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Abstract 

Clinical trials are indispensable tools for evidence-based medicine. However, they are often criticized for poor 
generalizability.  Traditional trial generalizability assessment can only be done after the trial results are published, 
which compares the enrolled patients with a convenience sample of real-world patients.  However, the proliferation 
of electronic data in clinical trial registries and clinical data warehouses offer a great opportunity to assess the 
generalizability during the design phase of a new trial.  In this work, we compared and contrasted a priori (based 
on eligibility criteria) and a posteriori (based on enrolled patients) generalizability of Type 2 diabetes clinical trials.  
Further, we showed that comparing the study population selected by the clinical trial eligibility criteria to the real-
world patient population is a good indicator of the generalizability of trials. Our findings demonstrate that the a 
priori generalizability of a trial is comparable to its a posteriori generalizability in identifying restrictive 
quantitative eligibility criteria. 

Introduction 

Clinical trials, which test the efficacy and safety of an intervention (e.g., medication, device, procedure, and 
behavioral change), are indispensable tools for evidence-based medicine [1]. However, the generalizability of 
clinical research studies has long been a concern [2]. For example, elderly patients are reported to be 
underrepresented in clinical trials across major medical conditions, including cardiovascular diseases [3], cancers 
[4], dementia [5], and diabetes [6]. Most research on the generalizability of clinical studies has focused on the a 
posteriori generalizability (i.e., the representativeness of enrolled participants), which compares the characteristics 
of enrolled patients of a study with a convenience sample of a real-world patient population [7] or those in other 
studies [8]. For example, van der Water et al. evaluated the external validity of a cancer clinical trial by comparing 
the socioeconomic status, number of comorbidities, treatments, and various stage information between the enrolled 
patients and the patients in the Netherlands Cancer Registry [7]. Cahan and colleagues proposed an a posteriori 
generalizability score that incorporates demographic information, clinical attributes, and clinical settings to compare 
a trial to multiple target clinical scenarios in other trials [8]. However, with such an a posteriori approach, the 
generalizability issue is not detected before the conclusion of the studies. Typical clinical trials cost over hundreds 
of millions dollars or more and take 10 - 17 years to complete [9]. Thus, it is crucial to assess a clinical trial’s 
generalizability before conducting the trial. Nevertheless, existing methods for assessing the a priori generalizability 
(i.e., the representativeness of eligible participants) have historically been scarce and laborious [10]. 

The rapidly growing amount of electronic patient data such as electronic health records (EHR) data, presents an 
unprecedented opportunity for optimizing eligibility criteria in the design phase of a new trial towards balanced 
internal and external validity (i.e. generalizability) [11]. In recent years, a suite of informatics methods has been 
introduced to quantify the population representativeness of clinical studies and characterize underrepresented 
population subgroups [12-14]. Notably, the Generalizability Index on Study Traits (GIST) metric quantifies the a 
priori generalizability of clinical trials with respect to selected quantitative eligibility criteria that specify a 
permissible value range (e.g., HbA1c > 7%), one at a time [12]. The extension of GIST, mGIST [15], can quantify 
the population representativeness of clinical trials with joint use of multiple criteria of interest. Both GIST and 
mGIST focus on the generalizability assessment at the disease domain level (i.e., assessing the generalizability of 
trials targeting the same disease). Recently, Sen and colleagues introduced GIST 2.0 as a scalable multivariate 
metric for quantifying the population representativeness of individual clinical studies by explicitly modeling the 
dependencies among all eligibility criteria [16]. However, to the best of our knowledge, no work has compared the a 
priori and the a posteriori generalizability assessment of trials.   

Diabetes, recognized as an important public health problem by the World Health Organization [17], has caused 1.5 
million deaths in 2012 alone and may, over time, lead to serious damage to the heart, blood vessels, eyes, kidneys, 
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and nerves. More than 400 million people live with diabetes [18]. Type 2 diabetes mellitus (T2DM), which can be 
developed at any age, accounts for 90% - 95% of people who have diabetes [19]. Many countries, including United 
States (US) and United Kingdom (UK), have invested heavily in research on treating and controlling diabetes [20, 
21]. In this study, we compared and contrasted a priori (i.e., using GIST, Weng et al. [12]) and a posteriori (i.e., 
using van de Water et al. [7]) generalizability of T2DM clinical trials. We hypothesize that the a priori 
generalizability of a trial is comparable to its a posteriori generalizability in identifying certain restrictive 
quantitative eligibility criteria. To enable such a comparison, we will use univariate GIST metric to assess a priori 
generalizability of T2DM trials with respect to three most frequently used quantitative eligibility criteria, age, 
HbA1c, and BMI. We chose GIST rather than its multivariable extensions, mGIST, as we want to compare 
individual variables’ a priori generalizability with their a posterior generalizability independently. We used the 
eligibility criteria of T2DM trials registered on ClinicalTrials.gov to profile the study populations, and extracted the 
published summary-level statistics of the enrolled patients. We compared the a priori (based on the study 
populations) and the a posteriori (based on the enrolled patients) generalizability of US-based T2DM trials using the 
target population profiled by the T2DM patients in the OneFlorida Data Trust [22], and further validated the results 
using UK-based T2DM trials with the target population profiled by the patients from the CALIBER research 
platform [23]. The OneFlorida Clinical Research Consortium (CRC) is one of the 13 Clinical Data Research 
Networks (CDRN) in the United States funded by the Patient-Centered Outcome Research Institute (PCORI) as part 
of the National Patient-Centered Clinical Research Network (PCORnet). The CALIBER resource generates and 
investigates deep, longitudinal phenotypic data from linked electronic health records for people registered in 
participating clinical practices in UK. The four main data sources include primary care EHR, hospital billing data, 
and death certificate records. Our work will inform the research community of the difference of a priori and a 
posteriori generalizability of T2DM trials with respect to quantitative eligibility features. 

Background 

ClinicalTrials.gov and the COMPACT Database 

ClinicalTrials.gov, created and maintained by the National Library of Medicine, is a clinical study registry in the 
United States. Since September 2007, all the United States-based clinical trials of FDA-regulated drugs, devices, and 
biologic products must be registered in ClinicalTrials.gov prior to participant recruitment. In September 2016, the 
United States Department of Health and Human Services issued the final rule of that expands the regulatory 
procedure for trial registration and summary results reporting [24]. Mandated by the final rule, trial sponsors are 
required to report summary statistics on race, ethnicity, and other measures assessed at baseline that are used in 
analyzing a primary outcome measure on ClinicalTrials.gov [24]. As ClinicalTrials.gov is the largest clinical trial 
registry in the world with a long history of system operation and management [25], many international trials are also 
registered in ClinicalTrials.gov. As of February 6, 2017, as many as 236,212 studies with locations in all 50 states in 
the US as well as in 195 countries have been registered. Study summaries are semi-structured in ClinicalTrials.gov: 
study descriptors such as study phase (i.e., Phase I, II, III, and IV), intervention type (e.g., drug, device, biologic 
product), locations, are stored in structured fields, whereas eligibility criteria are largely free-text. 

To facilitate a priori generalizability analysis, we leveraged the numeric expression extraction tool “Valx” [26, 27] 
and the frequent tag mining tool [28] to transform study summaries in ClinicalTrials.gov into a relational database, 
and we named it “COMPACT” [29]. COMPACT contains various study descriptors (e.g., study phase, intervention), 
and numeric eligibility features. With Valx, different names for the same variable in the eligibility criteria, such as 
“hemoglobin A1c”, “HbA1c”, “Glycohemoglobin”, are unified.  Different measurement units are also unified. 
COMPACT indexes trials by medical conditions. 

OneFlorida Clinical Research Consortium and Data Trust 

The OneFlorida CRC is a collaborative statewide network that seeks to improve health research capacity and 
opportunities in the State of Florida through the facilitation of clinical and translational research in communities and 
health care settings. OneFlorida includes nine unique health systems that provides care for ~9.7M or 48% of all 
Floridians through 4,100 physician providers, 1,240 clinic/practice settings and 22 hospitals with a catchment area 
covering all 67 Florida counties. In 2015, OneFlorida became one of 13 PCORI-funded clinical data research 
networks in the US.  

The OneFlorida Data Trust is the centerpiece of the OneFlorida CRC and is the informatics infrastructure that 
supports pragmatic trials; comparative effectiveness research, implementation science, and other research in 
OneFlorida. The OneFlorida Data Trust currently contains collated EHR, health care claims, and other data on a 

850



  

broad-based, unselected population of ~10 million people in Florida. The data are limited to a Health Insurance 
Portability and Accountability Act (HIPAA) Limited Data Set (LDS), which restricts the types of protected health 
information (PHI) to only dates (e.g., birthdates and dates of service) and location (to the zip code level).   

CALIBER (Clinical research using LInked Bespoke studies and Electronic health Records) 

CALIBER is a unique research platform consisting of ‘research ready’ variables extracted from linked EHR from 
primary and secondary care, social deprivation information and cause-specific mortality data in UK. Led from the 
University College London Institute of Health Informatics and the Farr Institute of Health Informatics Research, 
London, CALIBER enables researchers to recreate the longitudinal journey of patients through care pathways to 
study disease onset and progression. This research platform accesses linked electronic health records and recreates 
the healthcare pathways of approximately 10 million patients with 400 million person years of follow up. The aim of 
CALIBER is to foster an open community developing methods and tools to accelerate replicable science across all 
clinical and scientific disciplines spanning the translational cycle (from drug discovery through to public health).  
The resource consists of disease and risk factor phenotyping algorithms, methods [30], tools and scripts, specialized 
infrastructure and training and support. All finalized EHR phenotyping algorithms are provided in an open-access 
Portal (https://www.caliberresearch.org/portal) for researchers to extent and re-use. 

Methods 

We first define the three patient populations for a clinical trial: 

• Target population: patients to whom the results of the clinical study are intended to apply.  The target population 
can only be approximated with available patient data. 

• Study population: patients who are eligible for the study based on the study inclusion and exclusion criteria. 
• Enrolled patients: patients who are enrolled in the clinical study. It is a subset of the study population. 

Figure 1 illustrates the analytical workflow of this study. We first retrieved interventional clinical studies on T2DM 
in the US and UK from the COMPACT database. In this work, we chose to focus on three major quantitative 
eligibility criteria in T2DM studies: age, HbA1, and BMI, which are used in the free-text eligibility criteria of 
49.1%, 48.5%, and 43.98% T2DM trials, respectively [13]. Age is also a required field in the eligibility criteria 
section of a trial summary in ClinicalTrials.gov. We therefore used the structured age field. To profile the target 
population of T2DM, we identified all the T2DM patients in the OneFlorida Data Trust using both ICD-9-CM and 
ICD-10-CM codes. To validate the findings of US-based T2DM trials on UK-based trials, we identified T2DM 
patients from the CALIBER data with the ICD-10 codes in the hospital data and the Readcodes in the primary care 
data. We applied the GIST metric to assess the a priori generalizability of T2DM trials in the US and UK using the 
target populations derived from OneFlorida Data Trust and CALIBER, respectively. We also stratified the analysis 
by trial phase. We assessed the a posteriori generalizability by comparing the characteristics of the enrolled patients 
reported in ClinicalTrials.gov with the T2DM patients in OneFlorida Data Trust and CALIBER, respectively.  

                                       
Figure 1. Analytical workflow of this study 

Dataset Preparation 

1) Processing clinical trial summaries. From the COMPACT database, we identified interventional clinical trials 
on T2DM with a study start date between January 2005 and September 2016. There are 1,671 such studies in the 
United States and 209 such studies in the United Kingdom.  
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2) Identifying T2DM Patients in OneFlorida Data Trust. Following existing literature [12], we identified patients 
with T2DM in OneFlorida Data Trust using the following criteria, where the patient (1) needs to have at least two 
diagnoses of Type 2 diabetes; (2) needs NOT have any Type 1 diabetes diagnoses; and (3) should have at least one 
HbA1c measurement regardless of their temporal relationships to diagnosis times. Diagnoses of Type 1 and 2 
diabetes were identified with ICD-9-CM and ICD-10-CM diagnosis codes. 

3) Identifying T2DM Patients in CALIBER. We utilized descriptive data from a previous study [31] using a 
deterministic to identify patients with Type 2 diabetes in CALIBER using diagnostic codes (Read codes in primary 
care, ICD-10 in secondary care). 

Assessing a Priori Generalizability 

To quantify the population representativeness of studies based on a single quantitative criterion (i.e., age, HbA1c, 
and BMI in this study), we calculated the univariate GIST scores for trial sets of different study phases [12]. The 
GIST score is the sum across all consecutive non-overlapping value intervals of the percentage of studies that recruit 
patients in that interval, multiplied by the percentage of patients observed in that interval: 

GIST=
I([ilow, ihigh ]⊂ wj )

j=1

T

∑

T
*

I(ilow ≤ yk < ihigh )
k=1

P

∑
Pi=1

N

∑
 (1)

 

where N is the number of distinct value intervals of the quantitative feature, T is the number of trials, P is the 
number of patients, wj is the inclusion value interval of the quantitative feature for the jth study, such that indicator I 
can be defined as jth

 study interval subsumes the ith interval low and high boundary values, and yk is the observed 
value of the quantitative feature for the kth patient such that an indicator I can be defined when kth patient has a value 
of the quantitative feature falls within the ith interval. The GIST score ranges from 0 to 1, with 0 being not 
generalizable and 1 being perfectly generalizable. It characterizes the proportion of patients potentially eligible 
across trials.  For more detailed explanation of GIST, see [12, 14]. We have previously evaluated the validity of the 
GIST metric in quantifying the population representativeness of trials using simulated patient populations [32].  
Compared with mGIST which gives an overall score for multiple variables, GIST gives variable-specific scores, 
allowing us to compare them with the results of a posteriori generalizability assessment which are also variable-
specific. 

Assessing a Posteriori Generalizability 

To compare enrolled patients with the target population, we identified all the US and UK T2DM trials that have 
reported results in ClinicalTrials.gov and extracted the baseline measures including the number of participants, their 
gender and race, and the mean and standard deviation (SD) values of the three major measures: age, BMI, and 
HbA1c. We aggregated the mean and SD for age, HbA1C, and BMI separately for all the trials that report both mean 
and SD for the variable using the following formulas [33]:  

  𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅_𝒎𝒆𝒂𝒏 =  (!"#!!∗!"#$%&_!"#$!"!#$%&!!)!
!!!

!"#$%&_!"#$%&%!"'$!!!
!!!

    (2) 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅_𝑺𝑫 =  (!"!!∗(!"#$%&_!"#$%&%!"'$!!!!))!
!!!

(!"#$%&_!"#$%&%!"'$!!!
!!! !!)

    (3) 

where T is the number of studies. We assessed the a posteriori generalizability of the trials by comparing the 
aggregate mean and SD values of the three quantitative variables (i.e., age, HbA1c, and BMI) as well as the gender 
and race distributions with the real world population of T2DM patients in OneFlorida and CALIBER. We used the 
two-sample t-test to assess differences in quantitative variables (i.e., age, HbA1c, and BMI) and chi-square test to 
assess difference in categorical variables (i.e., race and gender) between the target population and enrolled patients. 

Results 

Basic Characteristics of T2DM Trials 

Basic characteristics of the clinical trials on T2DM included in our analysis are shown in Table 1. Even though the 
number of trials differed significantly between the US and the UK, they exhibit similar characteristics. The rates of 
missing data for study phase are 23.6% and 27.3% in trials in the US and the UK respectively. A majority of trials 
are sponsored by industry (63.4% and 64.1%). Drugs were the most common interventions (72.1% and 72.7%), 
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followed by behavioral interventions (11.6% and 8.1%). Treatment was the primary purpose for the majority of the 
trials (75.9% and 77.0%). Most of the trials were randomized (86.9% and 90.1%). 

Table 1. Characteristics of T2DM trials in the US and the UK 

Study Characteristics # of US-Based Trials (%) 
(N = 1,671) 

# of UK-Based Trials (%) 
(N = 209) 

Study phase -- -- 
Phase 0 9 (0.5%) 0 (0%) 
Phase 1 299 (17.9%) 22 (10.5%) 
Phase 2 349 (20.9%) 23 (11.0%) 
Phase 3 495 (29.6%) 77 (36.8%) 
Phase 4 189 (11.3%) 33 (15.8%) 
Unspecified 394 (23.6%) 57 (27.3%) 
Sponsor type -- -- 
NIH 23 (1.4%) 0 (0%) 
Industry 1,060 (63.4%) 134 (64.1%) 
Other U.S. Federal Agency 30 (1.8%) 0 (0%) 
Other 558 (33.4%) 75 (35.9%) 
Intervention type -- -- 
Drug 1,204 (72.1%) 152 (72.7%) 
Procedure 34 (1.9%) 2 (1.0%) 
Biological 32 (1.9%) 4 (1.9%) 
Device 49 (2.9%) 9 (4.3%) 
Behavioral 194 (11.6%) 17 (8.1%) 
Dietary supplement 49 (2.9%) 14 (6.7%) 
Genetic 1 (0.1%) 0 (0%) 
Radiation 1 (0.1%) 0 (0%) 
Other 107 (6.4%) 11 (5.3%) 
Primary purpose -- -- 
Basic science 108 (6.5%) 14 (6.7%) 
Diagnostic 20 (1.2%) 2 (2.0%) 
Education/Counseling/Training 1 (0.1%) 0 (0%) 
Health services research 40 (2.4%) 3 (1.4%) 
Prevention 99 (5.9%) 17 (8.1%) 
Screening 4 (0.2%) 0 (0%) 
Supportive care 33 (2.0%) 5 (2.4%) 
Treatment 1,268 (75.9%) 161 (77.0%) 
Unspecified 98 (5.9%) 7 (3.3%) 
Allocation -- -- 
Randomized 1,452 (86.9%) 190 (90.1%) 
Non-Randomized 107 (6.4%) 3 (1.4%) 
Unspecified 112 (6.7%) 16 (7.7%) 

A Posteriori Generalizability of T2DM Trials 

Among all the T2DM trials in our analysis, 428 (25.6%, out of 1,671) US trials and 86 (41.1%, out of 209) UK trials 
report summary-level results (e.g., baseline characteristics and outcome measures) in ClinicalTrials.gov. Table 2 
illustrates the number of T2DM trials that report mean values and standard deviation values for age, HbA1c, BMI, 
as well as race and gender. Within the trials that provided these statistics, most of them provided the mean and 
standard deviation of age for all the enrolled patients. A higher percentage of UK-based trials reported mean and 
standard deviation values of HbA1c and BMI than the US-based trials. The primary reasons that the remaining trials 
did not report any results in ClinicalTrials.gov include (1) still under recruitment, (2) completed before December 6, 
2007 and thus not required to submit results, and (3) pending results (results of applicable trials of FDA-regulated 
drugs, biologic, and device must be submitted within 12 months of trial completion [34]).  
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Table 2. Number of T2DM trials that reported results in ClinicalTrials.gov 

Results # of Trials in the US / 
Total # (%) 
(N = 1,671) 

# of Trials in the UK / 
Total # (%) 
(N = 209) 

# of trials with any results 428/1,671 (25.6%) 86/209 (41.1%) 
# of trials reporting mean value of age 400/428 (93.5%) 80/86 (93.0%) 
# of trials reporting standard deviation of age 388/428 (90.7%) 79/86 (91.9%) 
# of trials reporting mean value of HbA1c 131/428 (30.6%) 38/86 (44.2%) 
# of trials reporting standard deviation of HbA1c 128/428 (29.9%) 38/86 (44.2%) 
# of trials reporting mean value of BMI 109/428 (25.5%) 30/86 (34.9%) 
# of trials reporting standard deviation of BMI 104/428 (24.3%) 30/86 (34.9%) 
# of trials reporting race 159 /428(37.1%) 34/86 (39.5%) 
# of trials reporting gender 426/428 (99.5%) 86/86 (100.0%) 

We extracted the baseline characteristics of the patients enrolled in T2DM trials in the trial summaries on 
ClinicalTrials.gov. Table 3 reports the number of trials that provide the results of each baseline characteristic. We 
used formula (2) and (3) to calculate the weighted mean and standard deviation values for quantitative variables 
(i.e., age, BMI, and HbA1c) separately.  

Table 3. Number of T2DM Trials that provided the results for the baseline measures 

Reported Results  # of US-Based T2DM 
Trials  (# of patients) 

# of UK-Based T2DM 
Trials  (# of patients) 

Two-Tailed P 
Values 

Any baseline measures 428 (193,345)  86 (90,026) -- 
Mean and standard deviation of age 388 (185,560) 79 (87,441) P < 0.0001 
Mean and standard deviation of HbA1c 128 (65,445) 38 (32,314)  P < 0.0001 
Mean and standard deviate n of BMI 104 (68,515) 30 (36,768)  P < 0.0001 
Race (white, black, Asian, other) 159 (96,518) 34 (53,016)  P < 0.0001 
Gender (male, female) 426 (192,721) 86 (89,791) P < 0.0001 

Table 4 compares the characteristics of the patients enrolled in T2DM trials and the T2DM patients in the 
OneFlorida Data Trust and CALIBER. The differences of mean values of age between the patients in OneFlorida 
and the patients enrolled in US-based T2DM trials of Phase I, II, II and are 21.9, 13.0, and 11.0, respectively, 
showing an increasing a posteriori generalizability of US-based trials regarding age. The patients enrolled in both 
US and UK-based T2DM trials were younger than the T2DM patients in the clinical data warehouses (two-tailed p < 
0.0001). Regarding race, Caucasian/White and Asian were overrepresented, whereas women, black, and other races 
were underrepresented. The differences between the target populations and the enrolled patients in US and UK-
based trials are both statistically significant with respect to race (two-tailed p < 0.0001). Regarding gender, female 
patients were underrepresented in both US-and UK-based trials (two-tailed p < 0.0001). The patients enrolled in 
both US and UK-based trials have higher HbA1c values than the target populations (two-tailed p < 0.0001). The 
patients enrolled in US-based trials have a slightly lower BMI (two-tailed p < 0.0001), whereas the patients enrolled 
in UK-based trials have a slightly higher BMI (two-tailed p < 0.0001). 

Table 4. Characteristics of patients enrolled in T2DM trials and T2DM patients in OneFlorida Data Trust and 
CALIBER 

Characteristic United States United Kingdom 
T2DM Patients 
in OneFlorida 
Data Trust 

Patients in US-
Based T2DM 
Trials 

Differ
encea 

T2DM Patients 
in CALIBER 

Patients in 
UK-Based 
T2DM Trials 

Differ
ence  

Total # of T2DM patients 148,970 -- -- 150,665 -- -- 
Age (mean ± SD) 68.5 ± 14.2 58.1 ± 9.6 -10.4 64.9 ± 13.86 60.2 ± 9.4 -4.7 
Race  148,970 96,518 -- 57,192 53,016 -- 
   Caucasian / White (%) 88,213 (59.2%) 72,647 (75.3%) 16.1% 28,629 (50.1%) 39,806 (75.1%) 25.0% 
   Black (%) 40,186 (27.0%) 6,604 (6.8%) -20.2% 2,757 (9.6%) 2,979 (5.6%) -4.0% 
   Asian (%) 2,594 (1.7%) 10,323 (10.7%) 9.0% 5,018 (8.8%) 6,511 (12.3%) 3.5% 
   Other  (%) 17,977 (12.1%) 6,825 (7.1%) -5.0% 20,788 (36.3%) 3,710 (7.0%) -29.3% 
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Gender 148,969 192,721 -- 150,658 89,791 -- 
   Male (%) 69,221 (46.5%) 106,821 (55.4%) 8.9% 81,312 (54.0%) 53,703 (59.8%) 5.8% 
   Female (%) 79,748 (53.5%) 85,900 (44.6%) -8.9% 69,346 (46.0%) 36,088 (40.2%) -5.8% 
BMI, kg2/m (mean ± SD) 32.3 ± 8.2 31.7 ± 5.5 -0.6 29.3 ± 6.0 30.9 ± 5.6 1.6 
HbA1c, % (mean ± SD) 7.5 ± 2.9 8.2 ± 1.0 0.7 7.8 ± 1.8 8.0 ± 1.0 0.2 

a The difference between the patients enrolled in the trials and the patients in the target population. 
Population Representativeness of T2DM Trials 

Figure 2 visualizes the target population, study population, and the enrolled patients in the US and UK-based T2DM 
trials for each of the three major quantitative eligibility criteria: age, BMI, and HbA1c. The green curves represent 
the study populations of the eligible patients, i.e., the percentage of trials that allow a certain value of the variable.  
The red curves represent the distribution of patients enrolled in the T2DM trials over the value spectrum of the 
variable. The blue curves represent the target population.  In general, the visualization of these populations for US 
and UK trials exhibited similar characteristics. For example, there is a noticeable gap between the patients enrolled 
in the T2DM trials and the target population with respect to all the three quantitative criteria. The patients enrolled 
in T2DM trials were younger and had lower HbA1c and BMI values than those in the target populations (red curves 
vs. blue curves).  The T2DM trials usually permit patients of a wide range of age values. The gap between the study 
population and the target population is obvious for HbA1c (green curves vs. blue curves). The trends of the study 
populations and enrolled patients are similar (green curves vs. red curves). 

        (a)  

        (b)  

         (c)  

Figure 2. Visualization of (a) age, (b) BMI, and (c) HbA1c in the target populations and study populations of US 
and UK-based T2DM trials, respectively. 

We used the GIST metric to assess the population representativeness of US and UK-based T2DM trials with respect 
to the three major quantitative eligibility criteria: age, BMI, and HbA1c (Table 5). The GIST scores for the US and 
UK-based trials were calculated using the target populations derived from the OneFlorida Data Trust data and 
CALIBER, respectively. We stratified the analysis by study phase. As shown in Table 5, US and UK trials have 

855



  

similar overall GIST scores for all three variables. The GIST scores of age in both the US and UK trials increased 
from Phase I to Phase III, which is consistent with the results from two previous studies using the T2DM patients 
data in the Columbia University [12] and a national survey [14] as the target populations. It is also consistent with 
our finding of the a posteriori generalizability assessment conducted in this work. Phase I studies in the UK had 
lower GIST scores of age than Phase I studies in the US. The GIST scores of 0.27-0.36 indicate a serious population 
representativeness issue of UK T2DM Phase I trials. However, Phase II trials in the UK had higher GIST scores of 
age than Phase II trials in the US. With respect to BMI, the UK trials had slightly higher GIST scores than the US 
trials of all phases. With respect to HbA1c, the GIST scores of the US trials decreased from Phase I to Phase III, 
which is also consistent with the two previously mentioned studies [12, 14]. The HbA1c’s GIST scores of the UK 
trials decreased from Phase I to Phase II, while the UK trials had similar GIST scores of HbA1c as US trials. The 
fact that a priori generalizability of HbA1c is the lowest among the three criteria is consistent with the visualization 
shown in Figure 2, as well as the a posteriori generalizability assessment. 

Table 5. GIST scores of age, BMI, and HbA1c of T2DM trials in different phases. 

Variable Reading US-Based T2DM Trials UK-Based T2DM Trials 

All Phase I Phase II Phase III All Phase I Phase II Phase III 
N 1,671 299 349 495 209 22 23 77 

Age Earliest 0.74 0.55 0.76 0.87 0.76 0.36 0.84 0.89 
Mean 0.74 0.55 0.75 0.86 0.74 0.31 0.80 0.88 
Median 0.74 0.54 0.75 0.86 0.74 0.31 0.80 0.88 
Middle 0.73 0.54 0.75 0.86 0.74 0.31 0.81 0.88 
Latest 0.73 0.53 0.74 0.86 0.71 0.27 0.77 0.87 

BMI Earliest 0.87 0.78 0.87 0.88 0.89 0.79 0.91 0.94 
Mean 0.87 0.79 0.87 0.89 0.89 0.76 0.93 0.94 
Median 0.87 0.79 0.87 0.89 0.89 0.79 0.91 0.94 
Middle 0.87 0.79 0.87 0.88 0.89 0.78 0.91 0.93 
Latest 0.87 0.79 0.86 0.88 0.88 0.78 0.90 0.93 

HbA1c Earliest 0.73 0.83 0.71 0.64 0.69 0.81 0.61 0.62 
Mean 0.74 0.84 0.72 0.65 0.74 0.84 0.68 0.69 
Median 0.73 0.84 0.72 0.65 0.71 0.83 0.65 0.64 
Middle 0.73 0.84 0.71 0.64 0.70 0.82 0.63 0.63 
Latest 0.73 0.84 0.71 0.64 0.69 0.82 0.61 0.61 

Discussion and Conclusions 

In this study, we used real-world patient data in the target population to assess the generalizability of T2DM clinical 
trials in the US and UK. As shown in Table 5, US and UK-based T2DM trials have similar a priori generalizability 
of age, HbA1c, and BMI. However, the GIST scores for age in trials of different phases differ between US and UK-
based trials. While GIST provides a quantitative metric for comparing the population representativeness of different 
sets of trials, visualization of different populations can reveal the systematically omitted or overly included 
population subgroups. The results of a priori generalizability showed that the US and UK-based trials exhibit similar 
issues with respect to the three most frequently used quantitative criteria. The results of the a posteriori 
generalizability showed that males, whites, and Asians are overrepresented in both US and UK-based T2DM trials 
while females, blacks, and other races are underrepresented.   

Compared to the a posteriori generalizability assessment, the use of the GIST metric to assess the a priori 
generalizability assessment has a few advantages. First, it can be performed during the trial design phase, which 
would help reveal issues of eligibility criteria that are biased towards certain population subgroups, and help trial 
designers optimize the balance between internal and external validity. Trial designers can fine-tune the criteria 
without diminishing the internal validity. For example, UK T2DM Phase I trials have a very low GIST score of age. 
Trial designers should thus adjust the restrictive age criterion in Phase I trials in the future to improve their 
population representativeness. Second, GIST quantifies the difference of the distributions of the eligible patients and 
the target population over a variable, whereas the a posteriori generalizability compares the mean difference of a 
variable. It can be done using cost-effective informatics tools. Meanwhile, the a priori generalizability assessment 
has a few disadvantages. First, it does not take into account the practical issues in the trial recruitment phase, such as 
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geographic locations, accessibility of trial information, and consideration of comorbidities. For example, due to real-
world complications, most studies failed to recruit representative samples of their study population as specified in 
trial eligibility criteria [10]. On the other hand, the a posteriori generalizability assessment, which compares the 
enrolled patients with the target population, can provide a more accurate assessment of the population 
representativeness. The issues of gender disparity and race disparity, as well as other disease-specific outcome 
measures can be accurately detected. Both a priori and a posteriori generalizability results showed increasing 
generalizability of US-based T2DM trials from Phase I to Phase II with respect to age, which confirmed our 
hypothesis that a priori generalizability is comparable to a posteriori generalizability in identifying certain 
restrictive quantitative eligibility criteria. It should be a common practice to assess both a priori generalizability 
based on trial design factors such as eligibility criteria before patient recruitment as well as a posteriori 
generalizability post hoc based on enrolled patients. The trial design issues that are found in a priori generalizability 
can be addressed before patient recruitment, thereby improving the a posteriori generalizability and the cost-benefit 
ratio of the trials. Nevertheless, clinical trial investigators should also consider practical issues in the trial 
recruitment phase. For example, most trials still use a traditional hospital-based recruitment strategy. Thus, the trial 
designers of these studies should carefully choose recruitment sites, and take into account the population 
characteristics of these sites’ catchment areas. 

A number of limitations should be noted in our study. First, less than 40% of T2DM trials reported results in 
ClinicalTrials.gov. Therefore, the aggregate results of the enrolled patients represent merely a convenient sample.  
Second, the OneFlorida Data Trust contains data of patients who have visited healthcare organizations in the state of 
Florida, and thus might not be representative. Even though we only used patient data from the state of Florida in the 
US, Florida is the third most populous state (~19.9 million) in the US. Third, it is possible that not all clinical trials 
conducted in the UK are registered on ClinicalTrials.gov. We identified trials based on the study site. Some trials are 
conducted in multiple countries. Therefore, some UK-based trials may also have study sites in other countries.   
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