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Abstract

Adverse drug reactions (ADR) result in significant morbidity and mortality in patients, and a substantial proportion
of these ADRs are caused by drug–drug interactions (DDIs). Pharmacovigilance methods are used to detect unan-
ticipated DDIs and ADRs by mining Spontaneous Reporting Systems, such as the US FDA Adverse Event Reporting
System (FAERS). However, these methods do not provide mechanistic explanations for the discovered drug–ADR as-
sociations in a systematic manner. In this paper, we present a systems pharmacology-based approach to perform
mechanism-based pharmacovigilance. We integrate data and knowledge from four different sources using Semantic
Web Technologies and Linked Data principles to generate a systems network. We present a network-based Apriori
algorithm for association mining in FAERS reports. We evaluate our method against existing pharmacovigilance
methods for three different validation sets. Our method has AUROC statistics of 0.7–0.8, similar to current methods,
and event-specific thresholds generate AUROC statistics greater than 0.75 for certain ADRs. Finally, we discuss the
benefits of using Semantic Web technologies to attain the objectives for mechanism-based pharmacovigilance.

1 Introduction

Pharmacovigilance methods are used to detect unanticipated adverse drug reactions (ADR) that manifest due to the
intake of drugs by patients. These ADRs are often not detected during the clinical trials of the corresponding drugs. A
majority of these ADRs are caused by polypharmacy, a situation where multiple concomitant drugs are administered
to one patient in a short span of time to treat multiple medical conditions.1 These drugs may interact with each other
through several different underlying biological mechanisms.2 Drug–drug interactions (DDI) due to polypharmacy
are potentially avoidable, if detected early.3 ADRs are the 4th leading cause of death ahead of diabetes, AIDS, and
pneumonia.4 ADRs often result in the hospitalization or serious injury of more than 2 million individuals in the United
States, with more than 100,000 deaths annually.5 The costs of drug-related morbidity and mortality in the United States
alone were estimated to be US$177.4 billion in 2000, and have been rising ever since.6

Pharmacovigilance methods often use data from Spontaneous Reporting Systems, such as the US Food and Drug Ad-
ministration (FDA) Adverse Event Reporting System (FAERS),7 or electronic medical records.8 These methods have
inferred new DDIs and the ADRs that manifest on the account of those interactions (e.g., V ioxx → Heart Attack
and Aspirin +Warfarin → Bleeding). However, these studies do not systematically demonstrate how the drugs
interact within the biological system of the patient, leading to a particular adverse reaction. Mechanism-based phar-
macovigilance can lead to the inference of newer DDIs and ADRs, and can also provide a better understanding of
the underlying biological mechanisms behind the DDIs.9 Moreover, this understanding can lead clinicians to pre-
scribe drugs that can treat the same medical conditions in a patient while minimizing the risk of DDIs due to different
mechanisms of those drugs. The objectives of mechanism-based pharmacovigilance can be attained through the de-
velopment of network-based approaches of integrative pharmacology, often termed systems pharmacology.9 These
approaches rely on an exhaustive systems network, that possesses knowledge of the drug-induced perturbations of the
physiological functions in a biological system as well as knowledge of the underlying biological interactions.

However, the data and knowledge to generate such a network exists in several databases and knowledge bases that
may be fragmented across the Web. These sources, if available for download, may: i) use varying schemas to structure
the data, ii) use different entity notations (e.g., proteins referenced using HGNC10 or KEGG11 identifiers), and iii)
use different formats for storage (e.g., XML, CSV, etc.). An ad hoc integration approach involving downloading
and integrating each source independently, and reconciling similar entities, is non-trivial, non-scalable and is often
redundant for different tasks. Hence, the objectives of mechanism-based pharmacovigilance are yet to be realized.
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1.1 Semantic Web Technologies and Linked Data

The Semantic Web was conceived with the vision that a decentralized, distributed and heterogeneous data space,
extending over the traditional Web, can reveal hidden associations that are not directly observable.12 Semantic Web
technologies and linked data principles enable the representation, linking and querying of data and knowledge on
the Web.13 Semantic Web technologies include the W3C standards Resource Description Framework (RDF) and
the SPARQL graph query language.14, 15 Due to the challenges of integrative bioinformatics, biomedical researchers
have been the earliest adopters of Semantic Web technologies and linked data principles to create the Life Sciences
Linked Open Data (LSLOD) cloud.16 Biomedical data and knowledge sources are converted to graphs using the RDF
model. SPARQL can use specific graph patterns to query these RDF graphs. Several different efforts publish and
link biomedical data and knowledge in the LSLOD cloud (e.g., Bio2RDF17). Several sources that may be relevant to
systems pharmacology, such as PharmGKB and DrugBank,18, 19 are made available through the LSLOD cloud.

Figure 1: Semantic Web Technologies: a) Data from two different sources – KEGG and DrugBank are represented
as RDF graphs, and similar entities (Gleevec) are linked together using explicit x-ref attributes. b) The SPARQL
Graph Query Language can be used to query these RDF graphs and retrieve information from multiple sources. The
opaque nodes in a) highlight the information retrieved by the SPARQL query in b). c) Different graph patterns may be
used by different sources to capture the same relation type (Drug hasTarget Protein), hence a pattern-based query
federation is necessary to retrieve the relations from two sources.

An example of an RDF graph that represents the following information — “Gleevec (Mol. Wt.: 589.25, Half-Life:
18 hours) inhibits PDGFR (platelet-derived growth factor receptor), involved in signal transduction” — is shown in
Figure 1a. Here, similar entities (e.g. Gleevec) in two different sources, DrugBank19 and the Kyoto Encyclopedia
of Genes and Genomes (KEGG)11, are linked together using explicit x-ref (cross-reference) attributes. Attributes and
relations stored in these data sources are represented as nodes and edges in the RDF graph. Moreover, as shown in
Figure 1b, the following query — “List drugs that have Mol. Wt < 1000 and inhibit proteins involved in signal
transduction. Mention their half-life” — can be executed using SPARQL. The graph expression patterns are derived
from the RDF schema that is used to structure the graphs, as well as the x-ref attributes.

It should be noted that these biomedical RDF graphs may be exposed through isolated SPARQL endpoints on the web.
Querying multiple isolated SPARQL endpoints simultaneously over the web requires a scalable SPARQL query fed-
eration method.20 Different graph patterns may be used to represent the same relation type. In Figure 1c, the relation
Drug hasTarget Protein is represented using different labels (drug-target and target) and different graph patterns
in DrugBank and KEGG respectively. In the latter case, as KEGG is a pathway data source, the RDF graph also
captures the type and provenance of the interaction between the Drug and Protein. Query Federation methods can
transform a given query to source-specific queries and retrieve information from two or more sources simultaneously.
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In our previous research,21 we had developed such a query federation architecture, termed PhLeGrA – Linked Graph
Analytics in Pharmacology, over the LSLOD cloud. PhLeGrA uses prior knowledge on such graph patterns to generate
a systems pharmacology network by retrieving data from four different biomedical sources. As there is minimal
overlap between different sources for drugs and drug–protein relations, we had also demonstrated how query federation
over the LSLOD cloud can help systems pharmacology approaches.

In this research, we extend the PhLeGrA architecture, with an improved inference module to detect drug–drug interac-
tions and adverse drug reactions. The module will also assign confidence scores to all possible underlying biological
mechanisms for the DDIs. The key contributions of this research can be outlined as follows:

1. We propose and implement a graph analytics method, inspired from the Apriori algorithm22 for association rule
mining, to identify frequent substructures in our systems network, as derived from mining FAERS reports.

2. We compare our method with two baseline methods in pharmacovigilance – the Gamma Poisson Shrinker (GPS)
method and the Bayesian Confidence Propagation Neural Network (BCPNN) over three different validation sets.

3. We discuss briefly, the insights obtained from our method on few drug–ADR associations as well as discuss the
advantages of using Semantic Web Technologies for mechanism-based pharmacovigilance.

All the results described in this paper, as well as prior research on the PhLeGrA platform, are available online at
http://onto-apps.stanford.edu/phlegra/.

2 Related Work

Several methods have been developed to predict DDIs, or predict ADRs that manifest due to concomitant intake of
multiple drugs, by mining spontaneous reporting systems such as FAERS or electronic medical records. Harpaz et
al.7, 22 used the Apriori algorithm to mine the FAERS reports and generate statistically significant association rules
between multiple drugs and ADRs (e.g. Aspirin + Warfarin → Bleeding). Iyer et al.8 used electronic health
records and generated patient timelines of drug and ADR mentions in the records. Using adjusted disproportionality
ratios to identify significant drug–drug–event associations, and a manually-curated gold standard of such associations
from Drugs.com and MediSpan, they demonstrated that their approach can be used to complement FAERS mining for
pharmacovigilance. Bayesian approaches such as the Multi-Item Gamma Poisson Shrinkage (MGPS) algorithm23 and
the Bayesian Confidence Propagation Neural Network (BCPNN)24, as well as approaches using existing knowledge
on drug and ADR similarities25, have recently been proposed to deal with reporting bias and confounding factors,
observed in Spontaneous Reporting Systems. The performance of these methods are compared by Harpaz, et al.26

However, these methods fail to demonstrate the possible underlying molecular mechanisms behind these associations.

Systems pharmacology methods9, 27 have also been explored in the context of drug–ADR association discovery or
drug repurposing (use of existing drugs to treat new conditions). These methods generally combine databases and
knowledge bases, to generate a systems network, manually without the use of Semantic Web technologies. CauseNet28

combines four biomedical sources into a k-partite network for generating new drug repurposing hypotheses. Berger, et
al.29 integrated diseases with the human protein–protein interaction network to understand the systems pharmacology
underlying specific forms of drug-induced arrhythmias. While these approaches are similar to our research, our method
retrieves data and knowledge from the LSLOD cloud and can generate such systems networks more easily21.

The LSLOD cloud has been utilized to predict new DDIs recently. Tiresias processes drug-related data and knowledge
and predicts new DDIs using large-scale similarity matching30. Most approaches consider binary drug pairs and
not multiple drug interactions31, they ignore the underlying molecular mechanisms, and they may not associate the
adverse drug reactions with the DDIs32. Noor et al.33 constructed a mechanism-based DDI knowledge warehouse
by integrating knowledge from multiple sources in the LSLOD cloud at the pharmacokinetic, pharmacodynamic,
and pathway interaction level, and developed an inference engine to generate mechanistic explanations for DDIs.
However, this method does not rank the mechanistic explanations, is not implemented for pharmacovigilance, and due
to the knowledge warehouse, updates in the underlying sources are not captured instantaneously.
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3 Materials and Methods
3.1 PhLeGrA network generation

In this section, we summarize the query federation method to extract a k-partite network from multiple, heteroge-
neous biomedical data sources available through the Life Sciences Linked Open Data Cloud (LSLOD). The method
is described in more detail in Kamdar, et al.21. We integrate four different data sources that are published as SPARQL
endpoints by the Bio2RDF project17 (Version 4) in the LSLOD cloud – DrugBank19, PharmGKB18, Kyoto Encyclo-
pedia for Genes and Genomes (KEGG)11 and Comparative Toxicogenomics Database (CTD)34. These four sources
contain data and knowledge on drugs, proteins, pathways, phenotypes and their inter-connections (e.g. drug–protein
target relations) and have been used in several pharmacological methods previously.

We use a pattern-based query federation method20, 21 to query the SPARQL endpoints of these sources simultaneously
to generate the k-partite systems pharmacology network. Specifically, we retrieve four different types of entities
— (E1) Drug, (E2) Protein, (E3) Pathway, and (E4) Phenotype (adverse drug reaction). We also retrieve
five different types of biological relations — (R1) Drug hasTarget Protein, (R2) Drug hasEnzyme Protein,
(R3) Drug hasTransporter Protein, (R4) Protein isPresentIn Pathway, and (R5) Pathway isImplicatedIn
Phenotype. The SPARQL graph patterns used to retrieve the entities and relations from the sources are listed at
http://onto-apps.stanford.edu/phlegra/about.

The entities and relations, retrieved from the LSLOD cloud, form a k-partite network — a network whose nodes can be
partitioned into k different independent sets (k = 4). We decided on these types of entities and relations to capture the
following underlying mechanisms behind drug–drug interactions: a) one drug may inhibit the enzymes that metabolize
a second drug to its inactive or active state, c) one drug may inhibit the transporters that decrease the absorption or
elimination of a second drug, c) two drugs may target the same protein, leading to varying effects of both drugs, or d)
two drugs may target proteins in the same pathway leading to varying effects of both drugs. Hence, here we consider
transporters and enzymes to be considered as specialized proteins.

Figure 2: PhLeGrA network generation. a) PhLeGrA query federation method uses the type of entities and relations,
as well as prior knowledge on SPARQL graph patterns to query four sources (DrugBank, KEGG, PharmGKB and
CTD) in the LSLOD cloud to create a k-partite network composed of drugs, proteins, pathways and phenotypes. The
phenotypes are further arranged using the MESH hierarchy tree. b) A visualization of a small portion of the network,
with the Drugs Invega and Viagra, Enzyme CYP3A4 and Phenotype Hypertriglyceridemia highlighted.

To reconcile similar entities in different sources (e.g. drugs present in KEGG and DrugBank referenced using different
identifiers), we use the x-ref attributes provided by the Bio2RDF project. We reconcile entities to a uniform identifier
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nomenclature scheme using existing terminologies – ATC (Anatomical Therapeutic Chemical Classification35) for
Drug, HGNC (Hugo Gene Nomenclature Committee10) for Protein, KEGG for Pathway, and MESH (Medical
Subject Headings36) for Phenotype. We further organize the Phenotype MESH identifiers into a hierarchy,
using the MESH hierarchy. As Spontaneous Reporting Systems (e.g. FAERS) collect patient reports in which the
adverse reactions may be specified at different levels of abstraction, this step helps in aggregation of reports on higher
abstract terms. For example, there may be patient reports on both Anaphylaxis and Hypersensitivity,
Immediate, where the former Phenotype term is a subclass of the latter term. Hence the k-partite network is
coupled with the MESH Phenotype hierarchy. A visualization of such a network is shown in Figure 2b.

3.2 FDA Adverse Event Reporting System

Spontaneous reporting systems are the primary means to conduct post-marketing surveillance of drug products to
detect ADRs that were not determined during clinical trials. The US Food and Drug Administration (FDA) collects
reports on the adverse drug reactions observed in patients subjected to multiple drugs. The FDA Adverse Event
Reporting System37 (FAERS), a public data portal, publishes these reports after the anonymization of the patient data.
We downloaded the FAERS datasets for three years from January 2013 to December 2015. Each dataset is composed
of several safety reports. Among many features, each safety report indicates the set of ADRs observed in a patient
(e.g., heart attack), and the set of drugs administered to the patient (e.g., Sildenafil). The steps taken to process and
align the FAERS records with the Drug and Phenotype nodes in our k-partite network are described previously21.

3.3 Frequent Substructure Mining

We extend the method proposed by Harpaz, et al.7, 22 for statistical mining in FAERS datasets. This method is inspired
from the Apriori algorithm to mine association rules (e.g. {Drug}n → ADR) in large databases, in an unsupervised,
computationally tractable way. The Apriori algorithm prunes the search space of associations, such that if a certain
combination of drugs and ADRs is infrequent, then any larger combination that builds upon the smaller infrequent
one, will also be infrequent. Certain thresholds can be decided for ignoring these combinations.

Figure 3: Cartoon representations of the propagation of the FAERS reports along the networks. a) All nodes on the
shortest path, linking a Drug to an ADR are annotated with the FAERS report that mentions these terms. b) We only
consider substructures during the association rule mining of the form {Drug}n → ADR, such that the paths linking
the different Drugs to the ADR have either a Protein or a Pathway node in the intersection set.

The Apriori algorithm has also been modified to mine frequent substructures in graphs.38 We have used this imple-
mentation of the Apriori algorithm to work on k-partite networks. Specifically, we can determine the set of FAERS
reports that contain any specific (drug, ADR) pair. As shown in Figure 3a, we propagate the set of reports along
all the possible shortest, directed, paths that connect the corresponding Drug node to the Phenotype node in the
k-partite network. We decided to use only the shortest paths to make the method computationally tractable. Hence,
each node in the k-partite network is annotated with the set of reports it may be associated with. We are unaware of
the underlying biological mechanisms at this point, so all implicit associations are equally probable.

Generally, Apriori-based methods compute the Support and Confidence statistics for an association rule. Suppose,
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S(A) indicates the number of reports that describe the items in itemset A (e.g. set of drugs). Then the support for
an association rule is simply S(A → B) = S(A ∪ B) (i.e. number of reports where the items in itemsets A and B
cooccur). The confidence of an association rule can be described as C(A→ B) = S(A∪B)/S(A) (i.e. the conditional
probability for observing items in itemset B, given items in itemset A). The space of all possible association rules is
pruned by selecting only those itemsets that exhibit a minimum value for the support statistic. In our method, as we
have four different types of nodes, the association rules are generated by observing a minimum support at each step,
where the direction of adding new itemsets is strictly Drug→ Protein→ Pathway→ Phenotype. Nodes and
edges that do not exhibit a support statistic that exceeds a given threshold are automatically pruned from the k-partite
network. To further reduce the number of computations, we only consider Drug → ADR associations such that they
have some direct path in the k-partite network, and we only consider {Drug}2 → ADR associations such that the
paths that link the two drugs to the ADR have a common intersection point, either at the Protein or the Pathway
node in the network. This method and our optimizations are visually explained in Figure 3b. It should be noted that
this method can be extended to include multi-drug interactions ({Drug}n → ADR).

The confidence statistic is computed as C(Drug ∪ Protein ∪ Pathway→ Phenotype), and is used to rank the
different substructures (i.e. different underlying mechanisms), that lead to the manifestation of the ADR given the set
of drugs. However, due to the reporting bias in FAERS, this statistic in itself is not sufficient to actually determine if
there is any association between the drugs and the ADR, as indicated by Harpaz, et al.7 Hence, we also compute a
Network-based Relative Reporting Ratio (RRR) statistic, that considers the Actual/Expected ratio at each path in
the k-partite network. Hence, each possible substructure has an RRR statistic. RRR is defined as the ratio between an
association rule’s observed frequency to a baseline expected frequency under the assumption of independence.

RRR =
N × S(A ∪B)

S(A)× S(B)

Here A = Drug ∪ Protein ∪ Pathway, N is the total number of FAERS records, and B = Phenotype. The
median value of the RRR, computed for relevant substructures, is used as the statistic to compare our method against
other baseline methods. To summarize, Support statistic is used to prune the k-partite network, Network-based
Relative Reporting Ratio is used to determine whether an association between a set of drugs and an ADR exists, and
Confidence statistic is used to rank the different underlying mechanisms behind {Drug}n → ADR association.

3.4 Method Evaluation

We collected three different datasets that consist of manually-curated positive and negative drug–adverse reaction as-
sociations. These datasets have been used to validate DDI prediction methods previously. The Observational Medical
Outcomes Partnership (OMOP39) dataset and the European “Exploring and Understanding Adverse Drug Reactions”
project (EU-ADR40) dataset consists of single drug–ADR associations. The dataset described in Iyer, et al.8 consists
of drug–drug–ADR associations retrieved from Drugs.com and MediSpan.

Table 1: The coverage of different validation datasets used in this study.

Dataset Unique Drugs Unique ADRs Positive associations Negative associations
OMOP 155 4 137 158
EU-ADR 59 9 44 39
Iyer et al.8 252 9 315 288

Some statistics for these datasets, in terms of positive and negative associations, as well as coverage of drugs and
ADRs are shown in Table 1. All the three validation sets were transformed, such that the drugs were referenced using
ATC identifiers and ADRs were referenced using MESH identifiers. Some common ADRs across the three datasets
include – Gastrointestinal Hemorrhage, Hyperkalemia, Acute Kidney Injury and Drug-induced Liver Injury. Using
these validation sets, we compare our method with two baseline methods — the Gamma Poisson Shrinkage (GPS)
method and the Bayesian Confidence Propagation Neural Network (BCPNN) method. We used the R package for
PharmacoVigilance Signal Detection (PhViD1) for the baseline methods.

1https://cran.r-project.org/web/packages/PhViD/PhViD.pdf
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4 Results

Figure 4: The source distribution of the Drug hasTarget Protein before (a) and after (b) pruning the k-partite
network on the basis of a minimum support value for each node and edge. It can be seen that the drug–protein
relations from the CTD source are reduced by more than half, the original number.

The k-partite network that was generated from the PhLeGrA query federation method, consisted of 2,759 drugs (E1),
3,890 phenotypes (E4) organized using the MESH hierarchy, 19,903 genes (E2) and 301 pathways (E3). The network
also consisted of 249,001 drug–target relations (R1), 2,062 drug–enzyme relations (R2), 919 drug–transporter relations
(R3), 25,480 protein–pathway relations (R4) and 46,300 pathway–phenotype relations (R3). Individual statistics for
the different entities and relations extracted from each source were presented previously by Kamdar, et al.21. We used
≈ 3 million FAERS reports for the frequent substructure mining method demonstrated in this research.

The FAERS reports were propagated along our k-partite network, with each node in the network annotated with the
set of nodes that it may be associated with. We use a Support threshold of 200 to filter out nodes and edges in the
k-partite network. After applying the support threshold, we were able to decrease our k-partite network to include only
7,217 nodes and 89,451 edges. Moreover, as seen from the Figure 4, the number of entities and relations of a specific
type (e.g. Drug hasTarget Protein) is reduced drastically for a particular source (e.g. CTD). It can be argued that
our method can remove spurious relations in the k-partite network that may not be relevant, or may be incorrect.

We compute the Network-based RRR statistic for a given association between a set of drugs and an ADR, given all
possible substructures. We compare this statistic with the GPS and BCPNN statistic over the three validation datasets.
The Receiver-Operator Characteristic curve for each validation dataset is shown in Figure 5. It can be seen that the area
under the curve (AUROC) statistic for each of the three validation sets is almost similar to the baseline methods, and the
value is around 0.7–0.8. The AUROC statistic actually exceeds by 0.01–0.02 over the baseline methods for the OMOP
and the EU-ADR validation sets. Moreover, as observed by Iyer et al.8, using event-specific thresholds on the statistic
can actually generate higher AUROCs for certain ADRs. This is observed in Figure 5d where we obtain an AUROC
of almost 0.94 for rhabdomyolysis. Finally, we would like to note that for higher values of Specificity, our sensitivity
is considerably less than existing baseline methods. This may be due to the reporting bias in FAERS, which is not
tackled in this research. However, using GPS-adjusted Expected values in the Network-based RRR statistic actually
alleviated this issue (plot not shown). On a closer inspection of the false positive associations, we observed that these
associations have more connecting paths in the k-partite network when compared to the true negative associations.
Similarly, the false negative associations have fewer connecting paths in the k-partite network when compared to
the true positive associations. Using a t-test, we found that these comparison findings were statistically significant
(p < 0.05). Hence, the topology of the network has an impact on the association discovery method.
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Figure 5: The first three plots include the ROC (Receiver-Operator Characteristic) curves for the three validation
datasets used in our study – a) OMOP, b) EU-ADR and c) Drugs.com-MediSpan corpus curated by Iyer, et al.8 The
predictive power of our Network-based RRR method is represented using the solid yellow line, whereas the dotted
magenta and the dotted blue line indicate the predictive power of the GPS and BCPNN methods respectively. In d),
we demonstrate ADR-specific predictions using the Network-based RRR method.

5 Discussion

Using the confidence statistic that is also computed by our method, we were able to observe some interesting and
some known substructures. For example, while it is known that simvastatin may interact with the CYP3A4 inhibitor
itraconazole to cause rhabdomyolysis, the corresponding substructure was observed to have a high confidence value
in our analysis. Moreover, we found that the drug paliperidone, which is another CYP3A4 inhibitor and is used as a
treatment in bipolar disorder, may interact with several other drugs to cause hypertriglyceridemia, hyperprolactinemia
and gynecomastia. However, these findings need to be validated by a domain expert in the future. We plan to incor-
porate this method in the PhLeGrA visualization browser2, such that different substructures can be highlighted and
ranked with the support and confidence statistics and can provide a better understanding to the domain user.

Currently, our method is limited to substructure discovery from only those parts in the networks where there exist some
edges that connect the different entity types (e.g. two drugs may interact with the same proteins, but this knowledge
is derived from an existing source). This assumption was used to allow our Apriori algorithm to terminate under a
reasonable runtime. However, there may exist drug–protein relations that are not known currently, or may not be stored

2http://onto-apps.stanford.edu/phlegra/
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in the biomedical sources that were integrated to generate the k-partite network. We will argue that the benefits of the
Semantic Web technologies and Linked Data principles allows us to incorporate multiple data sources in the k-partite
network, whereas the initial thresholding using the Support statistic can allow us to filter irrelevant edges and nodes
in the network. This was observed for the Comparative Toxicogenomics Database that incorporated a huge proportion
of noisy edges between drugs and protein targets that were not actual relations.21

As presented here, pattern-based query federation21 can bring together pharmacological knowledge existing in iso-
lated, heterogeneous sources without being concerned about the underlying semantics and schema differences. This
advantage, when coupled with the network-based Apriori method for association rule mining, can facilitate domain
users to obtain mechanistic explanations behind detected DDIs and ADRs, as well as generate new knowledge on
underlying biological mechanisms (frequently observed substructures). Such systems pharmacology networks, as
previously described21 are easier to generate using Semantic Web technologies and query federation methods.

6 Conclusion

In this research, we have demonstrated a method for mechanism-based pharmacovigilance from Spontaneous Report-
ing Systems, such as the FAERS datasets. While our method has equivalent, if not better, performance compared to
existing state-of-the-art methods in pharmacovigilance, it can also be used to provide a mechanistic understanding
behind the drug–drug interactions and the adverse reactions that manifest on the account of those DDIs. Moreover,
it can enable biomedical researchers to obtain newer knowledge on molecular mechanisms that may be relevant in
pharmacovigilance, or may be spurious in a particular database. We use Semantic Web technologies to easily generate
a systems pharmacology network, and to the best of our knowledge this is the first approach to provide explanations
of underlying biological mechanisms using a ranking scheme.
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