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ABSTRACT 

Incidence of Acute Kidney Injury (AKI) has increased dramatically over the past two decades due to rising 
prevalence of comorbidities and broadening repertoire of nephrotoxic medications. Hospitalized patients with AKI 
are at higher risk for complications and mortality, thus early recognition of AKI is crucial. Building AKI prediction 
models based on electronic medical records (EMRs) can enable early recognition of high-risk patients, facilitate 
prevention of iatrogenically induced AKI events, and improve patient outcomes. This study builds machine learning 
models to predict hospital-acquired AKI over different time horizons using EMR data. The study objectives are to 
assess (1) whether early AKI prediction is possible; (2) whether information prior to admission improves 
prediction; (3) what type of risk factors affect AKI prediction the most. Evaluation results showed a good cross-
validated AUC of 0.765 for predicting AKI events 1-day prior and adding data prior to admission did not improve 
model performance. 

INTRODUCTION 

Acute Kidney Injury (AKI) is a common clinical event among hospitalized patients, affecting 10% to 15% of all 
hospitalized patients and >50% of patients in intensive care units (ICUs)1-3. AKI is most easily detected on the basis 
of the acute sustained rise of serum creatinine (SCr). Using a large consecutive sample of 19,982 adults, Chertow et 
al. found that an increase in SCr of ≥ 0.5 mg/dl is associated with a 6.5-fold increase in the odds of death, a 3.5-day 
increase in length of stay, and nearly $7,500 in excess hospital cost4. Over the past two decades, the incidence of 
AKI has increased significantly in North American and Europe, particularly within the United States, because of the 
rising prevalence of acute and chronic conditions, such as sepsis, heart failure, and diabetes5-9. Moreover, the role of 
medications in the changing epidemiology of AKI has increased from 7% to 16% over a 17-year span because of the 
wide availability of potential nephrotoxic drugs2, 10. 
Unfortunately, the current care of patients with AKI is suboptimal characterized by numerous deficiencies and 
systematic failings that may be avoidable11. In a 2009 review of the care of patients who died in hospital with a 
primary diagnosis of AKI, an unacceptable delay in the recognition occurred in 43% of the patients and 20% of the 
cases could have been prevented with early detection12. It is however difficult for clinicians to recognize at-risk 
patients prior to their AKI episodes. Once an AKI episode occurs, there is no treatment to mitigate or cure AKI13-16. 
According to the International Society of Nephrology17, recognizing patients at risk of developing AKI and 
managing these patients according to their susceptibilities and exposures is likely to result in better outcomes than 
merely treating the established AKI. Therefore, the ability to predict AKI in hospitalized patients and monitor them 
at an early stage is crucial to AKI prevention. 
Safety tools based on electronic medical records (EMRs) for in-hospital AKI surveillance covering kidney injury 
triggers have been developed; examples include the Global Trigger Tool18, a tool that uses the Acute Kidney Injury 
Network (AKIN) definition to monitor AKI19, and dosing tools for improving compliance with renal-dosing of 
medications20, 21. EMR-based AKI monitoring can expedite interventions and lead to a high percentage of patients 
retaining their baseline kidney function22, 23. However, as the major limitation of these tools, physicians can only 
react after observing signs of damage. By contrast, risk prediction would recognize high-risk patients for tailored 
early management. Most existing AKI risk prediction models focus on predicting adverse outcomes following AKI24 
or predicting AKI after specific surgeries and interventions1, 3, 25, 26. There exists some predictive modeling work 
performed on the critical care populations27-29, but much less work on the general inpatient population30. Matheny et 
al31 proposed the first study to predict general in-hospital AKI using logistic regression models. Recently, Kate et 
al32 built machine learning models to examine the difference in prediction vs. detection of AKI in hospitalized older 
adults. 
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This study aims to build machine learning models to predict the development of AKI among general patient 
hospitalizations at daily intervals prior to the event. The primary objective is to assess how early and accurately the 
development of inpatient AKI can be predicted. The secondary objective is to assess whether clinical data prior to 
admission enhance the predictive models. 

METHODS 

Data Collection 

A retrospective cohort of 60,534 patients was collected by including adult admissions (age at visit between 18 and 
64) to a tertiary care, academic hospital (the University of Kansas Medical Center – KUMC) from November 2007 
to March 2016 with a length of stay of at least 2 days. Given that a patient may have multiple admissions 
(encounters) of at least 2 days and develop AKI during one but not another, this study is conducted at the encounter 
level with the initial cohort of total 109,319 encounters. For each encounter, we queried the KUMC de-identified 
clinical data repository HERON (Health Enterprise Repository for Ontological Narration)33, 34 that integrated 
electronic health records, billing, clinical registries, and national data sources to obtain structured data on admission 
and discharge dates, patient demographics, medications, laboratory values, vitals, comorbidities and admission 
diagnosis. 

Cohort Inclusion/Exclusion Criteria 

From the initial cohort of 109,319 encounters, we selected an analysis cohort of encounters by excluding those (a) 
missing necessary data for outcome determination – less than two serum creatinine measurements and (b) had 
evidence of moderate or severe kidney dysfunction – estimated Glomerular Filtration Rate (eGFR) less than 60 
mL/min/1.73 m2 or abnormal serum creatinine (SCr) level of >1.3 mg/dL within 24 hours of hospital admission. The 
final analysis cohort consisted of 48,955 encounters (33,703 patients). 

AKI Definition 

AKI was defined using the Kidney Disease Improving Global Outcomes (KDIGO)-based modifications of the 
AKIN and Risk, Injury, Failure, Loss, and End-Stage (RIFLE) Kidney classification criteria35. According to KDIGO, 
adults who demonstrate any of the following are undergoing an AKI episode: 

• Increase in SCr by ≥ 0.3 mg/dL (≥ 26.4micromol/L) within 48 hours 
• Increase in SCr by ≥ 1.5 times the baseline within the previous 7 days 

The baseline creatinine level was set as either the last measurement within 2-day time window prior to admission or 
the first available measurement during the stay. All creatinine measurements between admission and discharge were 
evaluated to determine the occurrence of in-hospital AKI. Based on the above AKI definition, this study classifies 
each encounter as ‘with AKI’ (positive) or ‘without AKI’ (negative). Out of total 48,955 encounters in the final 
analysis cohort, patients acquired AKI during 4,405 (8.99%) encounters. 

AKI Risk Factors 

A list of clinical variables used in building the AKI prediction models is described in Table 1. We referred to 
Matheny et al31 to select laboratory tests that may represent potential presence of a comorbidity that is correlated 
with in-hospital AKI. For example, an elevated white blood cell count (WBC) is associated with bacterial infection 
that may cause AKI. Serum creatinine was not included as a variable as it was used to determine the positive and 
negative samples. For laboratory tests and vitals, only the last recorded value before a prediction point was used and 
their values were categorized. Laboratory values were categorized as either “present and normal”, “present and 
abnormal”, or “unknown” according to standard reference ranges. Vitals were categorized into groups as shown in 
Table 2. Missing values in vitals and lab tests were captured as “unknowns” because information may be contained 
in the choice to not perform the measurement. 

Medication variable included inpatient (i.e., dispensed during stay) and outpatient medications (i.e., historical meds). 
All medication names were normalized by mapping to RxNorm ingredient. Comorbidity and admission diagnosis, 
i.e., all patient refined diagnosis related group (APR-DRG) variables were collected from the University 
Healthsystem Consortium (UHC)36 data source in HERON. Comorbidity, medication, and admission diagnosis 
variables took either “yes” or “no” values. 
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Table 1. Clinical variables considered in building predictive models for hospital-acquired AKI 

Feature Category # of Variables Details 
Demographics 3 Age, gender, race 
Vitals 5 BMI, diastolic BP, systolic BP, pulse, temperature 

Lab tests 14 
Albumin, ALT, AST, Ammonia, Blood Bilirubin, 
BUN, Ca, CK-MB, CK, Glucose, Lipase, Platelets, 
Troponin, WBC 

Comorbidities  29 UHC comorbidity 
Admission diagnosis 315 UHC APR-DRG 
Medications 1682 All medications are mapped to RxNorm ingredient 

 
In the final dataset, vitals, lab test, and medication variables were time-stamped (with resolution to the hour and 
minute) relative to the admission date, referred here as time-dependent variables. Comorbidities, admission 
diagnosis, and demographics were presumed to be available at admission and not time-dependent. 

Table 2. Categories for vital variable categories 

Vitals Categories 
BMI <18.5, [18.5–24.9], [25.0–29.9], >30.0, Unknown 
Diastolic BP <80, [80–89], [90–99], >100, Unknown 
Systolic BP <120, [120–139], [140–159], >160, Unknown 
Pulse <50, [50–65], [66–80], [81–100], >100, Unknown 
Temperature <95.0, [95.0–97.6], [97.7–99.5], [99.5–104.0], >104.0, Unknown 

 

Evaluation Design 
Model evaluation was designed to answer three specific questions: (1) Will data prior to admission improve 
predictive models’ performance; (2) How early and accurately can AKI be forecasted; (3) How strong each type of 
risk factors affects the model performance. In this study, we introduced a data collection window, denoted as 
[lower_bound, upper_bound]. For the first question, we assessed model performance by varying the window’s lower 
bound with a fixed max upper bound set at 1-day prior to AKI event, i.e., making AKI prediction 1-day prior using 
different amount of clinical data (Figure 1). The initial data collection window’s lower bound is set at admission and 
we increased its width with resolution to the day.  

 

 

 

 

 

 

 

 
For the second question, we assessed model performance by lengthening the interval between the prediction time 
and AKI event (Figure 2). For AKI encounters, AKI event date was used as an anchor for moving the prediction 
point. For non-AKI encounters, discharge date was used as the anchor point. 

To illustrate with an example, patient X was admitted to the hospital on 2015-06-05 (Admission_date) and developed 
AKI on 2015-06-07 (AKI_date), then the initial data collection window for prediction 1-day prior to AKI occurrence 
would be [Admission_date, AKI_date – 1] which is [2015-06-05, 2015-06-06]. For a non-AKI example, patient Y 
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 Figure 1. An illustration of adjusting the lower bound of data collection window before the admission date 
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stayed at the hospital between 2014-02-15 (Admission_date) and 2014-02-18 (Discharge_date), then the data 
collection window for prediction 1-day prior would be [2014-02-15, 214-02-17]. To assess whether adding data 1-
day prior to admission would improve predictive performance, the data collection window becomes 
[Admission_date – 1, AKI_date – 1]; thus for patient X, it becomes [2015-06-04, 2015-06-06]. To assess whether an 
accurate prediction can be made 2-days prior to AKI, the window upper bound will be AKI_date – 2. In conclusion, 
there are two parameters to adjust for evaluation: Admission_date – m is the mth day before the hospital admission 
date and AKI_date – n is the nth day before AKI occurrence date. 

 

 

 

 

 

 

 

 

 
For the third question, we adopted two approaches to evaluate the strength of each group of risk factors (i.e., 
demographics, labs, vitals, medications, and comorbidities) used in the model. In the first approach, we removed one 
group of attributes and trained the predictive models on the remaining four groups of attributes, resulting in five 
transformed datasets. In the second approach, we trained the predictive models with only one group at a time. Thus, 
another five transformed datasets were obtained, each of which only contains one group of attributes.  

Experimental Methodology 

Three different machine learning methods – Logistic Regression37, Random Forest38, and AdaboostM139 were used 
for building predictive models using the Weka software library40. The number of decision trees in Random Forest 
model was 100. For AdaBoostM1, the iteration number was 500, using DecisionStump as the base learner. All 
models were evaluated using the standard 10-fold cross-validation.  

The area under the receiver operating characteristic curve (AUC), precision and recall are used to report and 
compare performance of the models. AUC provides a single measurement of the performance of an ROC curve, 
which is a graphical plot of the sensitivity or true positive rate against the false positive rate (1 - specificity). 
Sensitivity is the proportion of actual positives that are correctly identified as such (i.e. SN = TP/(TP+FN)) and 
specificity measures the proportion of actual negatives that are correctly predicted as such (i.e. SP = TN/(TN+FP)). 
Precision is the proportion of true positives against all predicted positive results (i.e. P = TP/(TP+FP)). Recall is the 
same as the true positive rate or sensitivity. 

Our datasets are highly imbalanced with an approximate 1:10 positive (AKI) to negative (non-AKI) ratio. With such 
an imbalanced dataset, most classifiers will favor the majority class (non-AKI) because they are designed to 
maximize the overall number of correct predictions, thus resulting in poor accuracy in the minority class (AKI) 
prediction. Current state-of-art correction techniques to account for class imbalance are generally data-based and 
algorithm-based approaches41. The data-based approach uses sampling technique by either under-sampling the 
majority class or over-sampling the minority class. The algorithm-based approach modifies the classification 
algorithm such as through adjusting decision threshold. In this study, we under-sampled the majority class by 
randomly selecting a subset of non-AKI samples such that AKI to non-AKI sample ratio is 1:1. Hence a model 
performing better than random classifier must achieve an AUC larger than 0.5. 

RESULTS 

Data Characteristics 

Distribution of patient demographic variables in AKI and non-AKI encounters is listed in Table 3. In our cohort, the 
odds ratio between AKI and non-AKI is not significant for all age groups; however, it does increase with age which 
is also observed in Matheny et al31. Odds ratios for gender and race are also within similar range as reported31.  

Figure 2. An illustration of adjusting the prediction point (i.e., upper bound of data collection window) before 
the AKI occurrence date 
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Table 3. Distribution of patient demographic variables in AKI and non-AKI encounters 

Demographics AKI (n = 4405) Non-AKI (n = 44550) Odds Ratio (95% CI) 
Age, n(%)    

18-25 291 (6.6) 3889 (8.7)  0.74 (0.65 – 0.84) 
26-35 519 (11.8) 6612 (14.8) 0.77 (0.70 – 0.84) 
36-45 734 (16.7) 7736 (17.4) 0.95 (0.88 – 1.03) 
46-55 1296 (29.4) 12863 (28.9) 1.03 (0.96 – 1.10) 
56-64 1565 (35.5) 13450 (30.2) 1.27 (1.19 – 1.36) 

Gender, n (%)    
Female 1779 (40.4) 20533 (46.1) 0.79 (0.74 – 0.84) 
Male 2626 (59.6) 24017 (53.9) 1.26 (1.18 – 1.34) 

Race, n (%)    
White 3133 (71.1) 32680 (73.4) 0.89 (0.84 – 0.96) 
African 

American 
739 (16.8) 6771 (15.2)  1.12 (1.04 – 1.22) 

Asian 31 (0.7) 396 (0.9) 0.79 (0.55 – 1.14) 
Other 502 (11.4) 4703 (10.5) 1.09 (0.99 – 1.20) 

 
Number of encounters in which AKI occurred in different number of days from the time of admission is shown in 
Table 4. The largest proportion (23.8%) of AKI encounters occurred on the 1st day after hospitalization. 

Table 4. Number of encounters in which AKI occurred within different intervals from time of admission 

Days after Admission Number of AKI events (%) 
1 1047 (23.8) 
2 959 (21.8) 
3 554 (12.6) 
4 405 (9.2)  
5 296 (6.7) 
>6 1144 (25.9) 

 

Results of AKI Prediction 

Table 5 and Table 6 show model performance in terms of AUC values and precision and recall respectively over 
data collected both after and before hospital admissions. Table 7 and Table 8 show the results for evaluating early 
prediction.  

Table 5. AUC values of prediction models on data collected before and after hospital admission 

Data Collection Window Classification Models 
Random Forest AdaBoostM1 Logistic 

[Admission_date,      AKI_date-1] 0.765 0.751 0.763 
[Admission_date-1,   AKI_date-1] 0.747 0.738 0.732 
[Admission_date-7,   AKI_date-1] 0.747 0.739 0.733 
[Admission_date-15, AKI_date-1] 0.742 0.742 0.733 
[Admission_date-30, AKI_date-1] 0.747 0.742 0.732 

 
Table 6. Precision and recall of prediction models on data collected before and after hospital admission 

Data Collection Window 
Classification Models 
Random Forest 
(Precision/Recall) 

AdaBoostM1 
(Precision/Recall) 

Logistic 
(Precision/Recall) 

[Admission_date,      AKI_date-1] 0.692 / 0.711 0.662 / 0.736 0.704 / 0.711 
[Admission_date-1,   AKI_date-1] 0.675 / 0.695 0.661 / 0.698 0.690 / 0.686 
[Admission_date-7,   AKI_date-1] 0.679 / 0.688 0.660 / 0.694 0.689 / 0.691 
[Admission_date-15, AKI_date-1] 0.671 / 0.685 0.666 / 0.693 0.690 / 0.692 
[Admission_date-30, AKI_date-1] 0.675 / 0.689 0.664 / 0.694 0.690 / 0.692 
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The time window [Admission_date–m,   AKI_date–n] means that data are collected based on the following rule: the 
time dependent variables have at least one value available after Admission_date – m and before AKI_date – n. 
Admission_date – m is the mth day before the hospital admission and AKI_date – n is the nth day before AKI 
occurrence date. 

Table 7. AUC of prediction models when adjusting the prediction points/upper bound of data collection window 

Data Collection Window Classification Models 
Random Forest AdaBoostM1 Logistic 

[Admission_date,  AKI_date-1] 0.765 0.751 0.763 
[Admission_date,  AKI_date-2] 0.733 0.727 0.731 
[Admission_date,  AKI_date-3] 0.709 0.705 0.691 
[Admission_date,  AKI_date-4] 0.688 0.690 0.651 
[Admission_date,  AKI_date-5] 0.670 0.678 0.633 

 
Table 8. Precision and recall when adjusting the prediction points/ upper bounds of data collection window 

Data Collection Window 
Classification Models 
Random Forest 
(Precision/Recall) 

AdaBoostM1 
(Precision/Recall) 

Logistic 
(Precision/Recall) 

[Admission_date,  AKI_date-1] 0.692 / 0.711 0.662 / 0.736 0.704 / 0.711 
[Admission_date,  AKI_date-2] 0.675 / 0.661 0.643 / 0.714 0.678 / 0.675 
[Admission_date,  AKI_date-3] 0.650 / 0.650 0.625 / 0.687 0.651 / 0.646 
[Admission_date,  AKI_date-4] 0.634 / 0.637 0.628 / 0.656 0.620 / 0.623 
[Admission_date,  AKI_date-5] 0.623 / 0.610 0.616 / 0.674 0.608 / 0.605 

 
Table 9. The performance of Random Forest model on cohort data by removing one attribute group 

(Data Collection Window: [Admission_date,  AKI_date-1] ) 

Removed attributes group Precision Recall AUC 
Demographics 0.692 0.701 0.762 
Vitals 0.685 0.699 0.756 
Labs 0.678 0.701 0.755 
Admission DRGs and Comorbidities 0.667 0.681 0.723 
Medications 0.629 0.622 0.679 

 
Table 10. The performance of Random Forest model on cohort data containing only one attribute group  

(Data Collection Window: [Admission_date,  AKI_date-1] ) 

Reserved attributes group Precision Recall AUC 
Demographics 0.538 0.618 0.551 
Vitals 0.550 0.542 0.558 
Labs 0.587 0.211 0.546 
Admission DRGs and Comorbidities 0.612 0.619 0.657 
Medications 0.659 0.659 0.712 

 
Table 9 and Table 10 show the experimental results of the RandomForest model on processed data by removing one 
group of attributes and by reserving one group of attributes respectively. These two series of experiments were 
performed to assess the range of the affect size of each risk factor group on prediction. 

DISCUSSION 

In this study, we built machine learning based AKI prediction models using structured EMR data for patients 
admitted to a hospital. Experimental results showed a good cross-validated discrimination performance, best AUC 
of 0.76 achieved by Random Forest for predicting AKI event 1-day prior, which was similar to other AKI risk 
stratification models that have been created for general inpatients (0.75)31, elderly (0.66)32, more specific clinical 
scenarios (0.74 to 0.77), and patients who have undergone coronary artery bypass grafting (0.72 to 0.81)1, 3, 25, 26. To 
ensure that the classifier output is not affected by the different splits generated by the 10-fold cross-validation, we 
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examined variance of the AUC, precision, and recall measures by applying the Random Forest model on dataset 
with a collection window of [Admission_date, AKI_date – 1]. The standard deviations of AUC, precision and recall 
are 0.01, 0.01, and 0.02 respectively, which shows that there was no great variance in the 10-fold cross-validation. 

For the primary objective, we assessed how early and accurately general inpatient AKI can be predicted. Results in 
Tables 7 and 8 showed that model performance indeed degrades as the time window between the prediction time 
and AKI event time lengthened, from Random Forest’s AUC of 0.76 at 1-day prior to 0.67 at 5-days prior. While 
comparing different machine learning algorithms, results in Table 7 showed that Random Forest achieved the best 
cross-validated AUC of 0.76 for predicting AKI 1-day prior but when the time to event horizon is lengthened to 4 or 
5-days prior, AdaBoostM1 had a slightly better AUC than Random Forest. However, in terms of precision and recall 
in Table 8, Logistic Regression actually had better precision with the same or better recall compared to Random 
Forest for 1 and 2-day prior, respectively. 

In order for a predictive model to be clinically useful, the 15th Acute Dialysis Quality Initiative (ADQI) consensus 
conference30 in 2016 recommended forecasting AKI events with a horizon of 48 to 72 hours. Although it would be 
advantageous to predict AKI events as early as possible, lengthening the prediction time to event horizon will reduce 
accuracy and the ADQI consensus group believes that 2 to 3 days would give physicians adequate time to modify 
practice, optimize hemodynamics, and mitigate potential injury without sacrificing too much in predictive power30. 
Our study showed that the best performing model with Random Forest can forecast AKI 2-days and 3-days prior 
with AUC of 0.73 and 0.70, respectively. 

For the secondary study objective, we assessed whether adding data prior to admission would improve model 
performance where the data collection window was extended to 1, 7, 15, and 30 days before admission. One would 
intuitively think more data is better, but the contrary was observed in results (Table 5 and 6). As the study cohort 
contains encounters with various length of stay and the number of days AKI occurs relative to admission in the 
positive samples varies greatly from 1 day to 359 days, we suspect additional data prior to admission may impact 
model performance differently for patients who develop AKI on the day after admission vs. five days after because 
amount of data available during stay is dramatically different. Therefore, we conducted an analysis on encounters in 
which AKI occurred 1 day after admission, comparing Random Forest’s performance with (i.e., 1 and 7 days) and 
without data prior to admission. Interestingly, analysis results on this sub-cohort exhibited the same trend as 
observed in the complete cohort, where AUC for only using data after admission is 0.84 vs. AUC for adding data 
from 1-day before admission is 0.81 and 7-days prior is 0.80. This implies adding data prior to admission does not 
improve AKI prediction performance in the general inpatient AKI population. This prompts us to further analyze the 
impact of using data from the entire encounter vs. only previous day on prediction performance. 

We further screened data with the time window [AKI_date-1, AKI_date-1], i.e. using data on the day of prediction 
and compared the performance with using data collected within [Admission_date, AKI_date-1]. Based on results in 
Table 11, it seems to imply that prediction using the most recent one-day data can improve AUC and precision at the 
expense of degrading recall ratio. F-score decreased from 0.701 to 0.687 in contrast to the AUC increase from 0.765 
to 0.783. However, this may also suggest the models were overfitting the temporal clinical variables relative to the 
static demographics, admission diagnoses, and comorbidities. Evaluating the contribution of each clinical variable 
and refining their representations are future directions for this research. 

Table 11. Comparing performance (AUC/Precision/Recall) on entire hospitalization data vs. recent one-day data 

Data Collection Window Random Forest 
(AUC/Precision/Recall) 

AdaBoostM1 
(AUC/Precision/Recall) 

Logistic 
(AUC/Precision/Recall) 

[Admission_date,  AKI_date-1] 0.765 / 0.692 / 0.711 0.751 / 0.662 / 0.736 0.763 / 0.704 / 0.711 
[AKI_date-1,         AKI_date-1] 0.783 / 0.721 / 0.655 0.768 / 0.674 / 0.720 0.768 / 0.709 / 0.709 
 

For the third objective, we assessed the effect size of each risk factor type in AKI prediction by applying the 
Random Forest model on datasets with a collection window of [Admission_date, AKI_date – 1]. Based on results in 
Table 9 and Table 10, medications play the biggest role in the 1-day prior AKI prediction performance followed by 
the combination of admission DRG and comorbidity. This is promising as medications are modifiable and clinicians 
may consider alternative therapies. The demographics variables had the least effect on prediction performance, 
which may be due to the fact that we limited our cohort to a younger cohort of 18 to 64 year olds and utilized 
encounter-level rather than patient-level data for prediction. A patient may have multiple hospital encounters that 
satisfy the cohort inclusion criteria and he/she may experience AKI in one encounter and not in another. Thus, the 
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same patient can belong to both the AKI and non-AKI class, making it difficult for algorithms to distinguish the two 
classes based on the patient-level demographic information. 

Limitations 

There are several limitations in the interpretation of results in this study. First of all, the predictive models were 
based off a younger cohort (18 to 64 years old at admission), which may not be generalizable to an older cohort. 
Elderly is known to be at increased risk for AKI due to longer exposure to chronic diseases and nephrotoxins42, thus 
our future studies will conduct independent subpopulation analysis for the elderly. Second, we limited the analysis 
to patients who were admitted to the hospital with a minimum eGFR of 60 mL/min/1.73m2 and must have normal 
serum creatinine on the day of admission. Although patients with reduced eGFR are at increased risk for AKI, it is 
difficult to determine which of these patients had hospital-acquired vs. community-acquired AKI. Third, 
comorbidity data utilized in the predictive models were obtained from UHC, which is widely known to be well 
adjudicated, but not immediately available. This study treated UHC comorbidities as non-time dependent as if the 
clinical team would know all comorbidities at admission, which may misrepresent comorbidities that developed 
during the admission. Future studies will evaluate the performance of diagnosis codes from the EMR problem list 
relative to comorbidity information derived from billing systems. This may change the results we observed in this 
study that data prior to admission does not improve performance and also more accurately represent the information 
available to the clinical team to support adverse event surveillance. Last but not least, the study did not use urine 
output to define AKI nor include it as a risk variable. Although urine output is one of the diagnostic criteria of AKI, 
many members of the Acute Kidney Injury Network (AKIN) concerned that urine output is not specific enough for 
the designation of AKI because it can be influenced by factors other than renal health. 

CONCLUSIONS 

Predicting AKI early and accurately allows clinicians to take timely preventative or therapeutic measures. This study 
investigates the impact of data completeness and prediction time points on the performance of forecasting in-
hospital AKI in a general inpatient population. Three machine learning algorithms, Random Forest, AdaBoostM1, 
and Logistic Regression, were built on clinical datasets screened with different data collection windows. The 
Random Forest classifier outperformed Logistic Regression and AdaBoostM1 with AUC values for 1, 2, and 3-days 
prior being 0.765, 0.733, and 0.709, respectively. In this study, the data prior to hospital admission did not improve 
prediction performance and medication played the biggest role in prediction performance. 
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