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Abstract

Free-text reports in electronic health records (EHRs) contain medically significant information - signs, symptoms,
findings, diagnoses - recorded by clinicians during patient encounters. These reports contain rich clinical
information which can be leveraged for surveillance of disease and occurrence of adverse events. In order to gain
meaningful knowledge from these text reports to support surveillance efforts, information must first be converted
into a structured, computable format. Traditional methods rely on manual review of charts, which can be costly and
inefficient. Natural language processing (NLP) methods offer an efficient, alternative approach to extracting the
information and can achieve a similar level of accuracy. We developed an NLP system to automatically identify
mentions of surgical site infections in radiology reports and classify reports containing evidence of surgical site
infections leveraging these mentions. We evaluated our system using a reference standard of reports annotated by
domain experts, administrative data generated for each patient encounter, and a machine learning-based approach.

Introduction

Health care-associated infections (HAIs), such as surgical site infections (SSIs), affect one in every twenty
hospitalized patients and account for $10 billion dollars in potentially preventable health care expenditures
annually’. Identification and reporting of HAI after selected procedures is a required hospital quality measure by
several federal agencies. In addition, detection of HAIs in a timely manner may alter treatment courses, reducing
hospital costs and improving patient care.

Information indicating an HAI may be recorded in a variety of locations in the electronic health record (EHR):
physician notes, radiology reports, and microbiology reports. One common method of documenting HAIs is using
administrative data such as International Classification of Diseases (ICD). Due to the lack of specificity in
administrative billing codes and timing of their assignment, these codes cannot reliably be used to identify HAIs in
an accurate and timely manner. Furthermore, administrative data are often insufficient and incomplete due to the
underutilization of structured data fields, lack of standardization, and unknown quality of clinical data’>. Relevant
information may instead be documented in free-text reports and text fields of the EHR. However, these reports are
unstructured and the information contained within them must be extracted into a structured, computable format in
order to utilize them. The traditional method of extraction is manual chart review, such as in the National Surgical
Quality Improvement Program (SQIP). Specifically, these programs leverage trained surgical case reviewers to
manually extract data from EHRs to detect and to report the development of HAIs**. However, manual abstraction
is expensive, labor-intensive, and time-consuming. More efficient methods must be considered to extract this
information.

Natural language processing (NLP) systems can be developed to automatically extract HAI information from textual
data as an efficient and effective method of HAI detection. Melton et al. trained the NLP system MedLEE to identify
adverse events (AEs) from discharge summaries®. MedLEE uses grammatical rules to identify concepts and their
semantic context, which are then mapped to controlled vocabularies®. MedLee outperformed manual review for AEs,
but their study included only one postoperative HAI (wound infection), which the system achieved a low precision
(0.34) for detecting wound infections. Their overall recall (0.28) and precision (0.45) were fairly low, while their
specificity was quite high (0.98). Penz et al. combined MedLEE and phrase-matching techniques that utilize regular
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expressions to identify AEs related to the placement of central venous catheters’. By combining these two methods,
they achieved good recall (0.72), specificity (0.80), and precision (0.64). False positives occurred due to indications
of risk, in which the doctors discussed the hypothetical risks of a catheter placement. Some mentions were also
missed due to misspellings in the text. The authors compared the NLP performance to that of ICD-9 and CPT codes.
They concluded that NLP techniques are far more sensitive than using administrative data, which captured less than
11.5% of all central line placements.

Several studies have specifically focused on the effectiveness of NLP at detecting surgical AEs. FitzHenry et al.
applied NLP methods to surveil for the presence multiple surgical complications, including pneumonia, wound
infection, and urinary tract infections®. They achieved moderate to high performance for detecting each type of
complication measured: pneumonia (recall: 0.90 and specificity: 0.80); wound infection (recall: 0.63 and specificity:
0.77); and urinary tract infections (recall: 0.80 and specificity: 0.95). Similarly, Murff et al. compared the
performance of NLP techniques in the detection of surgical AEs to the performance of using patient safety
indicators’. The NLP system performance ranged from moderate to high for detecting pneumonia (recall: 0.64 and
specificity: 0.95) and sepsis (recall: 0.89 and specificity: 0.94). Their system had a higher recall and lower
specificity than administrative data. Both of these studies were conducted in Veteran Affairs (VA) centers and used a
gold standard of manual review performed by a VA-SQIP nurse.

The main limitation of these studies is the lack of additional clinically relevant information (such as anatomic
location) in development of these detection systems. The goal of this study was to evaluate the performance of an
NLP algorithm in the extraction of evidence of intra-abdominal surgical site infections that specifies the anatomic
locations of these SSIs. The overall hypothesis is that NLP methods will achieve a level of accuracy equal to or
greater than that of manual chart review and greater than that of administrative data. Our objective was (1) to
develop a knowledge base that supports deep semantic extraction of evidence of intra-abdominal surgical site
infection mentions and their anatomic locations and (2) to test a knowledge base-powered NLP algorithm's ability to
make report-level predictions of whether evidence of an intra-abdominal surgical site infection is present. We
evaluated our NLP algorithm's performance using a reference standard of expert-annotated text and compared its
performance against other baseline approaches such as administrative data and machine learning.

Methods

The overall approach for this study included four steps: (1) identifying surgical patients and collecting their
associated EHR data; (2) annotating text data and developing a knowledge base; (3) detecting mentions of SSIs and
classifying reports for the presence of a SSI; and (4) evaluating automated methods against the reference standard
annotations for SSIs. Institutional review board approval (IRB) was obtained.

Patient Identification and Dataset Extraction

We identified a cohort of patients undergoing gastrointestinal surgery from MIMIC-III Critical Care Database and
collected their de-identified EHR data. Specifically, we collected administrative information (admission date,
procedure date, ICD-9 diagnosis codes, and Current Procedural Terminology (CPT) codes). We limited the study to
patients undergoing gastrointestinal surgery covering topics of esophageal, gastric, small intestine, large intestine,
liver, pancreas, abdominal wall, ovarian, uterus, kidney procedures based on 28 CPT codes (e.g., CPT 49000=Under
Incision Procedures on the Abdomen, Peritoneum, and Omentum). We limited our review and process to only
include computed tomography (CT) reports due to their standardized structure and reliable reporting of findings.
From this cohort, all the CT reports within 30 days after the surgical procedure were collected for our dataset.
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Annotation Study

We conducted an annotation study using our development dataset to generate a reference standard of mention-level
and report-level classifications using the full dataset. Two domain experts, a surgeon (author BB) and a surgical
resident (author DS), annotated these reports using the annotation tool, the extensible Human Oracle Suite of Tools
(eHOST)". In these reports, evidence for a SSI is commonly described by phrases such as “fluid collection” or
“abscess”"!. To confirm the mentions (subsequently referred to as “fluid collections™) were referencing findings
related to the gastrointestinal tract surgery, we limited our search to detecting mentions co-occurring in the same
sentence with descriptions of a gastrointestinal anatomic location such as “liver” or “abdomen”. The annotators
annotated sentences containing mentions of fluid collection as one of the following classes: positive evidence of fluid
collection; negated evidence of fluid collection; indication for exam; and annotated mentions of anatomic location
within these sentences marked as positive evidence of fluid collection (Table 1). After annotation was complete, we
then randomly split our dataset into development set (n=565 documents for 409 patients) and test set (n=100
documents for 96 patients).

Table 1. Mention-level annotation schema; Bolded=terms indicating fluid collection; ifalics=contextual terms
indicating anatomic location, negation, uncertainty, historicity, and indication.

Class Name Definition Examples

Positive Evidence A positive mention of fluid collection mentioned as | “Fluid collection is seen in the
of Fluid Collection | potentially occurring at some point in time in the | abdomen.”
same sentence as a relevant anatomic location.

Negated Evidence | A clear statement ruling out the possibility of fluid | “There is no evidence of fluid

of Fluid Collection | collection. collection in the abdomen.”

Indication A phrase indicating that the purpose of the exam is | “PURPOSE OF EXAM: Rule out

for Exam to check for fluid collection. abscess.”

Anatomy A part of the body in the GI tract that occurs in the | “Hematomas are seen around in the
same sentence as a mention of fluid collection. right lower quadrant.”

Mention Detection

To automatically identify and classify evidence of surgical site infection from each report according to our
annotation schema, we developed an NLP system called SSI-Detect. We created a module called Fluid Collection
Finder (fcFinder) that targets and classifies fluid collections*. fcFinder leverages the pyConText library, an
adaptation of the ConText algorithm. ConText utilizes trigger terms and termination points to extract and associate
contextual features such as negation, temporality and experiencer to targeted terms'?. Specifically, pyConText
extends the ConText algorithm by leveraging NetworkX digraphs to relate targets with modifiers and supports
report-level classification'®. pyConText has been adapted to support several use cases: to identify pulmonary
embolisms, to classify cancer history, and to flag reports with significant carotid stenosis findings'*'". Using the
development set, we created a knowledge base lexicon of 46 fluid collection targets and 128 anatomic location
modifiers*. fcFinder utilizes this knowledge base to implement the pyConText algorithm and identify relationships
between contextual and anatomical modifiers and fluid collection targets. After creating these relationships, fcFinder
applies rules to classify each sentence containing a mention of a fluid collection finding as being positive evidence of
fluid collection, negated evidence of fluid collection, or indication for exam. Figure 1 depicts an example pyConText
markup sentence with a target and its associated modifiers of negation and anatomic location.
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There is no evidence of abscess in the .
Definite Negated Existence T Anatomy

Figure 1. An example of negated evidence of fluid collection. The target, “abscess”, is modified by “no evidence”, a
forward-direction negation modifier, and “abdomen”, a bidirectional anatomic modifier.

Evaluation

We computed the performance of fcFinder by comparing the mention-level findings of positive evidence, negative
evidence, and indication with the annotated reference standard. Definitive, historical, and probable evidence were all
considered positive evidence mentions and could be matched with one another. Two findings were considered a
match if their spans overlapped and they had the same class. We defined a true positive (TP) as a correctly identified
mention, a false positive (FP) as a spuriously flagged mention, and a false negative (FN) as a missed mention. We
evaluated fcFinder's performance overall and within each class using F1-score (Eq. 1), recall (Eq. 2), and precision

(Eq. 3).

2TP o TP TP
(Eq.1) F1 = TP FPIFN (Eq. 2) Precision = TP +FP (Eq. 3) Recall = TP +FN

Report Classification

Using the mention-level annotations created by fcFinder, we classified a report as either fluid collection-present or
fluid collection-not present using a python module called fcClassifier. If a report contained at least one positive
mention-level annotation, the report was labeled as fluid collection-present. If it contained only negative or
indication findings, or no findings at all, then it was labeled as fluid collection-not present. Additionally, we assessed
fcClassifier's performance using three configurations: 1) without context; 2) without anatomy; and 3) with all
modifiers. First, we implemented fcClassifier without context using only the targets without any linguistic (negation,
historicity, indication) or semantic (anatomy) modifiers. This could essentially be considered a keyword search. We
then tested fcClassifier using linguistic modifiers, but no semantic modifiers. This allowed us to evaluate the
importance of excluding negated mentions of fluid collection and of requiring the use of anatomic location in order
to accurately classify reports. Finally, we tested fcClassifier using both linguistic and semantic modifiers.

Baselines

We generated two baseline approaches for classifying each report comparison against fcClassifier: 1) ICD-9 codes
and 2) n-grams. First, we developed a simple ICD-9 classifier that predicts fluid collection-present for each report
from a patient encounter encoded with ICD-9 code 998.53. For any report from a patient without this ICD-9 code, it
predicts fluid collection-not present. We then experimented with several machine learning models utilizing n-grams
(1-4 window word features) from the development set, excluding words occurring in an English stopword list and
word features occurring less than twice. To reduce the likelihood of overfitting, we applied the following feature
selection strategy. We determined an upper bound threshold of n features to consider approximated using the square
root of total training reports as 25 features. We ranked the informativeness of these 25 features by p-value using
Chi-square with 5-fold cross-validation. We evaluated each classifier’s performance at intervals of 5 features (5, 10,
15, 20, 25 features) and selected the highest performing classifier according to F1-score with the fewest number of
features. We experimented using several machine learning classification models, including a naive bayes, random
forest classifier, and linear support vector machine (SVM). For this study, we applied the most predictive classifier,
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the linear SVM, leveraging the 15 highest-ranked word features to the test set. In Table 2, we compared these
n-gram features to fcFinder’s knowledge base and determined some terms are shared with our rule-based approach,
giving us confidence this could be reasonable baseline approach.

Table 2. 15 top-ranked features for n-gram classifier. Bolded=shared terms with fcFinder’s knowledge base.

Collection, fluid, fluid collection, hematoma, cm, drain, collections, drainage, fluid collections, subcapsular,
pigtail, catheter, rim, noted, extravasation

Evaluation

We compared the performance of each baseline approach as well as fcClassifier and its various configurations
against the testing set reference standard using accuracy (Eq. 4), F1-score, recall, and precision. We defined true
positives (TP) as correctly classified reports as fluid collection-present and true negatives (TN) as correctly
classified reports as fluid collection-not present. Specifically, we aimed to determine how well each approach could
predict a report as fluid collection-present or fluid collection-not present in the test set. We assessed whether the
differences in performance between the fcClassifier using all modifiers and all other approaches were statistically
different using McNemar’s test.

TP +TN

(Eq. 4) Accuracy = Al reports

Results

Annotation Study

We calculated the inter-annotator agreement between annotators over 4 batches. There were a total of 249
mention-level annotations in the test set (Table 3). The most prevalent mention-level annotations were positive
evidence of fluid collection (57%; 142 of 249 annotations) followed by indication for exam (32%; 80 of 240
annotations). The most prevalent report-level classifications were fluid collection-not present (69%). F1-scores were
high and consistent for mention-level classes ranging from 0.88 to 0.89 and near excellent for report-level
classification (0.96).

Table 3. Inter-annotator Agreement in Test Set using F1-score (surrogate for Cohen’s Kappa).

Mention-level Number of Annotations (%) F1-scores
Overall 249 (100%) 0.91
Positive evidence of fluid collection 142 (57%) 0.89
Negated evidence of fluid collection 27 (11%) 0.88
Indication for exam 80 (32%) 0.88
Report-level

Fluid collection status 100 (100%) 0.96
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Mention Detection

We evaluated fcFinder’s ability to identify and classify mentions of fluid collection from a reference standard using
Fl-score, recall, and precision (Table 4). Results were comparable between the development and test datasets (not
shown). The algorithm performed with high F1-scores ranging from 0.87 to 0.90 for each category. Recall and
precision was comparable (+/-2 points) for overall and for evidence of fluid collection. Recall was notably lower
(-18 points) than precision for indication for exam. In contrast, recall was higher (+9 points) than precision for
negated evidence of fluid collection.

Table 4. Mention-level comparison of fcFinder against the reference standard in the test test. Bolded=highest score
for each metric.

F1-score Recall Precision
Overall 0.90 0.89 0.91
Positive evidence of fluid collection | 0.91 0.92 0.90
Negated evidence of fluid collection | 0.91 0.96 0.87
Indication for exam 0.87 0.79 0.97

Report Classification

The prevalence of fluid collections in the development set (fluid collection-present: 42% and not present: 58%) was
slightly skewed to positive cases compared to the test set (fluid collection-present: 31% and not present: 69%). We
evaluated fcClassifier's ability to classify reports containing positive mentions of fluid collection compared to two
baseline approaches: ICD-9 codes and n-grams (Table 4). ICD-9 codes achieved moderate performance (F1: 0.48;
recall: 0.45). The use of targets without context for report classification resulted in improvement in classification
(F1: 0.66; recall: 1.0). However, this improvement in recall results in a reduction of precision (0.49). fcClassifier
without anatomic references improves precision (0.64) without sacrificing recall (1.0). fcClassifier with anatomic
references performs with the highest F1 (0.88) and precision (0.82) with high recall (0.93). A comparison of each
baseline to fcClassifier using McNemar’s test suggests this improvement is not by chance alone.

Table 5. Report-level classification of fcClassifier against the test set reference standard. Bolded=best performance
for each metric.

Classification Approach Accuracy Fl-score Recall Precision P-value vs.
fcClassifier
ICD-9 codes 0.72 0.48 0.45 0.52 <0.0001
SVM n-grams 0.86 0.76 0.71 0.81 <0.0001
fcClassfier w/o context 0.70 0.66 1.0 0.49 <0.0001
fcClassifer w/o anatomy 0.88 0.79 1.0 0.64 0.0002
fcClassifier 0.95 0.88 0.93 0.82 -
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Discussion

We developed an NLP algorithm called fcFinder to automatically detect fluid collections from radiology reports.
Our system utilized lexical and semantic features to determine the context of mentions of fluid collections. Based on
the mention-level findings, we then classified reports as either fluid collection-present or not present. Our system
performed well at both the mention and report levels, outperforming all compared methods.

Error Analysis

We examined instances where incorrect mention level-annotations caused misclassification of reports. Most
instances of misclassification were caused by terms that were missing in our lexicon. The errors made by the system
can be grouped into the following categories:

- False positive target: Our lexicon included the literal “collectin”, which was meant to match misspellings
of “collection”, but also matched “fluid collecting”, which is not equivalent to a fluid collection. This
resulted in an incorrect positive evidence of fluid collection annotation, which caused the document to be
incorrectly classified as fluid collection-present.

- Missing anatomic location modifier: We did not have the literal “postoperative site” in our lexicon,
resulting in a false classification of fluid collection-not present. We also deliberately excluded the literal
“subcutaneous” as an anatomic modifier, due to its lack of specificity, but it was once used by the
annotators, leading to another false negative classification.

- Missing pseudoliteral: Our lexicon included a number of “pseudoliteral” terms that would explicitly
exclude phrases that could lead to false positives, such as “collection of gas” or “subpleural collection”.
One report was incorrectly classified because “collection of intraluminal gas” was not included in our
lexicon of pseudoliterals. A similar error was caused by the phrase “pockets of gas”.

- Abbreviation: A number of mistakes were made due to clinicians' use of a question mark, “?”, as an
abbreviation for indication for exam. This was not included in our lexicon and several phrases such as
“Yabscess” were not annotated as indication for exam. This is an example of one of the biggest challenges
facing clinical NLP, which is the informal and inconsistent nature of clinical text.

- Reference standard problem: A small number of mismatches were due to mistakes made by the
annotators in the reference standard.

Key Findings
Contextual Features

Overall, fcFinder performed well with each mention-level class: positive evidence (F1: 0.91), negated evidence (F1:
0.91), and indication for exam (F1: 0.87). This allowed fcClassifier to achieve high results with report classification
(accuracy: 0.95; F1: 0.88). fcClassifier's performance demonstrates the importance of linguistic and semantic
context. ICD-9 codes, which provide information at a patient level and do not consider any information that is
contained within a report, performed much worse at report classification (F1: 0.48). Searching for target concepts
without taking into account any context resulted in a perfect recall (1.0), but a very low precision (0.49). When
utilizing linguistic and semantic context, fcClassifier maintained a high recall (0.93) while achieving a much higher
precision (0.82). This high precision could enable a more accurate selection of reports for review, greatly reducing
the amount of work needed to evaluate and detect surgical site infections. This demonstrates the value of including
contextual features when extracting information from clinical reports.
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Anatomic Location Modifiers

Our intention was to identify only reports that contained fluid collections in the site of recent gastrointestinal
surgeries. To do this, we developed a knowledge base of 128 anatomic location modifiers. The use of these
modifiers enabled us to exclude reports that contained mentions of other collections, such as pleural or sternal
collections, but no gastrointestinal fluid collections. The importance of anatomical designation is shown by the
decrease in overall classification performance (-9 points) when anatomic modifiers were excluded from the criteria
for mention-level findings. The significant increase in both recall and precision using anatomic modifiers is a
valuable contribution towards the effective and efficient identification of surgical site infections. This knowledge
base should be expanded to other anatomic regions if utilized in other settings.

N-gram Classifier

The best-performing baseline model was the n-gram SVM classifier (F1: 0.76). Despite not using any contextual
features, this model achieved fairly high accuracy (0.86) and precision (0.81), and reasonable F1 (0.76) and recall
(0.71). While the SVM's precision was comparable to fcClassifier's (0.81 vs. 0.82), its recall was much lower (0.71
vs. 0.93). Given the top 15 word features used by the n-gram model, we can conclude that the model does not take
into account any linguistic (negation, historicity) or semantic (anatomic locations) context. However, the presence of
procedural terms (“drainage”, “catheter”, “drain”) suggests the model includes situational context from the narrative,
namely the treatment of fluid collection, which might be equally useful for asserting the presence of fluid collection.
Future work could combine situational with linguistic and semantic context. Additionally, a system that utilizes
structured data, such as ICD-9 codes, in combination with NLP could achieve even better results than those we

report here.
Value of Rule-based Methods

This study demonstrates the potential of rule-based NLP to offer a semantically rich and detailed narrative of patient
care. Techniques such as administrative data and machine learning offer very little detail beyond binary
classification of a report. Rule-based NLP methods, such as those utilized by fcFinder, can extract much more
detailed information. Here we showed the value of leveraging both linguistic and anatomic location modifiers to
restrict SSI findings to a particular anatomic region. Similar methods can also model the administration and
effectiveness of treatment in conjunction with the change of severity and course of a disease over time, without
requiring much extra effort in developing new models to address each new question. This can offer a much more
detailed and specific review of patient care, and can also enable a generalized approach to evaluating quality of
treatment.

Comparison to Other Works

By conventional standards, our system achieved acceptable results. No other study has specifically aimed to extract
mentions of fluid collection as evidence of SSI, but previously studies have successfully extracted other evidence of
SSIs. Melton et al.'s algorithm, which utilized MedLEE, achieved a detected postoperative wound infection with a
precision of 0.34°. The algorithm implemented by FitzHenry et al. to detect wound infection achieved a recall of
0.63 and specificity of 0.77%. Murff et al. report a recall of 0.89 and specificity of 0.94 in the detection of sepsis’. We
achieved a recall of 0.92 and precision of 0.90 in the detection of positive mentions of fluid collection. Our
algorithm introduces the novel technique of connecting targets with anatomic location modifiers. This technique
contributed to our overall performance and was a unique method of using NLP to detect a surgical AE. While some
studies have evaluated the extraction of anatomic site of a condition, to our knowledge, no studies have done so in
connection to surgical site infections or other surgical adverse events'®".

Limitations and Future Work
There are several limitations to our study. We used reports from the MIMIC-III Critical Care Database. These

reports were written for surgical patients in intensive care. Because of the severity the patient’s condition, the
prevalence of surgical site infections is higher than what we would expect to see in the general population. Reports
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were then more likely to contain mentions of our targets, fluid collection. This may not directly generalize to the
general population, where we would expect the prevalence of surgical site infection to be ~8-10% of patients. In this
testing sample, 31% of notes were found to have fluid collections-present. However, the MIMIC-III dataset is openly
available and the work that we have done with it can be reproduced and compared against. Furthermore, in the
future, we will apply these methods to a more general population which could more broadly validate the results of
this study.

Another limitation is the focused scope of this project. We looked only at radiology reports, specifically including
only CT reports because of their relatively consistent structure and content. We focused on one specific anatomic
region, and our targets included a relatively small lexicon of a single clinical concept, fluid collection, as evidence of
surgical site infection. The CDC lists three additional criteria for defining an organ/space surgical site infection:
purulent drainage from a drain, organisms found in a culture, and diagnosis of a surgical site infection by a surgeon
or attending physician'®.

Despite the relatively narrow focus of this project, it has proven the utility of a number of system features that can be
applied in future studies and future implementations of SSI-Detect. In particular, this study has shown how a
knowledge base of anatomic modifiers combined with NLP contextual tools results in a much higher precision and
much richer semantic detail. This study is the first step in a larger framework of applying NLP methods to identify
surgical adverse events. Future work should focus on expanding the knowledge base which we developed for this
study, improving the performance of our system on non-enriched text, conducting a data analysis across various
report types to test the generalizability of our methods, and expanding these methods to address other anatomic
regions and clinical problems.

Conclusions

The automated detection of adverse surgical event has the potential to revolutionize how providers and hospitals
detect and report quality measures. Currently, these efforts rely on manual chart review which limit the scalability
and generalizability of quality measurement activities. In addition, leveraging automated detection into clinical
decision support services may lead to better surveillance and the potential to improve patient care. We executed
automated detection of evidence of intra-abdominal surgical site infections using a rule-based NLP system that
achieved accuracy similar to manual chart review. In addition, this system outperformed other approaches using
administrative data or SVM machine learning techniques. Future work in this field will seek to broaden our NLP
approach and leverage addition types of structured and unstructured healthcare data to the detection of postoperative
adverse events.
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