set of changes across multiple SNOMED CT releases is not a mere job of performing
unions. For the purpose of evaluation, we constructed a reference set involving two steps: (1) extract added concepts
(active value: 1) from all 5 “delta” files from 201403 release to 201609 release; (2) remove deleted or revised concepts
(active value: 0) from the added concept sets obtained in the first step. These remaining concepts are selected as a RGT
for evaluating the result of Spark-MCA. Since the suggested concepts by Spark-MCA have no labels, we matched the
corresponding concepts using their attribute sets (intents).

For scalability analysis, we executed Spark-MCA on Amazon Web Services (AWS) with different hardware config-
urations. For this study, we selected M4, the latest generation of general purpose instances as the main working
configuration. The hardware configuration for M4 is as follows: (1) 2.3 GHz Intel Xeonr E5-2686 v4 (Broadwell)
processors or 2.4 GHz Intel Xeonr E5-2676 v3 (Haswell) processors, (2) EBS-optimized by default.

3 Results

3.1 Semantic Completeness Analysis

We applied Spark-MCA to the SNOMED CT 201403 release and found a total of 500,583 formal concepts suggested
by Spark-MCA that were not included in this release. For evaluation, RGT identified 22,687 concepts as additions
based on the 5 “delta” files from 201403 to 201609. A total of 3,231 concepts were found in the intersection of the
two groups of concepts. This means that Spark-MCA correctly identified 3,231 concepts as missing concepts in the
SNOMED CT 201403 release. Table 5 shows the numbers of identified concepts in representative subhierarchies. In
this table, “FCA-New” denotes the number of suggested new concepts by Spark-MCA; “Delta” denotes the cumulative
number of concept additions based on the “delta” files; “IS-A Only” denotes the number of concepts in “delta” files
with no attributes; “New attributes” denotes the number of concepts in the “delta” files whose definition involved
attributes that are not in primitive concept list; and “Matched” denotes the number of concepts in the “delta” files that
were also found using Spark-MCA.

Subhierarchy (# of concepts ) FCA-New Delta IS-A Only New attributes Matched
Body structure (30,623) 11,311 743 225 0 353
Clinical finding (100,652) 153,401 10,121 309 5,563 1,825
Pharmaceutical biologic product (16,797) 7,696 2,099 106 1,634 109
Procedure (54,091) 325,114 2,893 178 777 875
Situation with explicit context (3,723) 1,718 991 12 751 45
Specimen (1,475) 1,283 200 10 94 24
Event (3,683) 14 23 23 0 0
Staging and scales (1,308) 6 123 123 0 0

Table 5: Comparison of Spark-MCA results and retrospective ground truthing with respect to main subhierarchies.

3.2 Scalability Analysis

Scalability is one of the hallmarks of cloud computing. We performed two scalability tests for our Spark-MCA by
analyzing computational time for different subhiearchies of SNOMED CT and for different AWS configurations,
respectively. For the first test, we selected 4 largest subhierarchies in SNOMED CT 201403 release: Body structure,
Clinical finding, Procedure, and Pharmaceutical biologic product. We performed the test on an AWS cluster with 96
processors. The computational time for each subhierarchy is shown in Table 6. For the second test, we repeatedly ran
Spark-MCA on the Body structure subhierarchy with different configurations by increasing the number of processors
in the AWS cluster. Figure 3 shows the time taken for computing concepts, and Figure 4 shows the time taken
for concept lattice graphs. We found a linear decrease of the computational time when the number of computation
processors ranged from 1 to 30. When the number of processors approached 100, the computational time tends to
cease to decrease, indicating a threshold at which additional processors would not be helpful.
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Subhierarchy Concepts Attributes Time
Pharmaceutical biologic product 16,786 25,107 40 secs
Body Structure 30,623 45,815 3.3 mins
Clinical Finding 100,652 166,123 35 mins
Procedure 54,091 99,995 93 mins

Table 6: Scalability experiment on different subhierarchies in SNOMED CT.
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Figure 3: Scalability experiment of distributed MCA.
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Figure 4: Scalability experiment of lattice construction.

3.3 Evaluation

We applied a Precision-Recall metric to the comparison of our results and RGT. Table 7 shows the P1, R1, and R2
scores in terms of subhierarchies (see the table caption for the definitions of the scores). The P1 values are not so
good and we did not calculate the precision by removing concepts in “delta” with no attributes or new attributes. In
any case, this would not cause a big difference because of the large number of results from Spark-MCA. For smaller
“delta” files, precision may not be so significant. From Table 7 we can see that in the 3 largest hierarchies, Body
structure, Clinical finding, and Procedure, our Spark-MCA can identify 47.5%, 18.0%, and 30.2% of all newly added
concepts, respectively. If we removed those concepts without attributes or with new attributes, the proportions become
even larger. This indicates that Spark-MCA could be a reliable approach for addressing semantic completeness.

Subhierarchy P1 (%) R1 (%) R2 (%)
Body structure 3.12 47.5 68.1
Clinical finding 1.19 18.0 43.0
Pharmaceutical biologic product 1.41 5.2 30.4
Procedure 0.27 30.2 45.1
Situation with explicit context 2.62 4.5 19.7
Specimen 1.87 12 25
Event 0 0 0
Staging and scales 0 0 0

Table 7: P1: ratio of Spark-MCA resulting concepts that can be found in the “delta” files. R1: ratio of delta concepts that can be
identified by Spark-MCA, including all concepts from “delta.” R2: ratio of delta concepts that can be identified by Spark-MCA,
removing concepts in “delta” with no attributes or new attributes.

From Table 6, we can see that larger formal contexts required more computational time using our algorithm. However,
we point out that because of the density and complexity, we cannot assume that a context with more objects and
attributes would necessarily take more computational time. For example, the Clinical finding subhierarchy had more
objects (concepts) and attributes, but it needed less computational time than did the Procedure subhierarchy. For
Procedure, the process was completed in about 1.5 hours on 96 processors, which might also be completed in days
using a sequential approach. From Tables 3 and 4, we can see that as the number of processors increase, the time
taken for processing the same dataset declined significantly in the range of 1 to 30 computer processors. Due to the
shuffle stage in Spark, the total computational time became stable as the number of processors increase. In conclusion,
our computational experiments did demonstrate the scalability of our Spark-MCA algorithm.
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4 Discussion

Limitation of Spark-MCA. Although our results showed Spark-MCA to be a practical method in evaluating se-
mantic completeness, there remain a number of limitations. First, Spark-MCA cannot find those added concepts in
“delta” involving newly added attributes. For example, Difficulty swimming (714997002) is added with a new attribute
363714003—Interprets (attribute) = 714992008—Ability to swim (observable entity) in the 201603 release, but Spark-
MCA did not include it. Other types of lexical or structure auditing methods can be useful supplements to Spark-MCA
in auditing semantic completeness. Second, it is less useful to apply the FCA approach to terminological systems with
very minimal semantic definitions (e.g., limited to one type of relationship). Subhierarchies in SNOMED CT involving
only the isa relation where Spark-MCA suggested no new concepts, even though these were present in the delta files
(numbers given in parenthesis indicate additions in the delta files) are: Environment or geographical location (125),
Observable entity (418), Organism (1,118), Physical force (0), Physical object (631), Qualifier value (649), Record
artifact (32), Model Component (69), Social context (33), Special Concept (0), Substance (2,420).

SNOMED CT versions used for RGT. We used the latest five versions of SNOMED CT (the March 2017 version was
released too late to be included in this study) for the feasibility demonstration of our method. This choice was purely
a matter of convenience and did not result from methodological or computational limitations of our approach. In fact,
it would be desirable to use all the available SNOMED CT versions (in Release Format 1 as well as Release Format
2), with an appropriate starting release as the time-point for computing the formal concepts. All the performance
measures would only improve, and the RGT reference set would become larger.

Limitation of RGT. To understand why some concepts suggested by Spark-MCA were not included in SNOMED CT,
and some were, we need domain experts assessment and case study to improve gain insights. Such insights may help
enhance the method further.

Comparison with related results. We examined the example subhierarchy (hypophysectomy) provided in Jiang and
Chute’s work.4 We found our results to be in agreement. However, because Jiang and Chute did not provide details
about all their findings, we could not perform a more thorough comparison.

Sensitivity of the FCA-based model. FCA-based approach is in general known to be sensitive to the density and
complexity of the input formal context. Even though Spark-MCA performed reasonably well for SNOMED CT, we
did not perform similar computational experiments on other terminology systems.

5 Conclusion

In this study, we introduced Spark-MCA, a scalable approach for evaluating the semantic completeness of SNOMED
CT using an FCA-based method on top of the Spark cloud-computing framework. We formulated SNOMED CT
into a formal context in FCA and then used Spark-MCA to exhaustively compute the formal concepts of the context
as well as the associated subset relations. We the applied Retrospective Ground-Truthing to assess the performance
of Spark-MCA. Our results show that Spark-MCA provides a cloud-computing feasible approach for evaluating the
semantic completeness of SNOMED CT using formal concept analysis.
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