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Abstract 

Social networks, such as Twitter, have become important sources for active monitoring of user-reported adverse 
drug reactions (ADRs). Automatic extraction of ADR information can be crucial for healthcare providers, drug 
manufacturers, and consumers. However, because of the non-standard nature of social media language, 
automatically extracted ADR mentions need to be mapped to standard forms before they can be used by operational 
pharmacovigilance systems. We propose a modular natural language processing pipeline for mapping 
(normalizing) colloquial mentions of ADRs to their corresponding standardized identifiers. We seek to accomplish 
this task and enable customization of the pipeline so that distinct unlabeled free text resources can be incorporated 
to use the system for other normalization tasks. Our approach, which we call Hybrid Semantic Analysis (HSA), 
sequentially employs rule-based and semantic matching algorithms for mapping user-generated mentions to concept 
IDs in the Unified Medical Language System vocabulary. The semantic matching component of HSA is adaptive in 
nature and uses a regression model to combine various measures of semantic relatedness and resources to optimize 
normalization performance on the selected data source. On a publicly available corpus, our normalization method 
achieves 0.502 recall and 0.823 precision (F-measure: 0.624). Our proposed method outperforms a baseline based 
on latent semantic analysis and another that uses MetaMap. 

 

Introduction 

Pharmacovigilance is defined as “the science and activities relating to the detection, assessment, understanding and 
prevention of adverse effects or any other possible drug-related problems”.1 The primary focus of pharmacovigilance is 
the monitoring of adverse drug reactions (ADRs). Due to the various limitations of pre-approval clinical trials, it is not 
possible to assess all the consequences of the use of a particular drug before it is released.2 Therefore, ADRs caused by 
prescription drugs is currently considered to be a major public health problem and various ADR monitoring 
mechanisms are currently in place, such as voluntary reporting systems, electronic health records, and, relatively 
recently, social media.3 

Social media has emerged as an important source of information for various public health monitoring tasks. The 
increasing interest in social media is largely because of the abundance of data in the multitude of social networks—
data that is directly generated by a vast number of consumers. It is estimated that about 75% of all U.S. adults have a 
social network account and about 50% worldwide. Data from social networks have been used in the past for a 
variety of tasks such as studying smoking cessation patterns on Facebook,4 identifying user social circles with 
common medical experiences (like drug abuse),5 and monitoring malpractice.6 In addition, recent research has 
utilized social media for the monitoring of ADRs from prescribed medications. From the perspective of 
pharmacovigilance, social media could be a platform of paramount importance, since it has been shown in past 
research that users discuss their health-related experiences, including use of prescription drugs, side effects and 
treatments on a regular basis. Users are known to share their personal experiences over social media sources, and as 
such, a large amount of health-related knowledge is generated within the realm of social media.3 However, while 
significant progress have been made in ADR text classification, and ADR mention extraction,7,8 the normalizing of 
user posted ADR mentions into a predefined set of concepts is still a largely unaddressed problem.  

In this paper, we address the task of normalizing distinct ADR mentions to standardized concepts. This is an 
essential task given that the same ADR concept may have multiple lexical variants (e.g., “high blood pressure”, and 
“hypertension”). Therefore, following automatic ADR extraction approaches, automatic normalization techniques 
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must be applied to obtain realistic estimates for the occurrences of ADRs. For social media data, this is particularly 
important because users often tend to express their problems using non-standard terms. For example, consider the 
following user posts: 

 

"<DRUG NAME> makes me having the sleeping schedule of a vampire.", 

"<DRUG NAME> evidently doesn't care about my bed time", 

"...wired! Not sleeping tonight. #<DRUG NAME>". 

 

In the above examples, all the posts are referring to sleeplessness caused by the intake of a specific medication. Each 
expression is unique and non-standard, although referring to the same ADR concept. In the corpus that we use, each 
ADR concept is encoded using the Unified Medical Language System (UMLS) concept IDs. All standard and non-
standard lexical variants of an ADR are mapped to the most appropriate UMLS entry. The target of our approach, 
formally, is to predict the UMLS concept ID of a text-based ADR mention. 

Concept normalization  

The task of normalization of ADRs involves assigning unique identifiers to distinct ADR mentions, with different 
lexical variants of the same concept. The IDs are derived from any lexicon or knowledge base with sufficient 
coverage. In the case of our research, we use the UMLS concept identifiers to uniquely specify each ADR concept. 
The UMLS provides a vast vocabulary of medical concepts and the semantic groups into which the concepts can be 
classified. Each UMLS concept is assigned a unique ID, which represents all the lexical variants of the concept. 
From the previously mentioned example, all synonyms of the concept hypertension (e.g., hypertensive disorder, high 
blood pressure, high bp and so on) are assigned the ID c0020538. The UMLS Metathesaurus, due to its 
comprehensive coverage of medical terminologies, has been used to build corpora specialized for normalization in 
the past.9–11 

The task of medical concept normalization can be regarded as a sub-field of biomedical named entity recognition 
(NER). Due to the abundance of text based medical data available, NER and concept normalization have seen 
growing research in the medical domain primarily through challenges such as BioCreative,12 BioNLP,13 TREC,14 
and i2b2.15 Building on from these initiatives, the problem of concept normalization has seen substantial work for 
genes and proteins. Majority of the research on concept normalization relies on some variants of dictionary lookup 
techniques and string matching algorithms. Machine learning techniques have recently been employed, but mostly in 
the form of filtering techniques to choose the right candidates for normalization.16 A number of approaches17 rely on 
the use of tools/lexicons such as MetaMap18 as a first step for the detection of concepts. Due to the advances in 
machine learning techniques and also the increasing availability of annotated data, recent approaches tend to apply 
learning based algorithms to improve on banal dictionary lookup techniques. Very recently, Leaman et al.10 applied 
pairwise learning from a specialized disease corpus for disease name normalization. Prior works have involved list-
wise learning, which learn the best list of objects associated with a concept and return the list rather than a single 
object, for tasks such as gene name normalization,19,20 graph-based normalization,21 conditional random fields,22 

regression based methods,23 and semantic similarity based techniques.24 Semantic similarity or relatedness is a 
measure that shows how similar two concepts are. Such measures are often used for word sense disambiguation,25 
where the term and its context information are utilized to assign a meaning to it. A number of techniques for 
computing semantic relatedness among medical entities have been proposed and compared in the past,26 some of 
which are mentioned in the next section. However, to the best of our knowledge, measures of semantic relatedness 
have not been previously used for normalizing ADR mentions. 

Social media text normalization  
While the task of normalization of medical concepts is itself quite challenging, in our case, the problem is exacerbated 
by the fact that our data originate from social media. Social media data is notoriously noisy.27 And while this hampers 
the performance of natural language processing (NLP) techniques, it is also the primary motivation behind the 
implementation of techniques for automatic correction and normalization of medical concepts in this type of text. 
Typos, ad hoc abbreviations, phonetic substitutions, use of colloquial language, ungrammatical structures and even the 
use of emoticons make social media text significantly different from texts from other sources.27  
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Past work on normalization of social media text focused at the lexical level, and has similarities to spell checking 
techniques with the primary difference that out of vocabulary terms in social media text are often intentionally 
generated. Text messages have been used as input data for normalization models, and various error models have 
been proposed, such as Hidden Markov Models28 and noisy channel models.29 Similar approaches targeted purely 
towards lexical normalization have been attempted on social media texts as well.30,31 For the research task we 
describe in this paper, although the primary goal is to perform concept level normalization, we apply several 
preprocessing techniques to perform lexical normalization before the application of our concept normalization 
pipeline. 

Methods 

The goal of this normalization task is to find the UMLS concept ID related to a text segment in a tweet that is pre-
tagged as an ADR. For example, in the tweet: "had 2 quit job: tendons in lots of pain," the phrase "tendons in lots of 
pain" is tagged as an ADR. The goal of our system is to normalize the annotated text to a concept in UMLS, which 
in this example is "c0231529-tenalgia". Figure 1 shows the overall pipeline of the proposed normalization system. 
The system consists of syntactic and semantic matchers, synonym normalization and evaluation components. The 
pipeline is sequential, and so, as soon as a matching module finds a match between a lexical component and a 
UMLS concept, the remaining matchers in the pipeline are skipped and the flow goes to the synonym normalization 
and evaluation components. 

For evaluation, we use a publicly available, annotated corpus of 2008 tweets mentioning drugs and adverse 
reactions.8 The corpus was generated by using Twitter API to search for tweets that contain the names of selected 
drugs. The dataset includes 1544 annotations using 345 unique concepts, of which 1272 are ADRs, 239 are 
indications/symptoms and 32 are medications. The annotations were performed by two trained biomedical 
informatics annotators, and all disagreements were resolved and the final corpus was validated by a pharmacology 
expert. In this work, we did not differentiate between annotation types (e.g., ADR vs. indication) and attempted to 
normalize all types using the same pipeline. More information about the corpus and annotations can be found in the 
publication associated with this dataset. 

 
Figure 1. Overall architecture of the Hybrid Semantic Analysis technique.  
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Syntactic match  

The first step in our normalization pipeline involves syntactic or lexical matching with concept names in UMLS. This 
part of the pipeline involves two steps: exact match and definition match. An exact match happens when an ADR 
mention in a user post exactly matches a UMLS concept name (i.e., when the user uses a standard lexical expression 
for a concept). This simple matching technique can detect many easy matches as standard terminologies are often used 
by the users. However, in many cases in informal text, ADR mentions are misspelled, and exact matches are not 
possible. Some of these misspellings can be caught by simple pre-processing techniques. For example, unnecessary 
character repetition can be removed, as in the tweet "I feel siiiiiiiiiiiiiiick", "siiiiiiiiiiiiiiick" is matched with UMLS 
concept "c0231218-sick".  

The next step in syntactic matching utilizes the formal definitions of UMLS concepts. The UMLS metathesaurus 
provides one or more definitions for each concept. The definition is a passage that describes the concept in plain 
English.  We use this information, in the semantic similarity component later in the pipeline, to create semantic 
vectors and calculate the similarity values. In the syntactic matching module, we check if the mention appears in the 
definition of a single concept only in UMLS. If it does, the mention is normalized to the concept. In most of the 
cases, a phrase appears in the definition of many concepts and no conclusion can be made. 

Semantic match  

ADR concepts that are not normalized by the syntactic matching components are passed on for semantic matching. 
The primary task of this component is to compute the similarities of potential ADR concepts with the UMLS 
concepts. We experiment with two Measures of Semantic Relatedness (MSR) methods. MSR methods or kernels are 
functions that accept a pair of phrases/words as input, and return a numeric value representing the relatedness score 
of the inputs. In this module, an MSR method is used to find semantic similarity of a mention and a subset of 
concepts in UMLS. The most similar concept, with a similarity above a specified threshold, will be chosen as the 
concept of the mention. We evaluated Latent Semantic Analysis (LSA),32 and our proposed hybrid method. In the 
semantic matching modules, only the UMLS concepts that are used in the annotations are considered for the 
prediction. 

Latent semantic analysis  

Latent Semantic Analysis (LSA) uses a term-document frequency matrix to estimate semantic similarity of two 
segments of text. LSA then harvests the matrix using Singular Value Decomposition (SVD), by selecting the k best 
SVD values. More details about LSA technique and various weighting techniques can be found in past publications.33–

35,32 In our system, for the first step, the term vector space is generated from a corpus of plain text documents. Then this 
vector space is used to find a representative vector for each UMLS concept. The UMLS concept names are used to 
search for term vectors in the vector space. We evaluate some of the corpora, which are listed in Table 1 for creating the 
representative vectors for the UMLS concepts. After finding a representative vector for each UMLS concept, we search 
for a representative vector for each annotated text in the same vector space. The cosine similarity of each concept's 
vector and the annotated text’s vector is computed. The concept with the highest similarity to the ADR is chosen as the 
normalized concept if the cosine similarity is above a certain threshold (=>0.8). 

Hybrid semantic analysis (HSA)  

HSA uses machine learning to find the optimal combination of semantic relatedness function scores for each 
context, based on a set of calculated features. Using different free text sources, semantic representations for the 
concepts are learned, and then the different MSR scores are computed for the social media based lexical 
representations and the standard lexical representations of the concepts. Since different resources can be used, each 
MSR can return different values when applied to different resources. For example, we can apply PMI, and distinct 
resources like PMI-GENIA and PMI-I2B2ClinicalNotes. Each MSR method returns different scores when trained 
on different resources, and these scores are combined in a regression function as features. 

For each pair of words/phrases, the Feature Calculator component of the system computes feature scores, which are 
the returned values from each MSR consisting of different corpora combinations. For example, one feature can be 
semantic relatedness returned for a pair by LSA-I2B2ClinicalNotes. After feature calculation, the regression model 
(SVM) is trained, and the model is evaluated against the test set.  
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Since the MSR and information resources are dynamic, and can be added or removed from the system, the feature 
set for the regression function is also dynamic and can be varied depending on the task. The output of regression 
function is a semantic relatedness score of two concepts in the given context, and the regression function is 
optimized using the labeled training data. The method is designed to easily adapt to new knowledge sources or 
corpora and adjust parameters accordingly. Also, it can be trained for a new text type or entity type. 

For training the regression model, we prepared the training set from a subset of annotation (50% of the annotation). 
For each annotated text we created training examples for the annotated text and the UMLS concept names of the 
assigned concept with expected similarity of 100. For each annotation we generated 10 negative examples from the 
annotated text to random concepts in UMLS with expected similarity of 0. Figure 2 shows an example how HSA 
training examples are generated. 

The ratio of negative to positive examples can affect how the HSA regression model is trained. We used SVM with 
a linear kernel as the regression model, and trained HSA with the resources listed in Table 1 and LSA as the only 
MSR. SVM (SVMLight36) was used to create the regression model but other models such as neural network can be 
used and explored. We refrained from adding additional MSR methods as the intent of this experiment to study the 
effect of using the regression model with a single MSR and various additional resources. These resources are 
described in the next section. 

After HSA is trained, the regression model is used to calculate the similarity of annotated phrases as ADR (which 
are the input to our system) to UMLS concept names. First, testing instances between the phrase and a set of 
selected UMLS concepts names are created. To limit the search space, UMLS concepts appeared in the training set 
annotations with frequencies of three or more are used for creating the test instances for HSA. Following that, for 
each example, the features are calculated. The features are all possible MSR and resource combinations defined in 
the system setup (e.g., LSA with PubMed). Next, the regression model is run on the test instances to calculate the 
similarity of the annotated text and each UMLS concept. The concept with the highest similarity and above a certain 
threshold ([>=90], note that the maximum and minimum similarities in the training set are 0 and 100) is chosen as 
the normalized concept. Since the method has to calculate several semantic similarities for normalizing each 
annotated text, the process is slower than using a single MSR. The output of the trained regression is not normalized 
to any boundary and can be any real value. 

Corpora  

The two semantic matching techniques discussed above require data from suitable corpora to generate their models. 
We used three textual corpora generated from three different queries on PubMed (provided as special queries: 
http://www.nlm.nih.gov/bsd/special_queries.html): Dental Journals (PubMed query: “(jsub-setd[text])”), Nursing 
Journals (PubMed query: “(jsubsetn[text])”) and Systematic Reviews.  We filtered out articles that do not have 
publicly available abstracts. Table 1 shows the number of documents in each corpus. We are also interested in 
evaluating additional corpora instead of only those generated from PubMed. HSA uses all of the corpora matched 
with LSA as features to train the hybrid model. When using LSA independently for evaluation, without HSA, only 
one corpus is used for each run. 

For the semantic similarity match step, we evaluate the following different settings: 

1.   Most similar concept returned by LSA using each of the corpora listed in Table 1. 

2.   Most similar concept returned by HSA 
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Figure 2. Example of HSA training from ADR normalization annotations. 
Evaluation criteria  

For strict evaluation, we consider a prediction correct when the predicted concept is exactly the same as the expected 
concept. In contrast, in the relaxed evaluation mode, before calculating the evaluation metrics, we change the 
predicted class to the expected class if the predicted class has any of these relationships in the UMLS: “synonym”, 
“is-a”, “mapped-to” relations with the expected class. This means that if the system predicts a concept which is, for 
example, the synonym, child or parent of the expected concept, we consider it as a true positive. Considering the 
size of UMLS graph, we only do this normalization by distance of 2—meaning that if a concept “A” has an 'is-a' 
relation with a concept “B”, and the concept “B” has a “mapped-to” relation with a concept “C”, the concept “A” 
and “C” would be considered the same for the evaluation purpose. The following list shows some other examples of 
match in the relaxed evaluation: 

• A –(is-a)—> B –(is-a)—> C: A will match with C 

• A –(is-a)—> B –(mapped-to)—> C: A will match with C 

• A –(mapped-to)—> B –(mapped-to)—> C: A will match with C 

• A –(mapped-to)—> B –(synonym)—> C: A will match with C 

 

 Term Count Document Count Topic 

PubMed Dental Journals 182641 236767 Dental 

PubMed Nursing Journals 74000 72494 Nursing 

PubMed Systematic 
Reviews 

219656 214252 Clinical 

BioNLP Corpus 9483 908 Biology 

Reuters Corpus 105675 694335 News 

ADR-Tweets Corpus 6205 2008 Drug 

UMLS Definitions 103933 188647 Clinical 

Table 1. Resources used by HSA for the experiments described in this paper. 
 

Results 

From the perspective of evaluation, each UMLS concept is considered to be a class. We compute the final precision, 
recall, and F-measure as the micro-average of all the classes. For each class true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN) are defined as below: TP is when the expected class is equal to the predicted 
class and the evaluated class. FP is when the predicted class is equal to the evaluated class but not equal to the expected 
class. FN is when the expected class is equal to the evaluated class but the predicted class is not equal to the expected 

"dreams have taken a terrifying 
turn." 

annotated as "c0857051-bad 
dreams" expected_similarity(“dreams”, "bad dreams") = 

100 
 
Negative examples with random concepts: 
expected_similarity(“dreams”, "random1") = 0 
expected_similarity(“dreams”, "random2") = 0 
expected_similarity(“dreams”, "random3") = 0 
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class. TN is when both predicted and expected classes are not equal to the evaluated class. The following table 
illustrates an example for the evaluation strategy. The micro-averaged precision and recall are calculated using the 
following formula: 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (∑   

𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑃𝑃𝑐𝑐) �∑   
𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐)�⁄    

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 = (∑   
𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑃𝑃𝑐𝑐) �∑   

𝑐𝑐∈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐)�⁄   
F—measure is the harmonic average of the micro-averaged precision and recall: 
𝐹𝐹 −𝑚𝑚𝑃𝑃𝑅𝑅𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃 =  2∗𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶

(𝑃𝑃𝑃𝑃𝐶𝐶𝑐𝑐𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝐶𝐶𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶)
  

 
 

Mention Expected Class Predicted Class Evaluated class 

Class 1 Class 2 

M1 Class1 Class1 TP TN 

M2 Class1 Class2 FN FP 

M3 Class2 Class1 FP FN 

M4 Class2 Class2 TN TP 

Table 2. Illustration of the evaluation technique.  

Table 3 shows the results for syntactic matcher, LSA using different corpora and the proposed hybrid model. HSA 
yielded the best F-measure of 62.37 and the best recall of 50.20. The next best precision after syntactic match is 
achieved by LSA with UMLS definitions corpus. Among LSA with various corpus, ADR-Tweets resulted in the best F-
measure. In the investigated normalization problem, the ADR-Tweets corpus yielded the best performance for LSA 
method. Syntactic matcher has the highest precision, which was expected. Adding LSA-ADR-Tweets matcher on top of 
syntactical matcher decreases the precision but increases the recall resulting in a higher F-measure. Using HSA instead 
of LSA decreases the precision slightly more than LSA but the gain on recall is higher and results in a higher F-
measure. MetaMap, which is designed for public medical literature data, suffers from very poor recall and therefore 
overall F-measure. We used the relaxed evaluation method in all of the reported results.  

 Precision  Recall F-Measure 
Syntactic 88.0 35.7 50.8 
LSA-PubM-Dental 83.6 38.2 52.4 
LSA-PubM-Nursing 83.1 38.6 52.7 
LSA-UMLS-Defs 86.5 40.3 55.0 
LSA-Reuters 81.5 44.9 57.9 
LSA-PubM-Systematic 83.6 44.4 58.0 
LSA-ADR-Tweets 84.6 47.7 61.0 
MetaMap 82.6 18.7 30.5 
HSA 82.3 50.2 62.4 

Table 3. Results obtained by our system using the proposed pipeline and the relaxed evaluation technique. 

Discussion 

Figure 3 shows the sources of false positives and true positives. Semantic match generates most of false positives 
followed by exact match. Exact match returns majority of true positives followed by semantic match. As expected, 
when only the syntactic matching module is employed, we obtain high precision but very low recall.  Searching for 
exact match in definition helps to find alternative representation of the concept.  For example, “urge to vomit” is 
normalized correctly to “c0027497-Nausea” when we search the definition of “c0027497”: “unpleasant sensation in 
the stomach usually accompanied by the urge to vomit”. Exact match fails when the words in a phrase are expressed 
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in complex orders and another concept matches exactly with the annotated phrase. For example, in the following 
tweet: "dreams have taken a terrifying turn.", "dreams" is annotated as "c0857051-bad dreams" but exact match 
matches the phrase with "c0028084-dreams". 

 

 
Figure 3. Sources of correct and incorrect predictions. Left chart shows percentage of false positives from each 
component (a) and the right chart shows true positive percentages (b). 
 

In contrast to syntactic matching, semantic methods are designed to compute estimates of similarity, and match 
concepts that are not necessarily the same, but are similar. As such, they are expected to have high recall. In our 
experiments, the se-mantic matchers LSA and HSA have the higher numbers of false positives but yield higher 
recalls than syntactic match. This was expected since most of the hard to normalize concepts reach the semantic 
matchers modules. Most of the errors are caused by concepts with very similar meanings. For example, "anti-
depressant" in a tweet is tagged as "c0011570-mental depression," but LSA returns "c0005586-manic depression" as 
the most similar concept.  

Table 4 shows examples of correct and incorrect predictions by HSA. The hybrid model is very good at normalizing 
when the same word is represented in a different variation (“antidepressant” vs. “depression”) or match similar 
words which appear frequently in corpora (“fewer” vs. “loss”, “increase” vs. “gain”). In contrast, HSA performance 
is limited to the information in the provided resources and MSR technique. Since in this experiment we only used 
LSA, HSA would perform solely based on co-occurrences of terms in the resources. If there are not enough numbers 
of co-occurrences of two terms in the provided resources, we expect to have a very low similarity of the terms. In 
addition to using larger corpora, adding more diverse techniques that can leverage other resource types (such as 
graph-based techniques) can significantly boost this limit. 

Conclusion 

In this work, we proposed a natural language processing pipeline for the problem of normalizing extracted mentions 
of ADRs from colloquial texts to UMLS concepts. We compared two semantic similarity techniques: LSA and a 
proposed hybrid approach (HSA). The hybrid approach shows improvement over a single similarity technique 
(LSA). The proposed hybrid approach is supervised and benefits from training data while LSA is unsupervised and 
does not have any training. Tweets, like other informal texts, required heavy pre-processing and cleaning. The errors 
of the sys-tem could be reduced by applying more advanced pre-processing like spelling correction. This is the first 
effort towards the ADR normalization from social media or other noisy text sources, and can provide a baseline for 
future work. 

In the future, we will utilize our tool to perform normalization on a larger set of mentions. We will also incorporate 
more complex NLP preprocessing techniques, such as negation detection, and perform comparisons of our approach 
with a larger number of semantic similarity measurement approaches. In the recent past, approaches using 
distributed representations of words have become very popular, and the use of such representations along with deep 
neural networks have outperformed past benchmark systems in a variety of natural language processing tasks. 
Therefore, we will attempt to utilize annotated data to develop and evaluate such neural network based systems 
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against ours. Because of the modular implementation of our system, if such methods provide promising results, we 
will incorporate them as a module in our concept normalization pipeline. 

Annotated Phrase Expected Predicted 
Antidepressant c0011570-Depression c0011570 

increase my weight c0043094-Weight gain c0043094 
gain so much weight c0043094-Weight gain c0043094 
fewer hours sleep c0235161-Sleep loss c0235161 
feel like need to throw up c0027497-Nausea c0917799-Hypersomnia 
just eat, and eat c0232461-Apetite increase c0015672-Fatigue 
falling asleep every day c0541854-Daytime sleepiness c0917801-Insomnia 
it's 4:30am. at this point ima just throw out a big 
"f*** you" 

c0917801-Insomnia c0917799-Hypersomnia 

Table 4.  Examples of correct and incorrect predictions by HSA. The first four rows are correct predictions followed 
by three rows of incorrect predictions. The last row is correct based on the relaxed evaluation criteria. 
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