
  

Automatically Detecting Likely Edits in Clinical Notes Created Using 

Automatic Speech Recognition 

Kevin Lybarger, M.S., Mari Ostendorf, Ph.D., Meliha Yetisgen, Ph.D. 

University of Washington, Seattle, WA, US
Abstract 

The use of automatic speech recognition (ASR) to create clinical notes has the potential to reduce costs associated 

with note creation for electronic medical records, but at current system accuracy levels, post-editing by practitioners 

is needed to ensure note quality. Aiming to reduce the time required to edit ASR transcripts, this paper investigates 

novel methods for automatic detection of edit regions within the transcripts, including both putative ASR errors but 

also regions that are targets for cleanup or rephrasing. We create detection models using logistic regression and 

conditional random field models, exploring a variety of text-based features that consider the structure of clinical notes 

and exploit the medical context. Different medical text resources are used to improve feature extraction. Experimental 

results on a large corpus of practitioner-edited clinical notes show that 67% of sentence-level edits and 45% of word-

level edits can be detected with a false detection rate of 15%. 

Introduction 

The use of ASR has increased within the clinical setting as speech recognition technology has matured and the 

availability of computational resources has increased1. The creation of clinical notes using ASR offers system-level 

benefits, like short document turnaround time; however, note quality is negatively impacted by speech recognition 

errors, including clinically significant errors, and higher document creation times for practitioners associated with 

editing1. Automatic detection and flagging of likely edits in ASR transcripts through a correction tool could reduce 

the time required to edit ASR transcripts and improve note quality by reducing the prevalence of uncaught errors. In 

this work, we investigated the automatic detection of sentences and words that are likely to be edited in the clinical 

note ASR transcripts by applying data-driven, machine learning detection strategies. 

Practitioners may edit ASR transcripts to correct errors and disfluencies, but also to rephrase portions of the transcript. 

ASR errors are portions of the dictation that are incorrectly transcribed. Disfluencies include dictation that is repeated 

(e.g. “the patient the patient”), repaired (e.g. “hypertension I mean hypotension”), and restarted (e.g. “heart has 

abdomen is”). Rephrasing is associated with changes to the transcript that are not ASR errors or disfluencies (e.g. 

changing “patient got up” to “patient awoke” or changing “nothing by mouth” to “NPO”). Practitioners may also edit 

the transcripts as a continuation of the note creation process, deleting information that is no longer relevant or correct 

and inserting additional information such as test results and new plans for patient care. Word sequences and sentences 

in the ASR transcript that are edited by practitioners during editing are collectively referred to in this paper as 

transcript edits.  

We identified ASR transcript edits within a corpus of clinical notes created through the voice-generated enhanced 

electronic note system (VGEENS) Project2. We applied ASR error detection techniques to the detection of transcript 

edits within the VGEENS Corpus, utilizing medical domain knowledge, including clinical note structure and medical 

terminology. ASR error detection identifies discrepancies between what is dictated and what is transcribed, while our 

investigation of transcript edits focused on identifying differences between what is transcribed and what the 

practitioner wants. Table 1 contains an example transcript edit, with the ASR transcript text and the corresponding 

text from the final note. The ASR transcript includes an incorrect categorization of the patient’s cognitive status and 

a disfluency with the repair word “correction.” In the final note, the cognitive status is corrected and the disfluency is 

deleted. In this example, our edit detection model correctly identified all of the words in the ASR transcript that should 

be replaced or deleted (indicated by bold font). 

Table 1. Transcript edit example (bold font indicates words flagged as likely edits by detection model) 

Source Text 

transcript Alert and oriented 4 ,   pleasant mood , blunted affect correction for affect , thought process is clear 

final note Alert and oriented x4 , pleasant mood , full                                           affect , thought process is clear 

 

Within the VGEENS corpus, practitioners deleted words and entire sentences from the ASR transcripts. We 

hypothesized that sentence-level deletions and word level deletions within the ASR transcripts have different 
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characteristics and split the edit detection task into two tasks: sentence-level edit detection and word-level edit 

detection. The primary goals of this investigation were to evaluate the performance of ASR error detection techniques 

on the broader category of transcript edits at the sentence-level and word-level and explore methods for leveraging 

medical context and text resources to improve detection. We find that a substantial fraction of the errors can be detected 

with simple lexical context features but further gains are possible by leveraging medical context.  

The rest of this paper is organized as follows. The Related Work section presents relevant ASR error detection work. 

The Methods section describes the data used in experimentation and the modeling approaches used to automatically 

detect transcript edits. The Results section presents the performance of the detection models, and the Conclusions 

section summarizes this investigation and discusses future work. 

Related Work 

There is a significant body of ASR error detection work (also known as ASR confidence estimation). ASR error 

detection has been approached using a range of discrete models, including the hidden Markov model (HMM), 

maximum entropy (MaxEnt) model, and conditional random fields (CRF) model, as well as continuous sequence 

models, including recurrent neural networks (RNN)3–11.  

Many studies have explored ASR error detection using the linear chain CRF model, which is a discriminative sequence 

modeling variant of the general CRF framework12. Bechet and Favre created a CRF error detection model using ASR 

posterior probabilities, lexical features (word n-grams and word length), and syntactic features (part of speech (POS) 

and dependency labels)5. In their work, the inclusion of both lexical and syntactic features improved error detection 

performance. Ghannay, Esteve, and Camelin explored the use of the Multi Layer Perceptron (MLP) neural network 

architecture, as well as a CRF model as a baseline6. The input features included ASR posterior probabilities, word 

representations (orthographic for CRF and embeddings for MLP), lexical features (word length and trigram indicator 

function), and syntactic features (POS tags and dependency labels). The best results were achieved using the MLP. 

RNNs are currently a popular neural sequence model for ASR error detection, and several RNN variants have been 

used. Kalgaonkar, Liu, Yifan, and Yao compared the performance of a MLP model with a standard RNN and an RNN 

with an output decoder consisting of a two-state (no error/error) bigram language model9. The input features consisted 

of acoustic, linguistic, and confidence scores from the speech recognizer. The recurrent approaches outperformed the 

MLP, and the output decoder provided a small benefit. Ogawa and Hori created ASR error detection models based on 

CRF and bidirectional RNN frameworks, using acoustic and linguistic features and speech recognizer states and 

scores10. The bidirectional RNN outperformed the CRF. Ángel del-Agua, Piqueras, Giménez, Sanchis, and Civera 

explored speaker-adapted ASR confidence estimation using Naïve Bayes, CRF, and long short-term memory (LSTM) 

RNN models11. The models used pre-trained word vectors and speech recognizer-derived features, and the LSTM 

RNN achieved the best performance.  

Much of the work on ASR error detection has focused on constrained domain human-computer interaction or human-

directed broadcast news. The creation of clinical notes using ASR differs from other ASR transcription tasks in that 

the goal is note creation, not faithful transcription of what was dictated. The goal of note creation is to create a 

medically accurate document that articulates exam findings and plans for patient care and that meets formatting 

requirements/norms. Edit detection is motivated by this note creation goal and attempts to find a range of edit types 

(ASR errors, disfluencies, rephrasing, and note continuation) that impact the quality of the clinical notes. Edits within 

clinical ASR transcripts include sentence-level and word-level edits, where sentence-level edits tend to be a 

continuation of the note authoring process and word-level edits tend to be associated with disfluencies, speech 

recognition, and rephrasing. Another important difference with respect to ASR error detection work is that widely 

used medical dictation systems do not provide the detailed acoustic scores available in research systems, which makes 

error detection more challenging. On the other hand, in medical dictation, there are more context constraints that can 

be used to identify errors. Domain contextual constraints includes clinical note structure (e.g. topical sectioning), 

structured patient data in the Electronic Health Record (EHR), and ranges of numerical values (e.g. drug dosages and 

vital signs) and motivates the exploration of different features. 

There is a relatively small body of work related to ASR error detection within the medical domain. Voll explored the 

automatic detection of ASR errors in radiology notes using language models, point-wise mutual information, and 

hand-crafted rules13,14. Schreitter and Trost investigated the correction of medication dosages within ASR transcripts 

by extracting medications and the associated dosages and then evaluating dosages based on medication databases15.  
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Methods 

Medical transcript edits comprise more than ASR errors and impact a larger portion of the note. Edit regions within 

ASR transcripts can be identified by aligning pairs of ASR transcripts and final notes. In clinical settings where 

practitioners dictate to a recording device without viewing ASR output in real time (noninteractive setting), ASR 

transcript-final note pairs are created as part of the existing workflow, providing efficient and low cost access to 

training data for detection models. 

Data 

The automatic detection of transcript edits was explored through the corpus of free-text clinical notes created through 

the VGEENS Project, which was conducted at the University of Washington Medical Center and Harborview Medical 

Center. As part of the VGEENS Project, inpatient progress notes were created by resident and attending internal 

medicine physicians using ASR through a multi-step process. First, a doctor dictated the note to a recording device 

during rounds, verbalizing punctuation and topical section headings (e.g. Chief Complaint). Then the dictation was 

transcribed using a commercial ASR system (Dragon Medical by Nuance Inc.) and automatically post-processed to 

format section headings. Lastly, the ASR transcript was reviewed and edited by the doctor, and the final note was 

entered into the EHR. The VGEENS Corpus of clinical notes includes 669 records created by 15 practitioners, where 

each record consists of an ASR transcript-final note pair.  

Transcript edits were identified through the alignment of each ASR transcript-final note pair using Gestalt Pattern 

Matching16. Gestalt Pattern Matching finds the longest sequence of matching tokens and then finds the next longest 

sequence of matching tokens to the left and right of the longest matching sequence. This process is applied recursively, 

until all of the matching sequences are identified. Based on the alignment, each word within the ASR transcripts was 

labeled as keep or delete. The capitalization of tokens was ignored during the alignment of the note pairs. 

Sentence boundaries were determined based on the location of colons, periods, and line breaks, rather than using an 

off-the-shelf sentence boundary detector, because of the structure of the VGEENS notes (verbalized punctuation; 

section headings, numbered lists, etc. explicitly indicated). Approximately 10% of the sentences within the ASR 

transcripts were deleted during editing. In the subset of sentences that are not deleted, approximately 9% of the words 

were deleted during editing. Given the difference between the characteristics of sentence-level and word-level 

deletions, the detection of transcript edits was split into two tasks: sentence-level edit detection and word-level edit 

detection. Word-level gold standard labels were determined based on the keep or delete labels from the note 

alignments. Sentence-level gold standard labels were determined as follows: sentences were labeled as delete when 

all word-level labels were delete and sentences were labeled as keep when at least one word-level label in the sentence 

was keep.  

The labeled ASR transcripts associated with the VGEENS Corpus were used in model training and testing (80% 

training/20% testing). Since this data set was relatively small, we explored use of the MedTrans17 and the i2b218 corpora 

of clinical notes (referred to as the External Corpora) for learning word classes and embeddings and a language model 

(LM). Table 2 contains a summary of the corpora used. In addition to these corpora, feature extraction utilized a list 

of medical terms derived from SNOMED CT, RxNorm, and the UMLS SPECIALIST Lexicon19–21.  

Table 2. Corpora summary 

Corpus Description Note count Word count Sentence count 

VGEENS Clinical notes created using ASR 669 ASR transcripts: 483 k 

final notes: 695 k 

ASR transcripts: 46 k 

final notes: 57 k 

MedTrans17 Example clinical notes created by 

human transcriptionists 

2.37 k 1.51 M 135 k 

i2b218 De-identified clinical notes, 

including only unique notes from 

2006-2012 competition data sets. 

4.32 k 4.75 M 461 k 

Detection Models 

The goal of the sentence-level edit detection task was to label sentences within the ASR transcripts as keep or delete. 

Logistic regression, which is a binary discriminative classifier, was selected for the sentence-level edit detection model   

because it is known to work well for text classification with relatively small amounts of training data when combined 

with regularization. The goal of the word-level edit detection task was to label words within the ASR transcripts as 

keep or delete. Word-level edit detection models were only trained and evaluated on sentences from the ASR 
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transcripts that had sentence-level keep labels from the note alignment. Because of the importance of sequential 

context at the word level, word-level edit detection was explored using the linear-chain CRF modeling framework, 

which estimates the highest probability sequence of labels given a sequence of observations12. We also experimented 

with an LSTM RNN in the word-level edit detection task; however, the LSTM RNN did not outperform the CRF, and 

only the CRF modeling results are presented in this paper.   

Feature extraction 

The VGEENS Corpus only includes the text output of the ASR system and does not include acoustic information or 

speech recognizer internal states (confidence scores, alternative word sequences, etc.), which are often used in ASR 

confidence estimation tasks. For both detection tasks, we utilized domain knowledge and unlabeled training data, in 

order to compensate for the limited information and relatively small size of the VGEENS Corpus. We explored 

interpretable features, like topical coherence, that may be useful to physicians.  

A fixed vocabulary was selected based on the words that occur in the VGEENS Corpus training subset and External 

Corpora at least four times, resulting in a vocabulary size of 20.7 k words. Out of vocabulary (OOV) tokens were 

mapped to one of seven OOV tokens, depending on whether the token was a medical term, numerical, lower case, 

upper case, title case, alphanumeric, or other.  

Word-based Features 

In both detection tasks, text-based features were created using discrete and continuous word representations. In the 

sentence-level edit detection task, word-based features were intended to automatically learn relevant sentence 

attributes, like: numbered lists (e.g. “1.  Liver cirrhosis…”), additional information required (e.g. “…waiting for LFT 

results…” or “Continue to monitor”), or topical headings not conforming to EHR format (e.g. “Cardiovascular:”). In 

the word-level edit detection task, word-based features were intended to automatically identify frequent ASR errors 

(e.g. phonetically similar words like “he” and “she”), disfluencies (e.g. repair words like “I mean” and “correction”), 

and rephrasing (e.g. abbreviating “daily” to “qd”). 

Discrete word representations included orthographic and word class forms. Word classes were used to reduce data 

sparsity by grouping words based on syntactic/semantic similarity. Because of the small amount of VGEENS data, 

we leveraged external data to learn more reliable classes7,22. Two types of classes were used: manually-defined (e.g. 

“hypertension” → “<med_term>”) and automatically learned (e.g. “patient” → “class00101”).   Manual classes (rule-

based classes) were created indicating punctuation, capitalization, numbers, and medical terms. Automatically learned 

word classes were created using unsupervised clustering approaches where words that appear in similar context are 

merged into the same class so as to maximize the mutual information between consecutive words, referred to as Brown 

clustering22. 500 Brown classes were learned from a merged corpus of the final notes in the VGEENS Corpus training 

set and the External Corpora.  

Words were also represented as continuous word embeddings (vectors of real numbers), in which a sparse (one-hot) 

representation of words is mapped to a low-dimensional continuous space capturing syntactic, semantic, and topical 

information. Word embeddings were created using two unsupervised learning approaches. The first method starts 

with a term frequency-inverse document frequency (TF-IDF) representation of 4 k VGEENS note sections and 

learns a linear transformation of words (and documents) into a 200-dimensional space using non-negative matrix 

factorization (NMF). (Performance was similar with 100 dimensions.) Word embeddings were also created using the 

neural word2vec skip-gram model, which is a single-layer neural network that predicts context words given the 

current word23. The skip-gram embeddings were created using the final notes in the VGEENS Corpus training set 

and the External Corpora (embedding size 200, context width 10). K-mean clustering was used to create 500 discrete 

skip-gram classes from the skip-gram embeddings.  

Language Modeling 

We hypothesized that atypical (infrequent) word sequences were more likely to reflect ASR errors or disfluencies (and 

require editing) than frequent sequences and therefore used word sequence probability as an input feature in both 

detection tasks. In order to create a LM that did not include the ASR transcript edit regions and did not overfit to the 

final notes in the VGEENS Corpus, a LM was trained on a subset of the External Corpora that best matched the 

VGEENS Corpus. The Moore-Lewis data selection approach was used to select the subset of the External Corpora24. 

An LM was created using the final notes in the VGEENS Corpus training set, and a second LM was created from a 

random sampling of the sentences within the External Corpora of similar size to the final notes in the VGEENS Corpus 

training set. The cross entropy of each sentence in the External Corpora was calculated using each LM, and the 
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difference between the cross entropy scores was used to select the best matching sentences in the External Corpora 

(approximately half of the corpora selected, 3.3 M words). A LM based on the selected subset of the External Corpora 

was used in subsequent experimentation. All LMs were trigrams models with Kneser-Ney smoothing25.  

Topical Coherence 

The topical coherence between the target word or sentence and the local context was scored using word embeddings. 

In the sentence-level edit detection task, topical coherence features were intended to identify sentences that were out 

of place within the section, potentially belonging in a different section of the note. A sentence-level vector 

representation was created by averaging the embeddings of each word in the target sentence, and a section-level vector 

representation was created by averaging the embeddings of each of the remaining words in the note section. The cosine 

similarity and the vector difference between the representations was then calculated. In the word-level edit detection 

task, topical coherence features were intended to identify words that did not fit the surrounding context, due to an 

ASR error. The target word embedding was compared to the averaged vector representation of words in the local 

context (current sentence without this word and +/- two sentences) using cosine similarity and vector difference. 

Task-Specific Feature Sets  

Table 3 and Table 4 contain a list of the features for the sentence-level and word-level edit detection tasks, respectively.  

Table 3. Sentence-level edit detection features 

Feature 

category 

Feature set Description 

Structure length/position target sentence section, position in line (first, middle, or last), and token count 

Words 

words word occurrence (indicator) vector for target sentence 

Brown classes Brown class occurrence vector for target sentence 

skip-gram classes skip-gram class occurrence vector for target sentence  

adjacent words word occurrence vector for the last three words in the previous sentence and 

the first three words in the next sentence 

LM perplexity average per-word perplexity of the target sentence 

Topical  

VGEENS section cosine similarity and vector difference of averaged TF-IDF/NMF embedding 

representations of the target sentence and note section 

skip-gram section cosine similarity and vector difference of averaged skip-gram embedding 

representations of the target sentence and note section 

 

Table 4. Word-level edit detection features 

Feature 

category 

Feature set Description 

Words 

words word n-grams (n=1-3) in window size of 5 

manual classes Manual class unigrams in window size of 5 
Brown classes Brown class n-grams (n=1-3) in window size 5 

skip-gram classes skip-gram class n-grams (n=1-3) in window size of 5 

LM probability probability of word sequences in window sizes 3 and 5 

Topical 

VGEENS context cosine similarity and vector difference of averaged TF-IDF/NMF embedding 

representations of the target word and local context   

skip-gram context cosine similarity and vector difference of averaged skip-gram embedding 

representations of the target word and local context  

Training and Evaluation 

The edit detection models (logistic regression and CRF) were trained using the VGEENS Corpus training set. Cross 

validation (three folds) was used to determine the best regularization type (L1-norm, L2-norm) and regularization 

weight for each feature set. For each feature set, the optimum L1-norm weight was determined with the L2-norm 

weight set to zero, and the optimum L2-norm weight was determined with the L1-norm weight set to zero. During 

cross validation, model performance was assessed using the Receiver Operating Characteristic (ROC) area under the 

curve (AUC). The final model for each feature set was trained on the entire training set using the selected regularization 

type and weight from cross validation. 

1190



  

The performance of the edit detection models was evaluated using the VGEENS Corpus testing set. Model 

performance was evaluated through ROC AUC and a performance analysis. In the edit detection tasks, the false 

detection rate (Pf) is the frequency of labeling a target as delete when the true label is keep, and the missed detection 

rate (Pm) is the frequency of labeling a target as keep when the true label is delete. In the performance analysis, Pf was 

fixed at 15%, and Pm was calculated. Conversely, Pm was fixed at 15%, and Pf was calculated. These Pf and Pm values 

were selected to understand model performance at different precision-recall operating points. 

Results 

Sentence-level Edit Detection 

The sentence-level edit detection ROC AUC test results are presented in Table 5. The best performing single feature 

set was the words feature set, followed closely by the Brown classes. This suggests that the Brown classes capture the 

salient aspects of word context and syntax. The Brown classes, which are based on bigram occurrences, outperformed 

the skip-gram classes, which are based on word cooccurrence within a context window of length 10. The 

length/position feature set, which leverages the section structure of the clinical note, achieved high performance, 

despite a relatively small number of features (16 features). The TF-IDF/NMF topic modeling (VGEENS section 

feature set) achieved higher performance than the skip-gram topic modeling (skip-gram section feature set), even 

though the skip-gram embedding training set was approximately 13 times larger than the TF-IDF/NMF embedding 

training set. The TF-IDF/NMF approach utilized the structure of the note during topic learning, which may account 

for the higher performance. Two combined feature sets were tested: combined VGEENS using features based only on 

the VGEENS data and combined external, which added features based on external data. The combined feature sets 

outperformed the highest performing single feature, but the features based on external data had no added benefit. 

Figure 1 presents the error tradeoff curves for a subset of the feature sets evaluated. 

 

Table 5. Sentence-level edit detection ROC AUC test results. Features that leverage external text resources are 

indicated with (*). 

Feature categories Feature set AUC 
Structure length/position 0.75 

Words 

words 0.81 

(*) Brown classes 0.80 

(*) skip-gram classes 0.77 

adjacent words 0.65 

LM (*) perplexity 0.65 

Topic 
VGEENS section 0.73 

(*) skip-gram section 0.68 

combined VGEENS length/position + words + adjacent words + VGEENS section 0.83 
combined external (*) length/position + words + Brown classes + adjacent words + perplexity + 

VGEENS section 0.83 

 

  

Figure 1. Sentence-level edit detection error tradeoff curves 
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Table 6 presents more detailed performance analysis for three systems at three different operating points of the 

sentence-level edit detector. First, we compare Pm for the different systems at Pf=15 %. At this operating point, the 

Pm of the combined VGEENS feature set was 67% lower than the status quo where all targets are labeled keep (no 

edit detection used). Next, we compare Pf for different systems at Pm=15%. At this operating point, Pf of the 

combined VGEEN feature set is 57% lower than the status quo. Since many studies assess performance using F-

score, we include the results for the operating point with the best F-score for each system. The best performing 

feature set for all metrics was the combined VGEENS feature set, and the word indicator feature set performed only 

slightly worse than the combined VGEENS feature set. 

 

Table 6. Sentence-level performance analysis 

Feature 

categories 
Feature set 

Fixed Pf Fixed Pm Optimized F1 

Pf Pm Pf Pm Precision Recall F1 

Structure length/position 15% 46% 59% 15% 0.35 0.44 0.39 

Words words 15% 39% 45% 15% 0.37 0.55 0.44 

combined 

VGEENS 

length/position + words + adjacent 

words + VGEENS section 
15% 33% 43% 15% 0.40 0.59 0.48 

 

Table 7 presents section-level edit examples based on predictions from the detection model trained on the combined 

VGEENS feature set at Pf = 15%. The first example, which was correctly labeled as delete, illustrates a case where the 

sentence indicates that additional information is required. We hypothesized that during the time between dictation and 

editing, new findings or conclusions were available, resulting in the sentence being deleted. The second example, 

which was incorrectly labeled as delete, is similar in that it includes the word “continue;” however, it does not imply 

additional follow-up. The third example was correctly labeled as delete and has a similar format (short phrase followed 

by a colon) to the topical headings within the notes. This heading does not conform to the section headings defined 

by the EHR, and the practitioner appears to have deleted this section heading and the associated note content. In 

example 4, the sentence was incorrectly labeled as keep. Similar to the first example, the example 4 implies additional 

information is needed, but there were insufficient cues for the system to predict a delete label. The sentence may have 

been deleted because the required consultation was performed.  

Table 7. Sentence-level edit detection examples 

No. 
Label 

Example from ASR transcript 
Truth Predicted 

1 delete Delete Continue to monitor 

2 keep Delete Continue rifaximin 

3 delete Delete Ins and outs : 

4 delete Keep Discuss with hepatology regarding further management 

Word-level Edit Detection 

The word-level edit detection test ROC AUC results are presented in Table 8. For the CRF approach, the single feature 

sets with the highest performance were Brown classes and words. Similar to the sentence-level edit detection task, the 

discrete features defined by Brown classes outperformed those based on the skip-gram classes. While both word class 

approaches reduced the size of the feature space significantly, the Brown classes appeared to better capture the salient 

syntactic aspects of the words. In contrast to the sentence-level edit detection task, the skip-gram topic modeling 

approach outperformed the VGEENS topic approach for characterizing the word-level context match. This suggests 

that the external text is useful for characterizing words but not sentences, as is not surprising because of the more 

controlled format of the VGEENS notes. 

The combined VGEENS feature set was created using the words and VGEENS section feature sets. The combined 

external feature set was created using the best performing word class (Brown classes) and topic model (skip-gram 

context) feature sets and the remaining feature sets. The combined VGEENS feature set did not outperform the words 

feature set, but the combined external feature set outperformed the highest performing single feature set and the 

combined VGEENS feature set by approximately 3%. Figure 2 presents the error tradeoff curves for a subset of the 

feature sets evaluated.  

1192



  

Table 8. Word-level edit detection test results. Features that leverage external text resources are indicated with (*). 

Feature categories Feature set AUC 

Words 

words 0.72 

(*) Manual classes 0.62 

(*) Brown classes 0.72 

(*) skip-gram classes 0.68 

LM (*) probability 0.64 

Topic 
VGEENS context 0.60 

(*) skip-gram context 0.65 

combined VGEENS words + VGEENS context 0.72 

combined external (*) words + Manual classes + Brown classes + probability + skip-gram context 0.74 

 

 

Figure 2. Word-level edit detection error tradeoff curves 

Table 9 has more detailed performance analysis again at three different operating points for two word-level edit 

detectors. Comparing Pm for the different systems at Pf = 15%, the Pm of the combined external feature set was 45% 

lower than the status quo (assuming all targets are keep). With Pm fixed at 15%, the combined external feature set Pf 

was 46% lower than the status quo. Again, the best performing feature set for all metrics was the combined external 

feature set, and the words feature set performed only slightly worse than this combined feature set.  

 

Table 9. Word-level edit detection performance analysis 

Feature 

categories 
Feature set 

Fixed Pf Fixed Pm Optimized F1 

Pf Pm Pf Pm Precision Recall F1 

Words words 15% 60% 58% 15% 0.23 0.36 0.28 

combined 

external 

words + Manual classes + Brown 

classes + probability + skip-gram 

context 

15% 55% 54% 15% 0.25 0.42 0.31 

 

Table 10 presents word-level edit detection examples based on predictions from the model trained on the combined 

external feature set with Pf=15%. Example 1 is from the Laboratory results section of the note and includes the word 

“restaurant,” which is a low probability word in this context and is not topically relevant. At Pf = 15%, the model 

misses the deletion associated with the word “restaurant;” however the model correctly identifies this deletion at higher 

Pf. Example 2 includes the disfluency repair word “correction,” and the detection model correctly identified the 

deletion but incorrectly labeled “Temperature” as delete. Example 3 includes a common phrase that is abbreviated, 

which the model correctly labeled as delete; however, the model incorrectly labels additional words in the sentence as 

delete. Example 4 appears to include an ASR error (transcription of “technetium” instead of “magnesium”), which the 

model correctly labels as delete. Similar to examples 2 and 3, a false delete label is also applied within the sentence. 
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Table 10. Word-level edit detection examples (true delete are bold strikethrough, false delete are bold underline, 

false keep are italics strikethrough, and true keep are unformatted) 

No. Example 

1 
ASR:   …heart rate 79 restaurant rate 16    blood pressure 121 / 76…               

Final:  …heart rate 79                           , blood pressure 121 / 76… 

2 
ASR:  Temperature 31 correction 37.1 , heart rate 90…  

Final:  Temperature                          37.1 , heart rate 90…  

3 
ASR:  Macrocytic anemia , present on admission , chronic and related…     

Final:  Macrocytic anemia , POA                            , chronic and related… 

4 
ASR:  …Glucose 90 , calcium 8.4 , technetium  2.1…  

Final:  …Glucose 90 , calcium 8.4 , magnesium   2.1… 

Conclusions 

In this paper, we applied ASR error detection techniques to the automatic detection of sentence-level and word-level 

edits within clinical ASR transcripts. The results demonstrate that a substantial number of sentence- and word-level 

edits can be automatically detected with a small false detection rate. In both tasks, the word and word class feature 

sets were the highest performing single feature sets, indicating that word classes learned from external medical text 

resources using unsupervised Brown clustering are effective prediction features. Although the language model and 

topic-based features achieved lower performance than the word-based features, the results show that these features are 

relevant for edit detection in that the best performance in both detection tasks was achieved through a combination of 

features. The high performance achieved in the sentence-level tasks suggest a strong relationship between sentence 

editing habits and topical coherence within note sections. The best performance in the word-level task was achieved 

through the incorporation of external data. 

This work is limited by the size of the corpus of clinical notes created using ASR and the number of practitioners 

involved in the creation of this corpus. A larger corpus, created by a larger sample of practitioners, would likely 

improve detection performance and improve the generalizability of the detection models to notes created with different 

dictation protocols. The methods used were also constrained by the ASR system configuration; access to alternative 

recognizer hypotheses or word confidence estimates would lead to further improvements in performance.  

This work was motivated by the hypothesis that a correction tool that automatically detects and flags likely edits within 

ASR transcripts could improve note quality and accuracy. While the performance achieved in this investigation is 

likely not adequate to create a viable correction tool at this point, this work produced promising results that warrant 

further exploration, including the procurement of additional training data. Future work to improve performance would 

likely include incorporating additional, unlabeled data through semi-supervised learning and the inclusion of 

biomedical knowledge sources. A user study with practitioners is required to assess the required level of performance, 

determine the appropriate performance metrics and thresholds (precision, recall, etc.), and design the correction tool 

interface.  
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