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Abstract  

Psoriasis is a chronic, debilitating skin condition that affects approximately 125 million individuals worldwide. The 
cause of psoriasis appears multifactorial, and no unified mitigating signal or single antigenic target has been 
identified to date. Metabolomic studies hold great potential for explaining disease mechanism, facilitating early 
diagnosis, and identifying potential therapeutic areas. Here, we present an integrated disease metabolomic 
biomarker discovery strategy that combines mechanism-based biomarker discovery with clinical sample-based 
metabolomic profiling. We applied this strategy in identifying and understanding metabolite biomarkers for 
psoriasis. The key innovation of our strategy is a novel mechanism-based metabolite prediction system, mmPredict, 
which assimilates vast amounts of existing knowledge of diseases and metabolites. mmPredict first constructed a 
psoriasis-specific mouse mutational phenotype profile. It then constructed phenotype profiles for a total of 259,170 
chemicals/metabolites using known chemical genetics and human metabolomic data. Metabolites were then 
prioritized based on the phenotypic similarities between disease- and metabolites. We evaluated mmPredict using 
150 metabolites identified using our in-house metabolome profiling study of psoriasis patient samples. mmPredict 
found 96 of the 150 metabolites and ranked them highly (recall: 0.64, mean ranking:  8.73%, median ranking: 
2.33%, p-value: 4.75E-44). These results show that mmPredict is consistent with, as well as a complement to, 
traditional human metabolomic profiling studies. We then developed a strategy to combine outputs from both 
systems and found that the oxidative product of linoleic acid, 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-
HODE), ranked highly by both mmPredict and our in-house experiments. Our integrated analysis indicates that 13-
HODE may be a mechanistic link between psoriasis and cardiovascular comorbidities associated with psoriasis. In 
summary, we developed an integrated metabolomic prediction system that combines both human metabolomic 
studies and mechanism-based prediction and demonstrated its application in the skin disease psoriasis. Our system 
is highly general and can be applied to other diseases when patient-based metabolomic profiling data becomes 
more increasingly available. 
Data is publicly available at: http://nlp.case.edu/public/data/mmPredict_PSO 
 
1. Introduction 
The prevalence of skin disease exceeds those of obesity, hypertension or cancer. One in three Americans suffers 
from a skin disease, and ~2-3% of these individuals have psoriasis. Costs of treating psoriasis patients are believed 
to exceed $1B, including over $350M in prescriptions alone [1-4]. The pathophysiology of psoriasis is complex, and 
no unified mitigating signal or single antigenic target has been identified.   

Human metabolomics is the comprehensive characterization of all metabolites found in the human body. Human 
metabolomics has great potential for explaining disease mechanism, facilitating early diagnosis, and identifying 
potential therapeutic areas. Common technologies for metabolomics include mass spectrometry (MS) and nuclear 
magnetic resonance spectroscopy (NMR) [5-6]. Human metabolites are highly heterogeneous. The Human 
Metabolome Database (HMDB), a comprehensive database of small molecule metabolites found in the human body, 
contains 42,032 metabolites of lipids, small peptides, amino acids, organic acids, vitamins, carbohydrates, nucleic 
acids, as well as metabolites derived from drugs, environmental contaminants, food additives, toxins, cosmetics, and 
other xenobiotics such as microbial or fungal symbionts [7]. Profiling the human metabolome is difficult owing to 
the challenges of reproducibility and knowledge generalization, as the human metabolome is affected by not only 
intrinsic but also many extrinsic factors such as sample collection, storage, processing and data analysis [8]. The 
NIH Common Fund Metabolomics Program was launched in 2012 with a primary goal to increase the national 
capacity to conduct metabolomics research [9]. Currently, the NIH Metabolomics Workbench Metabolite Database 
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(MWMD) contains metabolomics studies for a very limited number of diseases [10]. While current metabolomics 
profiling strategies can identify clinically significant metabolite biomarkers, it is limited in understanding the 
underlying mechanistic links between identified metabolites and diseases.  

Here, we present a novel mechanism-based metabolomic biomarker discovery system, mmPredict, to complement 
current patient-based metabolomic profiling studies. We developed an approach to combine outputs from these two 
complementary strategies and demonstrate its utility in the clinical skin disease psoriasis. The output of this 
integrated system is a ranked list of metabolomic biomarkers that incorporate both clinical significance and 
interpretable molecular mechanisms. mmPredict integrates large amounts of data from human disease genetics, 
chemical genetics, mouse mutational phenomics, human metabolomics, and genetic pathways in order to predict 
disease metabolomic biomarkers. The underlying rationale for mmPredict is that, if the changes in metabolite-
associated genes cause many phenotypes (reflected in mouse models) that are also involved in any given disease 
(psoriasis in this study), then the metabolite is likely to be involved mechanistically in the disease. In order to test 
the validity of mmPredict to traditional metabolomic profiling, we compared the output of mmPredict to our in-
house metabolomic profile.  Our in-house psoriasis metabolome was identified using a traditional metabolomics 
comparison study of skin samples obtained from the involved plaques of psoriasis patients (n=12) compared to skin 
samples obtained from age-matched healthy control subjects (n=9) and identified 150 significantly altered 
metabolites. mmPredict highly ranked psoriasis metabolites identified from our in-house metabolomic profiling 
study, indicating that these two strategies are consistent with, as well as complementary to, each other.  We then 
developed a strategy to combine outputs from these two complementary strategies and identified psoriasis-
associated metabolite biomarkers likely to have both mechanistic and clinical significance.  

mmPredict performs both genome- and phenome-wide matching between metabolites and diseases. We compared 
mmPredict to a genome-wide- strategy that we recently developed to identify human gut microbial metabolite 
biomarkers for colorectal cancer (CRC) [11] as well as Alzheimer’s disease [12]. We demonstrated in this study that 
mmPredict is more effective in identifying clinically relevant metabolite biomarker for psoriasis than the genome-
wide approach. 
 
2. Data and methods 

2.0 The overview of mmPredict  
mmPredict matches psoriasis metabolites based on both genetic and phenotypic relevance.  mmPredict consists of 
the following components: (1) mmPredict constructs mouse mutational phenotype profiles for a given disease 
(psoriasis in this study) using publicly available disease genetics and genomics databases; (2) it constructs mouse 
mutational phenotype profiles for a total of 259,170 chemicals/metabolites; (3) mmPredict prioritizes metabolites for 
a given disease based on the phenotype profile similarities between the disease and metabolites (Fig. 1). 

Genes Mouse	
Phenotypes	

Psoriasis

Identify	mouse	phenotype	
profile	for	the	disease

OMIM
GWAS	Catalog

Genomic	signature	for	psoriasis

GenesMouse	
Phenotypes	

Identify	mouse	phenotype	
profile	for	candidate	metabolites

Mouse	
Phenotype	
Profile	

Calculate	disease-metabolite
Phenotype	similarity

Mouse	
Phenotype	
Profile	 Metabolite	1

Metabolite	2

…

177,339	phenotype	
annotations	for	8109	genes Interacting	genes	for	metabolites Metabolite	data

 
Fig 1: mmPredict: a combined genome- and phenome-wide metabolite prediction system, including three 
components and five data resources. 

We evaluated mmPredict using 150 metabolites identified by comparing involved tissue from psoriasis patients to 
healthy control skin in our in-house metabolomic study. We developed an approach to combine predictions from 
mmPredict and from our in-house metabolomic study to identify metabolites likely to have both clinical and 
mechanistic significance.  
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For comparison, we implemented a genome-wide metabolite prediction system mmPredict_Gen. The underlying 
assumption is that if a metabolite is associated with many psoriasis-associated genes, then the metabolite may be 
associated with the mechanism(s) causing psoriasis. We have previously applied this strategy to identify human gut 
microbial metabolites associated with colorectal cancer [11] as well as Alzheimer’s disease [12]. The difference 
between mmPredict and mmPredict_Gen is that mmPredict utilizes both genome- and phenome-wide information, 
while mmPredict_Gen prioritizes metabolites for diseases based on genetic profile similarities (Fig 2). We 
demonstrated in our study that mmPredict performed consistently better than mmPredict_Gen.   

OMIM
GWAS	Catalog

Genomic	signature	for	psoriasis Interacting	genes	for	metabolites Metabolite	data

Genes

Metabolite	1

Metabolite	2

…

Genes

Psoriasis

 
Fig 2: mmPredict_Gen: a genome-wide metabolite prediction system (five data resources are shown). 

 
2.1 Data 
We used the disease phenotype knowledge bases that we recently constructed, as well as publicly available data 
from the human metabolome, disease genetics, chemical genetics, functional protein interactions and signaling 
pathway databases to identify metabolites associated with psoriasis and its’ comorbidities. 

2.1.1 Disease genetics and genomics data 
We used two complementary databases to obtain genes associated with psoriasis. We identified 49 genes associated 
with common complex forms of psoriasis from the Catalog of Published Genome-Wide Association Studies (GWAS 
catalog), an exhaustive source containing descriptions of disease-/trait-associated single nucleotide polymorphisms 
(SNPs) from published GWAS studies [13]. We identified 35 genes associated with rare Mendelian forms of 
psoriasis from the Online Mendelian Inheritance in Man (OMIM) database, the most comprehensive source of 
disease genetics for Mendelian disorders [14]. We used these two complementary resources of disease genetics to 
demonstrate the robustness of our algorithms and findings. 

2.1.1 The Human Metabolome Database (HMDB)  
HMDB is intended for applications in metabolomics, biomarker discovery and other applications and contains 
detailed information regarding small molecule metabolites found in the human body [7]. Currently, HMDB is the 
most comprehensive collection of metabolite data, containing 42,032 metabolites. We used HMDB to obtain a list of 
metabolites found in the human body.  
2.1.2 Chemical genetics data 
We used the STITCH (Search Tool for Interactions of Chemicals) database [15] to obtain chemical/metabolite-gene 
associations. We used chemical-gene associations found in the human body (1,466,636 chemical-gene pairs for 
259,171 chemicals and 15,620 genes) and metabolites from HMDB to link human metabolites to human genes.  
2.1.4 Genome-wide mutational phenotypes in experimental mouse models 
We used gene-phenotype associations from the Mouse Genome Database (MGD) [16] to assess the phenotypic 
effects of metabolites. The Phenotypes/Alleles project in the MGD provides access to spontaneous, induced, and 
genetically engineered mutations and their specific phenotypic outcomes. Currently, MGD contains 278,553 gene-
phenotype associations, representing 41,905 mutant alleles and 10,744 phenotypes. For example, the mutation of 13-
HODE-associated gene myeloperoxidase (MPO) in mouse models is associated with 12 phenotypes, including 
‘decreased inflammatory response,’ ‘atherosclerotic lesions’ and ‘increased monocyte cell number.’ The mutation 
of psoriasis-associated gene TRAF3 interacting protein 2 (TRAF3IP2) is associated with 80 phenotypes including 
‘decreased inflammatory response,’ ‘increased pruritus,’ and ‘increased monocyte cell number’. We have recently 
shown that systematic approaches to interrogate human genes to their mouse mutational phenotypes in MGD have 
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great potential in understanding both disease mechanisms and drug effects [17-19]. In this study, we leveraged the 
large number of gene-phenotype associations from MGD and performed genome- and phenome-wide analysis to 
infer phenotypic effects of metabolites on disease.  

2.2 Methods 
2.2.1 Construct mouse mutation phenotype profiles for input disease 
We identified 35 psoriasis-associated genes from the OMIM database and 49 psoriasis-associated genes from the 
GWAS Catalog. We mapped these genes to their corresponding mouse gene homologs (e.g., TRAF3IP2 => 
Traf3ip2) using human-mouse homolog mapping data from the Mouse Genome Database (MGD) [16]. The mapped 
mouse genes were then linked to their corresponding mutational phenotypes (e.g., knockout) in mouse models (e.g., 
Traf3ip2 => ‘increased pruritus’) using gene-phenotype association data from MGD. For each mapped phenotype, 
we assessed its probability of being associated with the given set of genes (e.g., the phenotype “increased pruritus” 
is associated with 10 of the 49 psoriasis genes) as compared to its probability associated with the same number of 
randomly selected genes (e.g., the phenotype “increased pruritus” is on average associated with 0.5 of 49 randomly 
selected genes). The random process is repeated 1000 times and a t-test was used to assess the statistical significance.   

2.2.2 Construct mutational phenotype profiles for chemicals 
We built phenotype profiles for 259,170 chemicals/metabolites from the STITCH database in the same manner as 
described above (e.g., 13-HODE => MPO =>Mpo => ‘increased monocyte cell number’). 

2.2.3 Prioritize metabolites for psoriasis and test the performance using in-house metabolomics study  
Metabolite prioritization  
We calculated the phenotypic similarity of psoriasis and metabolites. We compared four different approaches in 
calculating the similarities, including cosine similarity, overlap, Jaccard similarity [20], and ontology-based 
semantic similarity [17-19, 21]. We showed that ranking based on Jaccard similarity performed consistently better 
than the other three similarity measures used in this study.  Therefore, throughout this study, the metabolite ranking 
values are based on the Jaccard similarity.  

Evaluation of recall and ranking  
We evaluated mmPredict in identifying and prioritizing metabolite biomarkers for psoriasis using our in-house 
metabolome study.  We identified 150 significantly altered metabolites by comparing global metabolic profiles in 
skin samples from normal control subjects (n=9) and age matched psoriasis patient involved psoriasis plaques 
(n=12). We evaluated the algorithm for both identifying and ranking known metabolites using recall, mean ranking, 
and median rankings. Random expectation that the metabolites would have an average ranking of 50% was used to 
evaluate the significance of these rankings.  

Evaluation of prioritization (precision-recall curve)  
We evaluate mmPredict using an 11-point interpolated average precision measure, which is commonly used to 
evaluate retrieved ranked lists for search engines [22]. For each ranked list, the interpolated precision was measured 
at the 11 recall levels of 0.0, 0.1, 0.2, ..., 1.0.  At each recall level, we calculated the arithmetic mean of the 
interpolated precision.  A composite precision-recall curve showing 11 points was then graphed.  
 
2.2.4 Develop a strategy to combine outputs from mmPredict and patient-based metabolomics profiling  
We developed an approach to combine rankings from mmPredict and fold changes from the clinical metabolomic 
study.  The output of mmPredict is a list of metabolites ranked by their percent ranking (“ranking_m”). For example, 
13-HODE ranked at the top 0.23% among 259,170 chemicals. We then ranked the 150 in-house metabolites by their 
fold changes and calculated their percent ranking (“ranking_c”) among all metabolites. For example, 13-HODE was 
ranked at the top 0.67% (top one) among the 150 in-house generated metabolites. The combined ranking is a balance 
measure of rankings from both studies and is defined as: ranking_combined = 2*(ranking_m* 
ranking_c)/(ranking_m + ranking_c). We studied the top one ranked metabolite by performing both genetic pathway 
enrichment and mutational phenotype enrichment analyses.   
 

3. Results  

3.1. Understanding psoriasis genetics, genomics, and phenomics 
We used mmPredict to perform both genome- and phenome-wide analyses to prioritize metabolites for psoriasis.  To 
understand both genetic and phenotypic implications of psoriasis-associations genes, we began our study using 
Ingenuity Pathway Analysis (IPA) [23] to examine the top canonical pathways generated by searching for either rare 
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Mendelian psoriasis genes or common complex psoriasis genes. As shown in Table 1, the top diseases and 
biological functions identified dermatological diseases and conditions, with immunological and inflammatory 
response also being identified. Common cellular response pathways and cells (e.g., dendritic cells and janus 
activated kinase (JAK) signaling) as well as other skin and immunologically prominent diseases (e.g., graft versus 
host disease (GVHD), Rheumatoid Arthritis (RA) and Diabetes Mellitus (DM)) were also identified. 
 

Top Canonical Pathways 
associated with OMIM PSO 

genes 

Top Diseases and Bio 
Functions associated 

with OMIM PSO genes 

Top Canonical 
Pathways associated 

with GWAS PSO genes 

Top Diseases and  
Bio Functions associated 
with GWAS PSO genes 

Dendritic Cell Maturation Dermatological Diseases 
and Conditions 

Type I Diabetes Mellitus 
Signaling 

Dermatological Diseases 
and Conditions 

Graft-versus-Host Disease 
Signaling Inflammatory Response 

Role of JAK1, JAK2 and 
TYK2 in Interferon 

Signaling 
Immunological Disease 

Role of Macrophages, 
Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 
Infectious Diseases Interferon Signaling Gastrointestinal Disease 

Altered T Cell and B Cell 
Signaling in Rheumatoid 

Arthritis 
Neurological Disease Dendritic Cell 

Maturation Inflammatory Disease 

Communication between 
Innate and Adaptive Immune 

Cells 
Psychological Disorders T Helper Cell 

Differentiation Inflammatory Response 

Table 1. Top 5 genetic pathways, diseases, and biological functions enriched for psoriasis-associated genes. Skin-
specific diseases and pathways are shown in pink and Immune-related diseases and pathways are shown in green. 
 
Table 2 outlines the top 10 phenotypes associated with psoriasis genes identified through either the OMIM or 
GWAS databases. As shown in the table, the top phenotypes are enriched for immune-response and skin-related 
phenotypes, confirming the observational and experimental data supporting psoriasis as a predominantly immune-
mediated autoimmune disorder.  Both genetic pathway enrichment and mutational phenotype enrichment analyses 
provided the rationale underlying mmPredict’s combined genome- and phenome-wide analysis.  As shown in the 
following sections, genome-wide prioritization is not as effective as the combined approach. 

Top phenotypes associated with OMIM PSO genes Top phenotypes associated with GWAS PSO genes 
Abnormal immune system morphology Premature death 
Increased double-negative T cell number Complete embryonic lethality during organogenesis 
Decreased IgG level Thick epidermis 
Increased leukocyte cell number Abnormal CD4-positive, alpha-beta T cell physiology 
Increased neutrophil cell number Increased inflammatory response 
Abnormal cytokine secretion Decreased IgG level 
Increased pruritus Increased IgM level 
Dermatitis Decreased interferon-gamma secretion 
Altered susceptibility to infection Abnormal cytokine secretion 
Decreased transitional stage B cell number Abnormal macrophage physiology 
Table 2. Top 10 phenotypes enriched for psoriasis genes from the OMIM and the GWAS catalog. Skin-specific 
diseases and pathways are shown in pink and Immune-related diseases and pathways are shown in green. 

3.2. mmPredict ranked clinically derived psoriasis-associated metabolites highly 
The output of mmPredict is a ranked list of 259,170 chemicals. We also filtered the list of chemicals from HMDB 
by their origins. In HMDB, metabolites are classified based on their origins, such as “endogenous”, “food”, 
“microbial”, “drug”, “plant”, and “toxin/pollutant”. Only 4,057 of the 259,170 chemicals appeared in HMDB, 
including 2,067 endogenous metabolites. We evaluated the performance of mmPredict using the 150 clinically 
derived metabolites.  As shown in Table 3, mmPredict found 96 of these 150 metabolites (recall: 0.64) and 
consistently ranked them highly for both the Mendelian form of psoriasis (mean ranking based on Jaccard similarity: 
8.73%, median ranking based on Jaccard similarity: 2.33%, p-value: 4.75E-44) and common complex form of 
psoriasis (mean ranking based on Jaccard similarity: 9.08%, median ranking based on Jaccard similarity: 2.39%, p-
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value: 1.35E-42).  After filtering the chemicals by metabolites from HMDB, the rankings are still significantly 
higher than random expectation.  However, the recall are lower, indicating that the list of chemicals from the 
STITCH database represents a more complete list of metabolites found in the human body than the list of 
metabolites from HMDB.  

Metabolite source Psoriasis genetics Recall Mean 
Ranking 

Median 
Ranking P-value 

STITCH 
(259,170 chemicals) 

OMIM 0.64 8.73% 2.33% 4.75E-44 

GWAS 0.64 9.08% 2.39% 1.35E-42 

HMDB 
(4057 metabolites) 

OMIM 0.41 22.36% 14.03% 8.54E-13 

GWAS 0.41 23.25% 14.56% 8.54E-13 
HMDB 

(2067 endogeneous 
metabolites) 

OMIM 0.34 19.27% 11.67% 2.64E-14 

GWAS 0.34 20.42% 12.63% 2.16E-13 
Table 3. Evaluation of mmPredict with 150 clinically derived psoriasis metabolites. The ranking was based on 
Jaccard similarity. 
 
For comparison, we show in Table 4 that genome-wide prioritization alone is less effective than the combined 
genome- and phenome-wide implementation of mmPredict. mmPredict has consistently better mean and median 
rankings than mmPredict_Gene across three metabolites data resources. 

Metabolite source Psoriasis genetics Recall Mean 
Ranking 

Median 
Ranking P-value 

STITCH 
(259,170 chemicals) 

OMIM 0.64 46.55% 53.55% 0.309 

GWAS 0.64 42.50% 37.92% 0.039 
HMDB 

(4057 metabolites) 
OMIM 0.40 44.24% 45.42% 0.184 
GWAS 0.40 39.21% 40.46% 0.008 

HMDB 
(2067 endogeneous 

metabolites) 

OMIM 0.34 39.84% 36.64% 0.024 

GWAS 0.34 35.09% 30.93% 0.001 

Table 4. Evaluation of mmPredict_Gen with 150 psoriasis metabolites. The ranking was based on Jaccard similarity. 
We further show in the plotted 11-point interpolated precision-recall curve that mmPredict is effective in enriching 
clinically derived psoriatic metabolites at 11 recall cutoffs (Fig. 3). At a recall level of 0.1, the mean precision of the 
metabolites is 0.156, which represents a 524% enrichment as compared to the precision of 0.025 for all metabolites 
(recall = 1.0). These results indicate that mmPredict enriched clinically identified metabolites among the top and its 
predictions are consistent with patient-based metabolomic profiling. The precision was calculated using the 
clinically derived metabolites and does not represent the true precision measure of mmPredict. The low values of the 
precision (e.g., 0.156 at recall of 0.1) indicate that many more metabolites are to be discovered and that mmPredict 
can complement patient-based profiling in identifying metabolites not captured in our in-house metabolomic study. 
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Fig 3: Precision-recall curve using the 150 metabolites altered in psoriatic tissue. 

 
3.2. 13-HODE represents a metabolite biomarker mechanistically linking psoriasis to its cardiovascular 
comorbidities  
mmPredict represents a mechanism-based approach to identify metabolites for psoriasis. Our in-house metabolomics 
study represents a standard approach to identify altered metabolites in psoriasis patients. Our combined scores from 
these two complementary studies identified 13-HODE as the highest ranked metabolite, indicating that this 
metabolite may be involved in psoriasis at both mechanistic and clinical levels. To understand how 13-HODE is 
mechanistically linked to psoriasis, we identified a total of 78 13-HODE-associated genes from the STITCH 
database. We performed pathway enrichment analysis using Ingenuity Pathway Analysis (IPA) to examine the top 
canonical pathways associated with 13-HODE. The top five canonical pathways identified by IPA are 
Atherosclerosis Signaling, Eicosanoid Signaling, Glutathione Redox Reactions I, Bupropion Degradation, and 
Acetone degradation I. The top five diseases and biofunctions are Organismal Injury and Abnormalities, 
Cardiovascular Disease, Gastrointestinal Disease, Inflammatory Disease, and Inflammatory Response. The 
pathway enrichment analysis shows that 13-HODE is involved in inflammatory response and cardiovascular 
diseases, common linkages associated with human psoriasis. 
We then investigated the phenotypic effects of 13-HODE-associated genes by interrogating the associations of 
mouse phenotypes with mutations of HODE-associated genes. We identified a total of 1,214 phenotypes associated 
with mutations of the 78 13-HODE-associated genes. As shown in Table 5, the top ranked phenotypes associated 
with mutations of 13-HODE associated genes are clearly related to cardiovascular disease, immune response and 
abnormal skin morphology and function.  These results indicate that 13-HODE may be mechanistically involved in 
both psoriasis and its’ cardiovascular comorbidities.  
 

Phenotype Category Phenotype Rank (top%) 

CVD phenotypes 

Congestive heart failure 0.41% 
Cardiac fibrosis 0.82% 
Cardiac hypertrophy 1.57% 
Atherosclerosis 2.22% 

Immune phenotypes 

Abnormal neutrophil physiology 1.15% 
Abnormal macrophage physiology 1.81% 
Abnormal immune system physiology 1.98% 
Increased monocyte cell number 3.13% 

Skin phenotypes 

Abnormal cutaneous collagen fibril morphology 3.79% 
Abnormal epidermis stratum corneum morphology 5.60% 
Impaired skin barrier function 6.43% 
Decreased skin tensile strength 7.50% 

Table 5. Top-ranked phenotypes related to CVD, immune system dysfunction, and abnormal skin morphology and 
function, and their rankings among all 1,214 HODE mutation-associated phenotypes.  
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We also categorized the 13-HODE-associated phenotypes (1,214 phenotypes were classified into 54 classes) and 
analyzed which phenotype categories are highly associated with HODE (the top 11 HODE-associated phenotype 
classes are shown in Fig. 4).  Classes we found relevant to psoriasis and comorbidities include: 1) abnormal 
hematopoietic system (9.2% of all phenotypes), 2) abnormal skin morphology (5.0% of all phenotypes), 3) abnormal 
immune system (5.0% of all phenotypes), 4) abnormal cardiovascular system morphology (5.0%), and 5.) abnormal 
cardiovascular system physiology (4.1%). Another skin-related class, abnormal skin adnexa morphology also ranked 
highly (3.3%). These results suggest that HODE may be a biomarker linking remote inflammation observed in the 
skin with cardiovascular diseases, immune system activation, and psoriasis.  
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Fig. 4: Top-ranked phenotype classes related to CVD (green), immune system dysfunction (blue), and 
abnormal skin morphology and function (azure).  

 
Discussion and conclusions 
We present a novel mechanism-based metabolomic biomarker discovery system, mmPredict, to complement current 
patient-based metabolomics profiling studies. We developed an approach to combine outputs from these two 
complementary strategies and demonstrated its utility in the human clinical disease psoriasis. The identification of 
metabolomic biomarkers and the understanding of their roles in psoriasis and psoriasis-related co-morbidities may 
provide insight into the basic mechanisms of psoriasis pathogenesis and enable new possibilities for psoriasis 
diagnosis, prevention, and treatment. 

Both mmPredict and our strategy of combining these two complementary strategies for use in studying human 
metabolomics are general. We demonstrated its utility in psoriasis since we have performed in-house human 
metabolomic profiling on psoriasis patient and healthy control skin samples. We expect that mmPredict would be 
equally effective in identifying metabolite biomarkers for other diseases, albeit alternative sources of protein 
metabolites, such as serum or plasma may be necessary. However, to fully evaluate mmPredict and our integrated 
strategy in other diseases will require the gold standard of known disease-associated metabolite biomarkers, which 
are currently lacking due to the paucity of published disease specific metabolomic data. With the vast amounts of 
knowledge built into mmPredict, the only input needed for the system is a list of genes, therefore we expect that 
mmPredict can be applied to identify metabolite signatures unique for disease subtypes, disease progression, as well 
as treatment response given that the involved genes are available.  

Computational algorithm design critically depends on the data incorporated into the system. In this study, we 
integrated disease genetics data with human metabolomics, chemical genetics, genetic pathways, and mouse 
mutational phenotypes. Our study shows that combined genome-phenome approach performed significantly better 
than the genome approach alone, indicating interrogating human genes to their functional effects on disease-specific 
phenotypes has major contribution in the improved performance. Currently, we are further improving mmPredict by 
incorporating other types of data, including higher-level disease and drug phenotypic data observed in humans.  
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