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Abstract

Statistical techniques such as propensity score matching and instrumental variable are commonly employed to “simu-
late" randomization and adjust for measured confounders in comparative effectiveness research. Despite such adjust-
ments, the results of these methods apply essentially to an “average" patient. However, as patients show significant
heterogeneity in their responses to treatments, this average effect is of limited value. It does not account for individ-
ual level variabilities, which can deviate substantially from the population average. To address this critical problem,
we present a framework that allows the discovery of clinically meaningful homogeneous subgroups with differential
effects of plasma transfusion using unsupervised random forest clustering. Subgroup analysis using two blood trans-
fusion datasets show that considerable variablilities exist between the subgroups and population in both the treatment
effect of plasma transfusion on bleeding and mortality and risk factors for these outcomes. These results support the
customization of blood transfusion therapy for the individual patient.
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Introduction

Numerous studies and published guidelines encourage the appropriate use of fresh frozen plasma (FFP) and recom-
mend specific circumstances for FFP transfusions. Although there is some variation about the definition of appropriate
FFP transfusion, most guidelines suggest a cutoff in the international normalized ratio (INR) of 1.5 (i.e. Prothrom-
bin time > 1.5 × normal).1 However, the documented compliance to these guidelines is poor.2–4 Data suggest that
inappropriate FFP transfusion varies from institution to institution and ranges from about 10% to 83%.2;5 More-
over, FFP transfusion puts the patient at risk of a variety of outcomes. FFP transfusion is associated with high risk
of transfusion-associated circulatory overload (TACO),6 transfusion-associated lung injury (TRALI),7 perioperative
bleeding,8–10 multi-organ failure,7 infectious complications, and increase in health resource utilization. Therefore,
strategies that can safely reduce the need for FFP transfusion bear high potential for improving patient outcomes.
Recognizing that inappropriate plasma transfusions should be avoided, the literature is however not clear about the
remaining percentage for which it might be beneficial. Currently, no study or best-practice guidelines exist regarding
either patient subpopulation or specific characteristics of those patients who might benefit from FFP transfusion. Iden-
tifying the subgroup(s) with the most beneficial; wasteful; harmful, or futile prospect of FFP transfusion can provide
an efficient means to improve patient outcomes, reduce unnecessary exposure to treatment adverse effects, and save
resources.

Subgroup analysis is an important task in comparative effectiveness research where assessing the effect of a treatment
on an outcome is of critical interest. Large observational health care databases provide potentially rich sources of
information for data mining and machine learning methods to help research on heterogeneity in patient response to
treatments and to guide care-givers’ decisions. Because of the large sample sizes, heterogeneous patient population,
and real-world settings, they are suitable for studying either patient-specific or group-specific characteristics with
respect to a clinical measure. However, comparative effectiveness research based on observational data is challenged
by both selection bias and potential for unmeasured confounding. In usual care settings, many patient and physician
factors influence whether a patient is selected for a treatment or not, thus any comparison between treatment groups
is subject to bias. Through classical statistical methods such as propensity score matching and instrumental variables,
it is possible to adjust for measured confounding and obtain unbiased estimates of treatment effects. These methods
however suffer from several known weaknesses described below.

Traditionally, treatment effect is commonly estimated by a regression model where the outcome is regressed against
patient covariates and the treatment. The effect is then read off as the corresponding regression coefficient of the
treatment variable. However, as patients can show significant heterogeneity in response to a treatment, this “aver-
age” effect is not appropriate for describing individual level differential effects. Average superiority of one treatment
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over another does not necessarily mean the treatment will remain superior for each patient. As a result of hetero-
geneity in patient characteristics such as genetics, phenotypic, pharmacokinetic, environmental, and socio-economic
factors, clinical outcomes for some patients may deviate considerably from the population average. The important re-
lationship between treatment effect and patient heterogeneity has been welled investigated;11;12 however, comparative
effectiveness researchers still rely on inefficient and non-robust classical regression and propensity score methods for
estimation of treatment effects in observational studies.

In this study, we provide a three stage framework that allows the discovery of stable, robust and clinically meaningful
homogeneous subgroups with differential effects of plasma transfusion on important patient outcomes. In the first
step, our proposed framework makes use of the unsupervised random forest (URF) algorithm13 to derive a “prox-
imity" or dissimilarity matrix between data points in a mixed-type (continuous and categorical) high dimensional
covariate space. In the second step, we use the dissimilarity matrix in a hierarchical clustering algorithm to identify
highly similar patient subgroups. Compared to classical parametrically derived propensity scores, the URF subgroup
membership represents a more robust covariate balancing score.14 Thus, treatment effect estimates within subgroups
of well-matched clinically homogeneous patients are then conditionally unbiased.15 In the final step, we applied the
doubly robust targeted maximum likelihood estimation (TMLE)16;17 method to estimate the effect of FFP transfusion
on bleeding and mortality in each subgroup. The TMLE further insures against any potential confounding that may
still exist in the subgroups.

The framework was applied to two datasets from a single academic institutional blood transfusion datamart18 to dis-
cover subgroups of patients with differential responses to pre-operative or pre-procedural plasma transfusion (PPT) on
two important patient outcomes: intra-operative or intra-procedural bleeding and mortality. Using only pre-operative
or pre-procedural patient information, a cluster validation technique based on the predictive strength of cluster mem-
berships and treatment assignment indicated that the first dataset consisting of patients undergoing non-cardiac surgery
(NCS) can be clustered into six homogeneous subgroups while the second dataset consisting of patients undergoing
interventional radiology (IR) procedures can be clustered into five subgroups. With respect to clustering the NCS data
set, we found two clusters with harmful effect, two clusters with beneficial effect, and a cluster with no effect of PPT
on bleeding. Three clusters showed no effect of PPT on mortality and two clusters showed harmful effects. Similar
results were obtained for the IR data set. Compared to previous studies that have shown the population wide harm-
ful effects of plasma transfusion,3;8–10 the findings in this study suggest the need to consider individualized and/or
subgroup effects of plasma transfusion.

To further characterize phenotypes of patients within these subgroups, we applied a random forest feature contribution
technique19 to determine which patient characteristics most strongly predict bleeding or mortality at both the popula-
tion and individual levels. The feature contributions showed that considerable variabilities exist between population
level risk factors and individualize/subgroup level risk factors.

Method

Study Population

This is a retrospective observational cohort study conducted under the approval of the Mayo Clinic Institutional Review
Board (Rochester, MN) before initiation. The protocol was reviewed and approved by institutional review board as a
minimal risk study and informed consent was not required. Screening for potential study participants was performed
using the perioperative datamart, an institutional resource that captures clinical and procedural data for all patients
who are admitted to an acute care environment including procedural suites, operating rooms, ICUs, and progressive
care units at the study’s participating institution.18 This robust data warehouse also contains information on base-
line demographic and clinical characteristics, fluid and transfusion therapies, perioperatve/periprocedural medications
and laboratory values, postoperative/postprocedural outcomes, and lengths of stay. Two different cohorts of patients
were extracted from the datamart: the first comprising patients undergoing non-cardiac surgery and the second made
up of patients undergoing percutaneous invasive image-guided intervention (i.e., inpatient or outpatient procedures
performed by the Division of Vascular and Interventional Radiology).

Non-Cardiac Surgery Data

The non-cardiac surgery data (NCS) was originally extracted to study the association between preoperative plasma
transfusion and perioperative bleeding complications for patients with elevated INR.9 To be considered for study
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participation, patients must meet the following criteria: age ≥ 18 years, non-cardiac surgery and an INR ≥ 1.5 in the
30 days preceding surgery. Between January 1, 2008 and December 31, 2011, a total of 1,233 patients were identified
and comprised the study population. Plasma transfusion was offered to 139 patients. To expand the work in9 that was
based on traditional propensity score and matching techniques, we used the same data set and kept the same exclusion
and inclusion criterion.

Baseline Variables. Baseline patient demographics include age, height, weight, gender and the ASA physical status
classification. Disease conditions included myocardial infarction, congestive heart failure, cerebrovascular disease, de-
mentia, chronic pulmonary disease, diabetes mellitus, etc. Preoperative laboratory values included INR, hemoglobin,
platelet counts, creatinine, albumin, and APTT (activated partial thromboplastin time). A total of 51 predictors were
considered for inclusion in the analyses.

Outcomes and Treatment. Two main outcomes were considered: periopartive bleeding and mortality. Bleeding was
taken as the World Health Organization (WHO) grade 3 bleeding events, defined as the need for early perioperative
red blood cell (RBC) transfusion.9 Mortality was death during surgery or death within 30 days post-surgery (typically
in the ICU). The treatment variable PPT indicates if a patient was offered plasma transfusion after INR test and 24
hours before surgery. As a guard against residual confounding, all RBC transfusions cases within this interval were
dropped.

Interventional Radiology Data

The interventional radiology (IR) data set has been used in10 to study the association between prophylactic plasma
transfusion and periprocedural RBC transfusion rates (or bleeding) in patients with elevated INR (INR≥ 1.5 ). Similar
to the NCS study, the IR study was based on traditional propensity and matching methods and this study seeks to
expand those results through application of advanced machine learning methods. As with the NCS study, the same
inclusion and exclusion criteria were used. Between January 1, 2009 and December 31, a total of 1,902 patients met
the inclusion criterion with 190 receiving plasma transfusion. Similar groups of baseline predictors as for the NCS
data were used for the analysis.

To handle missing values in both data sets, we applied the random forest imputation method missForest20 implemented
in the R statistical programming language to impute variables with less than 35% missing observations. Predictors
with greater missingness were removed from the data.

Unsupervised Random Forest

The goal of clustering the blood transfusion data is to discover internal structure in the data by breaking it down into
groups without any prior knowledge about the groupings. The idea is that once these groups are identified and proven
robust, the clusters can aid in the determination of the effects of plasma transfusion. Not only are the clusters expected
to balance the covariates (mitigate confounding) and account for patient heterogeneity, we also expect them to be
clinically meaningful. A clustering technique known to be able to produce accurate and clinically meaningful clusters
is the unsupervised random forest (URF) clustering.13;21 URF clustering has the additional attractive property that
it can handle mixed type of variables. The NCS and IR data sets contain both continuous (e.g. age) and categorical
(e.g. race) variables making the use of classical clustering methods such as hierarchical or k-means clustering based on
Euclidean or binary type distance measures inappropriate. While many researchers in health sciences have mainly used
the random forest13 method for supervised learning in the context of classification, regression, or feature selection,
many are unaware of its utility in unsupervised learning.22

Random Forest (RF): RF is an ensemble learning method where multiple decision trees are constructed on a bootstrap
sample of the training data and the predictions combined by averaging or majority vote. The left-out cases of the boot-
strap also called out-of-bag (OOB) sample and consisting of around 37% of the data, are not used for tree construction
but are used to validate the performance of the tree. The splitting criterion in RF is based on selecting a random
subset of predictors or mtry and the predictor yielding the best split within this set is chosen to perform the split. An
important output of a RF analysis is the “proximity" matrix, a similarity matrix of size n×n, where n is the number of
observations. This matrix constitutes the fraction of times in which two observations are placed in the same terminal
node of a tree. The intuition is, if two observations end up in the same terminal node, then they are naturally similar
and their proximity or similarity score is increased by one. This is done for all observations and trees in the forest
and the proximities are normalized by dividing by the number of trees. Computation of the proximity matrix is not
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required for classification or regression problems, but crucial for URF. The proximity matrix can be easily transformed
into a dissimilarity matrix: if sij ∈ [0, 1] is the proximity of the i and j observations, then the distance between them
is given by dij =

√
1− sij . The dissimilarity matrix can then be used for unsupervised learning such as clustering

and multidimensional scaling.

URF Clustering: URF clustering consists of two steps. In the first step, a RF classification model is generated to
distinguish between the original data labeled as class 1 and a synthetic data of the same size as the original data and
labeled as class 0. One way to generate the synthetic data is to take independent random samples from each dimension
according to the empirical distribution of the corresponding dimension of the true data and a second approach is to
simply permute each dimension. The supervised learning step attempts to distinguish the true data from a random
version of the data, thus if there exists any underlying structure in the true data, the OOB error will be small, showing
that the synthetic data destroyed that structure. An OOB error of about 50% indicates the original data is not very
different from the synthetic data and possibly contains no informative structure. Thus the OOB error provides a
natural data driven way to determine if interesting patterns exist in the data. In the second step, the proximity matrix
between the true data points is extracted and passed to a clustering algorithm such as hierarchical clustering. For
clustering the NCS and IR data, we use the permutation strategy to generate synthetic data and used the agglomerative
hierarchical clustering method with the Ward’s minimum variance criterion to identify clinically relevant subgroups
with differential effects of plasma transfusion.

Cluster Validation: Cluster validation is the process of evaluating the quality of a clustering result, and is vital to the
success of clustering applications. The robustness or stability of the clustering as well as the optimal number of clusters
can be determined using “internal” or “external" validation measures.23 Internal measures used only information
available to the data without reference to any external information. As our goal is to generate homogeneous clusters
with respect the treatment a patient receives and an outcome, we evaluated the homogeneity of the clustering using
an external validation technique that make use of the treatment and outcome not used to generate the clusters. Our
external measure is based on the assumption that similar patients receiving the same type of treatment are expected to
experience the same outcome. Thus, clusters are validated by measuring the area under the ROC curve (AUC) for a
logistic regression model that predicts the true outcome (Bleeding and Mortality) based on cluster memberships and
treatment (PPT). For a stable clustering application, the more homogeneous the clusters, the higher the AUCs, which
implies that the AUC increases with the number of clusters. We select the optimal number of clusters by plotting the
AUC by the number of clusters and apply the “elbow criterion”. The elbow is the point on the graph where addition
of a cluster does not lead to a significant gain in AUC and corresponds to the optimal number of clusters (see Figure
1 (a) and (b)) . As the elbow method can be ambiguous, we also apply principle of parsimony when selecting the
number of clusters.

Random Forest Feature Contributions

An important component of the RF algorithm is its capability to produce a variable ranking score or variable impor-
tance based on association of a given predictor with other predictors and with the outcome variable. This score can
help in interpretation of the model or for dimension reduction. The variable importance is a population measure, and
as an average score, it does not indicate the relative influence of each patients’ feature value in predicting the outcome.
A variable might be an important risk factor for the overall population, but not a risk factor for a given individual
or subgroup of patients. Recently, the RF variable importance measure has been extended to an importance score or
feature contribution19 for each individual patient in the training set. The feature contributions characterize the relative
contribution of a patient’s baseline variables towards predicting an outcome value or class. Another attractive property
of the feature contribution method is that it can be predicted for new patients. This offers a way to further validate
the random forest model: when the average feature contributions of the training and test set matches, then the model
can generalize well. For classification problems, a zero value for feature contribution indicates that the variable is
irrelevant with respect to assigning a patient to a given class. Positive values indicate that the variable is influential
towards classifying the patient to a reference class.

Treatment Effect of Plasma Transfusion

The standard approach to investigate the causal relationship between a treatment or exposure and an outcome is to
construct statistical regression models in which the outcome is regressed against baseline covariates and the treatment
variable. The attributable effect of the treatment is then read off as the corresponding regression coefficient. This
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study takes a different approach and estimates the treatment effect through application of machine learning methods.
The theory of causal inference or technical details of the considered estimation procedure are beyond the scope of
this study. The interested reader is referred to16;24;25 for more details. However, for the purposes of this study, a brief
discussion of the data structure required to compute these estimators is presented next.

Data structure and likelihood. The observations for each patient in the data set can be written as O = (X, Y, Z) where
Z ∈ {0, 1} is the treatment indicator with Z = 1 if patient was treated and Z = 0 if patient was not treated. X is
a vector of baseline covariates that records information specific to each patient prior to treatment. Y is the outcome
such as bleeding or mortality. The relationship between the observed variables in O can be written in a factorize data
likelihood as

Pr (X, Y, Z) =

g︷ ︸︸ ︷
Pr(Z|X)

Q︷ ︸︸ ︷
Pr(Y|X, Z) Pr (X) . (1)

Pr(X) and Pr(Y|X, Z) are referred to as the Q component of the likelihood while Pr(Z|X) is the g component.
g(Z|X) represents the propensity or the causal disposition of the treatment to produce some outcome. LetQ0(Z, X) =
E[Y|Z,X] be the true potential outcome conditional on the observed characteristics. Estimates of g and Q0 can be
obtained by standard regression or machine learning methods.

For a binary outcome and in the presence of no confounding variables, the treatment effect can be easily computed by
taking the expectations ψ1 = E[YZ=1] and ψ0 = E[YZ=0], where E[YZ=1] is the mean of Y assuming every patient
in the population was exposed at level Z = 1. These two statistics can then be combined in useful ways to assess the
effect of different levels of the treatment. Two commonly reported summary statistics include the Additive Treatment
Effect : ATE = ψ1 − ψ0 and the Risk Ratio : RR = ψ1/ψ0.

The ATE quantifies the additive effect of every patient being exposed to the event versus not being exposed. Thus, a
meaningful interpretation of ATE = 0.05 could read: “offering a patient plasma transfusion versus not increases the
risk of bleeding/mortality by 5%".16 The RR quantifies the multiplicative effect of being exposed versus not. A RR of
5 can be interpreted as: “ offering a patient plasma transfusion versus not would lead to a 5 times increase in the risk
of bleeding/mortality".

Targeted maximum likelihood estimation. In observational studies, estimators of treatment effect need to account for
possible confounding, i.e situations where the (apparent) effect of the treatment is actually the effect of another char-
acteristic that is associated with both the treatment and the outcome. Several methods have been proposed for the
estimation of ATE and RR in a way that can mitigate the effects of confounding (and model misspecification), e.g.
G-computation formula, propensity score matching, inverse probability of treatment weighting (IPTW), and doubly-
robust estimation. See24;25 for more in-depth discussion of these estimators. In this study, the targeted maximum
likelihood estimation (TMLE)16;17 method is considered because of its double robustness and bias reduction prop-
erties. TMLE is a two stage doubly robust semi-parametric estimation methodology designed to minimize the bias
of the parameters of interest. The first stage of the method estimates the density of the data generating distribution
(specifically Q0) while the second stage solves an efficient influence curve estimating equation. The influence curve
describes the behavior of the target parameter under slight changes of the initial density estimates.

In TMLE, if either g or Q0 are consistently estimated, then the TMLE estimator is guaranteed to be asymptotically
unbiased. However, TMLE will not return consistent estimates of the parameter of interest when both g and Q0 are
misspecified. Thus it is important to avoid overfitting these measures.

As discussed above, estimating the two statistics ψ1 and ψ0 allows for calculating any of the causal effects ATE and
RR. The TMLE estimate of ψz (z ∈ {0, 1}) is given by

ψ̂z =
1

n

n∑
i=1

Q̂∗
0(z, xi) (2)

where Q̂∗
0(z, xi) is an update of Q̂0(z, xi). The targeting step for updating Q̂0(z, xi) is done by fluctuating Q̂0(z, xi)

through a parametric sub-model of the form: logit(Q̂∗
0(z, x)) = logit(Q̂0(z, x))+εĤz(z, x),where ε is the fluctuation

parameter, Ĥ(z, x) = I(Z = z)/ĝ(z, x) is the efficient influence curve equations, and I is the indicator function. The
MLE of ε is obtained by a logistic regression of Y on Ĥz(z, x) with offset logit(Q̂0(z, x)). Confidence intervals and
p-value for TMLE can be obtained through the variance of the influence curve.
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TMLE can use initial estimates of Q0 and g from any fixed parametric model such as generalized linear models
(GLM) (e.g logistic regression). However, most parametric models require a functional form for the predictors, and
some assume distributions for the outcome and predictors variables, which are often not realistic such that model
misspecification is difficult to avoid. It is therefore recommended to used machine learning methods that makes little
or no assumptions and are able to estimate complex relationships between the outcome and observed variables.

Results

This section presents the main results: estimates of treatment effect of PPT on bleeding and mortality for the complete
data and for each subgroup. For the calculations of ATE and RR, we estimate Q0 and g using five models: generalized
boosting machine (GBM), random forest, support vector machine (SVM), logistic regression and extreme logistic
regression (ELR)26 and select the best model through 5-fold cross-validation. First we present the cluster validation
analysis, then the treatment effect analysis, and end the section with analysis of the population or median feature
contributions over all patients in the cohort and the individual feature contributions for two random patients.

Cluster validation and selection of optimal number of clusters

A robust and stable clustering procedure generates homogeneous clusters such that patients within clusters are similar
with respect to baseline characteristics. This implies the procedure has identified hidden structure in the data. A way
to determine if the URF method identified underlying structure in the NCS and IR datasets is to look at the OOB
error rates. Specifically, the OOB error rate for the NCS and IR data clustering problems were 11.95% and 1.20%
respectively, indicating that the synthetic data destroyed existing structure in the data and the RF model was able to
capture this information with high accuracy.

Ward’s Minimum Variance: URF can identify structure in the data, but obtaining good clusters crucially depends on
the clustering algorithm. We employ the agglomerative hierarchical clustering algorithm with the Ward’s minimum
variance criterion. Figure 1 (c) and (d) shows the dendrogram of the algorithm for the NCS and IR data sets respec-
tively. The dendrogram represents the similarity relationships between patients in a tree-like form. Agglomerative
hierarchical clustering starts by assuming that each patient is a cluster, and successively merges similar clusters to
form larger clusters. Because of the hierarchical structure, different number of clusters can be obtained by cutting the
tree at different heights. We used the Ward’s method, which minimizes the sums of squares between clusters to merge
similar clusters together. However, we also tried other merging algorithms such as the single, complete, and average
linkage methods, but all produced unstable and sparse clusters. In contrast, the Ward’s method produced stable and
equal sized clusters.

Predictive Ability of Cluster Memberships: The clustering partitioned the data space into non-overlapping regions,
where each region is associated to a given level of the treatment and outcome. In other words, if the regions are
sufficiently homogeneous, then similar outcomes are expected for patients if offered the same treatment. As a conse-
quence, a classification model can efficiently discriminate between the classes based on treatment status and subgroup
allocations, and the discriminative power increases the more homogeneous the groups become.

Figure 1 (a) and (b) shows AUCs (averaged over 5-fold cross-validation) of a logistic regression model predicting
bleeding (red curve) and mortality (blue curve) based on cluster memberships and plasma transfusion plotted against
the number of clusters. Clearly, the cluster memberships are predictive as can be seen by the rise in AUC as the
number of clusters increases (solid lines) compared to the poor and unstable performance of a randomly generated
clusters (dotted lines). There is a big jump in performance from 2, 3 and 4 clusters to 5 or 6 clusters. After the 5’th
or 6’th cluster, the relative increase in AUC reduces and becomes somewhat stable. We choose the number of clusters
as that corresponding to the elbow or turning point of the curve. At the elbow, adding another cluster to the logistic
regression model does not lead to any appreciable performance gain. Thus, 6 clusters are optimal for the NCS data
and 5 for IR. Close observation of the curves will indicate that 7 or 8 clusters can equally be selected. However, these
higher cluster numbers produced very sparse distributions of the observed treatment and outcome events in some of
the clusters. In our implementation, we set the minimum number of events observed in each cluster to 10.

Effect of Plasma Transfusion on Bleeding and Mortality

Population Effect: Table 1 presents the ATE and RR quantifying the population effect of PPT on bleeding and mortal-
ity for the NCS and IR datasets. The GBM algorithm performed best for the NCS data, while the ELR offered the best
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(a) NCS Cluster Validation: 6 clusters (b) IR Cluster Validation: 5 clusters

(c) NCS Hierarchical Clustering Dendrogram (d) IR Hierarchical Clustering Dendrogram

Figure 1: NCS and IR Data Cluster Validation and Dendrograms (dotted lines indicates performance for randomly
generated clusters).

performance for the IR data. To save on space, discussions will be restricted to the ATE summary statistics; interpre-
tations for RR can be similarly made. Overall, the estimates from TMLE confirmed previous findings that population
wise, PPT increases the risk of bleeding.8;27 Specifically, for the population of NCS and IR patients considered in this
study, PPT significantly increases the risk of bleeding by 14% (p-value = 0.00) and 12% (p-value = 0.00) respectively
(95% confidence intervals are shown in brackets). With respect to mortality, PPT marginally increases risk by 4% for
NCS and has no effect for IR populations.

Table 1: Population Effect of PPT on Bleeding and Mortality
Data Outcome ATE p-value RR p-value

NCS Bleeding 0.14 (0.08, 0.20) 0.00 1.438 (1.25, 1.65) 0.00
Mortality 0.04 (0.00, 0.09) 0.06 1.523 (1.06, 2.00) 0.02

IR Bleeding 0.12 (0.09, 0.15) 0.00 2.01 (1.68, 2.39) 0.00
Mortality -0.01 (-0.03, 0.02) 0.53 0.92 (0.72, 1.19) 0.54

Subgroup Effect: Table 2 presents estimates of ATE and RR within each cluster identified for the NCS and IR data
sets. With respect to the NCS clusters, we found: (a) One cluster with 551 patients where PPT increases the risk of
bleeding and mortality by 32% and 6% (p-value = 0.00 and 0.05) respectively. (b) One cluster where PPT has no
effect on bleeding and mortality. This cluster may represent patients where the administration of prophylactic plasma
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transfusion is wasteful. (c) Two clusters of sizes 150 and 127, where PPT reduces the risk of bleeding by 9% in each
cluster. Correspondingly, PPT increases the risk of mortality in one cluster and has no effect in the second. (d) The
last cluster with 171 patients show harmful effect of PPT on bleeding and no effect on mortality.

Overall, the effect PPT on bleeding for the NCS data was beneficial in two subgroups and none showed any beneficial
effect with respect to mortality. It is therefore interesting to investigate the characteristics of patients in these sub-
groups. This information can help reduce the inappropriate use of plasma products as only the patients who will truly
benefit from plasma transfusion are considered for treatment.

For the IR data clustering, we found roughly similar results. One group with 187 patients having beneficial effect
of PPT on bleeding (11%, p-value=0.00). The IR data set however contains two subgroups with beneficial effect of
PPT on mortality. The NCS and IR clustering problems contains subgroups (n = 75 and 451 respectively) where
the observed number of patients with bleeding/mortality and PPT events was less than 10, and no treatment effect
estimates were computed for these groups.

Table 2: Subgroup Effects of PPT on Bleeding and Mortality
Data Cluster ATE p-value RR p-value

NCS

Cluster 1 (n=171) Bleeding -0.02 (-0.11, 0.08) 0.73 0.98 (0.84, 1.13) 0.74
Mortality -0.03 (-0.12, 0.06) 0.53 0.89 (0.60, 1.30) 0.53

Cluster 2 (n=551) Bleeding 0.32 (0.23, 0.41) 0.00 2.06 (1.71, 2.47) 0.00
Mortality 0.06 (0.00, 0.13) 0.05 1.67 (1.08, 2.59) 0.02

Cluster 3 (n=150) Bleeding -0.09 (-0.18, -0.01) 0.04 0.49 (0.21, 1.11) 0.09
Mortality 0.74 (0.65, 0.82) 0.00 26.26 (10.07, 68.48) 0.00

Cluster 4 (n=171) Bleeding 0.13 (0.06, 0.20) 0.00 2.22 (1.42, 3.49) 0.00
Mortality -0.01 (-0.02, 0.01) 0.30 0.00 (0.00, 0.00) 0.00

Cluster 5 (n=127) Bleeding -0.09 (-0.12, -0.04) 0.001 0.00 (0.00, 0.00) 0.00
Mortality -0.01 (-0.02, 0.01) 0.32 0.00 (0.00, 0.00) 0.00

Cluster 6 (n=75) Bleeding - - - -
Mortality - - - -

IR

Cluster 1 (n=650) Bleeding 0.37 (0.33, 0.42) 0.00 4.92 (3.75, 6.44) 0.00
Mortality -0.04 (-0.07, -0.01) 0.02 0.60 (0.39, 0.92) 0.02

Cluster 2 (n=390) Bleeding 0.06 (-0.01, 0.13) 0.11 1.45 (0.94, 2.23) 0.09
Mortality 0.01 (-0.06, 0.07) 0.89 1.038 (0.62, 1.75) 0.90

Cluster 3 (n=451) Bleeding - - -
Mortality - - -

Cluster 4 (n=224) Bleeding 0.12 (0.03, 0.21) 0.01 1.50 (1.11, 2.03) 0.01
Mortality -0.11 (-0.18, -0.04) 0.002 0.47 (0.28, 0.81) 0.01

Cluster 5 (n=187) Bleeding -0.11 (-0.18, -0.04) 0.003 0.49 (0.29, 0.81) 0.01
Mortality 0.02 (-0.06, 0.10) 0.62 1.11 (0.73 1.70) 0.62

Feature Contributions

We report only the results for the NCS complete data. Result for the IR data and all subgroups can be obtained by
contacting the authors. Figures 2 (a) and (b) shows the median feature contributions for all patients averaged over
five-fold cross-validation and the corresponding feature contributions for two random patients. The two patients (P1
and P2) were both offered plasma transfusion but experience different levels of the bleeding/mortality outcome: P1
bled/died and P2 did not bleed/die. Preoperative hemoglobin levels and PLT test value (platelet count) are the two
most contributing variables towards predicting bleeding and mortality. Though appearing in different order, the same
9 variables appear among the top 10 most predictive variables for all patients in the two models. Considering the
median feature contribution, these top 9 variables are somewhat equally contributive towards predicting whether a
patient will bleed or not. However, these variables contribute more towards predicting the death status of a patient
compared to predicting alive status.

The plots clearly show that significant variabilities exist between population level (median) feature contributions and
the individual level. For example, while plasma transfusion is a strong contributing factor towards predicting bleeding
for the random patients, the effect of the variable is almost zero when we consider the population level. Similarly, while
the population level contributing factor of connective tissue disease is almost zero, it however contributes significantly
towards predicting the death status of the random patient P1.
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(a) Contributing features towards predicting Bleeding (b) Contributing features towards predicting Mortality

Figure 2: Top 35 features contributions towards predicting Bleeding and Mortality (NCS data)

Conclusion

The most common reason cited for plasma transfusion is the correction of an elevated pre-operation/pre-procedural
international normalized ratio (INR) for the prevention of bleeding complications,4;10 despite lack of evidence to
support such practices. The decision to offer plasma transfusion to patients with abnormal coagulation factors still
remains largely controversial. Current recommendations are mostly based on expert opinion and a precautionary
approach to correct abnormal laboratory tests results and there is wide spread variation in the practice with respect
to plasma transfusion.2–4 Many studies, including randomized control trials have shown no significant benefit for
prophylactic and therapeutic use of fresh frozen plasma (FFP) across a range of indications.3;4;28 Moreover, majority
of these studies report the inappropriateness and harmful effect of prophylactic plasma transfusion. However, almost
all the studies have evaluated the effect of plasma transfusion at the population level. Despite accounting for parameters
such as treatment selection bias and potential confounding in observational studies, those results apply essentially to
the average patient. Given that the critically ill patient population can be highly heterogeneous in their responses to
treatments, the average effect of a treatment is of limited value, as it ignores individual patient level variabilities of the
treatment, which often deviate substantially from the population average. Furthermore, except for the work in,8 most
of the published work on the effect of plasma transfusion have traditionally used classical regression, propensity score,
and matching methods, which often make unrealistic and difficult to satisfy assumptions about the patient population.

This study takes a different approach and applied subgroup analysis based on efficient and robust machine learning
methods and identified several homogeneous subgroups exhibiting differential effects of plasma transfusion on bleed-
ing and mortality. Specifically, using the unsupervised random forest (URF)13;21 clustering method and the doubly
robust targeted maximum likelihood estimation (TMLE) method,17 we identified stabled and clinically meaningful
subgroups with beneficial, harmful, and no effect of plasma transfusion on bleeding and mortality. Recognizing the
widespread inappropriate use of FFP and the lack of evidence to support the use of plasma transfusion to prevent
bleeding, the results from this study suggest that researchers should reconsider evaluation measures based on the over-
all population, and strongly support the fact that blood transfusion therapy should be customized for the individual
patient. Further, analysis of the subgroup characteristics can help shed light on the much needed evidence to support
the use of plasma transfusion to correct prolonged prothrombin time and prevention of bleeding complications.
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