Skip to main content
. 2018 Apr 16;2017:565–574.

Table 8.

Precision and recall when adjusting the prediction points/ upper bounds of data collection window

Data Collection Window Classification Models
Random Forest(Precision/Recall) AdaBoostM1 (Precision/Recall) Logistic (Precision/Recall)
[Admission_date, AKI_date-1] 0.692 / 0.711 0.662 / 0.736 0.704 / 0.711
[Admission_date, AKI_date-2] 0.675 / 0.661 0.643 / 0.714 0.678 / 0.675
[Admission_date, AKI_date-3] 0.650 / 0.650 0.625 / 0.687 0.651 / 0.646
[Admission_date, AKI_date-4] 0.634 / 0.637 0.628 / 0.656 0.620 / 0.623
[Admission_date, AKI_date-5] 0.623 / 0.610 0.616 / 0.674 0.608 / 0.605