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Abstract 

In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how 
experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the 
quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical 
metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking 
metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process 
and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of 
associated tools that we developed to address this challenge. A core component of this approach is a value 
recommendation framework that uses analysis of previously entered metadata and ontology-based metadata 
specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this 
approach using metadata from a public metadata repository. 

Introduction 

Reproducibility of biomedical discoveries has become a major challenge in science. Investigations in a variety of 
fields have shown alarmingly high levels of failure when attempting to reproduce published studies.1,2 To help 
address this issue, many funding agencies and journals are now demanding that experimental data be made publicly 
available—and that those data have associated descriptive metadata.3 In the last few years, the biomedical 
community has met this challenge by driving the development of metadata standards, which scientists use to inform 
their annotation of experimental results. For example, the MIAME standard4 describes metadata about microarray 
experiments. The overarching goal when defining these standards is to provide sufficient metadata about 
experimental data to allow the described experiment to be reproduced. Community-based groups have defined an 
array of standards describing metadata for a variety of scientific experiment types. A large number of standards-
conforming repositories have been built, greatly enhancing the ability of scientists to discover scientific knowledge.5  

Despite the increasing use of these standards, the quality of metadata deposited in public metadata repositories is 
often very low.6 A central problem is that metadata authoring process itself can be extremely onerous for scientists.7 
A typical submission requires spreadsheet-based entry of metadata—with metadata frequently spread over multiple 
spreadsheets—followed by manual assembly of multiple spreadsheets and raw data files into an overall submission 
package. Validation is often post-submission and weak. A secondary problem is that metadata standards are 
typically written at a high level of abstraction. For example, while a standard may require capturing the organism 
associated to a biological sample, it typically will not specify how the value of the organism must be supplied. Little 
use is made of the large number of controlled terminologies currently available in biomedicine. Submission 
repositories reflect this lack of precision and usually have weak or nonexistent mechanisms for linking terms from 
controlled terminologies to submissions. Faced with this lack of standardization, users often provide ad hoc values 
or simply omit many values. These difficulties combine to ensure that typical metadata submissions are sparsely 
populated and poorly described, and thus require significant post-processing to extract semantically useful content. 

In this paper, we describe the development of a methodology and associated tools that aim to improve the metadata 
acquisition process. We outline a recommender framework that provides an intuitive and principled approach to 
metadata entry. The framework uses analyses of previously entered metadata combined with ontology-based 
metadata specifications to help guide users to rapidly and accurately enter their metadata. The recommender 
framework is part of the CEDAR Workbench (https://cedar.metadatacenter.net), an end-to-end metadata acquisition 
and management system under development by the Center for Expanded Data Annotation and Retrieval (CEDAR).8 
The ultimate goal is to speed up the creation of metadata submitted to public repositories and to increase the quality 
of that metadata. 
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Related Work 

Browser-based auto-fill and auto-complete functionality has a long history on the Web. Common auto-fill examples 
include the automatic population of address and payment fields by Web browsers in standard HTML forms. Auto-
complete suggestions are commonly made for page URLs, where browsers typically maintain a history of visited 
pages and suggest likely pages based on a simple frequency analysis of previously visited pages. More advanced 
auto-complete functionality can be seen in search engines from major Web search vendors, where suggestions are 
based on analyses of both Web content and searches made by users. 

A variety of auto-fill and auto-complete recommendation systems have been developed that perform more 
substantial analyses of previously entered content. A common approach is to process raw form content to extract 
high-level semantic concepts that drive the recommendation process. A system called Carbon9 presents auto-
complete suggestions based on an analysis of Web forms previously filled in, combined with semantic information 
from those forms. The system uses this information to help users fill in structurally different forms. A related system 
called iForm10 was developed to assist form completion by analyzing both previously filled versions of a form and 
free text to extract likely values for fields. The approach focused on performing a semantic analysis of data-rich 
input text to automatically select text segments and then associating the text segments with fields in a form. 

Several recommender systems that support auto-fill and auto-complete with ontology terms have been described in 
the literature. RightField,11 which is distributed as an Excel plugin, provides mechanisms for embedding ontology-
based value fields in spreadsheets. Users populating the resulting spreadsheets are presented in real time with 
suggestions restricted to terms from subsets of specified controlled vocabularies. Ontology-based systems that 
specifically address the metadata acquisition challenge include Annotare12, which is used to submit experimental 
data to the ArrayExpress metadata repository,13 and ISA-Tools,14 which provides a generic spreadsheet-based tool 
chain for metadata authoring. Both systems provide strong support for using controlled terms and allow users to link 
metadata to controlled terminologies. None of them provides value-recommendation functionality, however. 

By combining the analysis-driven and ontology-based recommendation strategies used by these systems, we can 
generate more powerful suggestions than is possible with each approach alone. We believe the combination of the 
two techniques can provide the speed of analysis-driven recommendations coupled with the added precision of 
ontology-based suggestions. This paper advances our preliminary work on metadata prediction15,16 by outlining the 
development of a methodology and associated tools that demonstrate this combination. 

Methods 

We designed an approach for metadata recommendation that simplifies the metadata authoring process in the 
CEDAR Workbench. The CEDAR Workbench is a suite of Web-based tools and REST APIs for metadata authoring 
and management, centered on the use of metadata-acquisition forms called metadata templates (or simply 
templates). In the CEDAR Workbench, templates are used to formally encode metadata standards and to create 
highly-interactive interfaces for acquiring metadata conforming to those standards. Templates define the data 
attributes (called template fields or fields) needed to describe experimental data. For example, an experiment 
template may have a disease field containing the name of the disease studied by a particular experiment. Our 
approach simplifies metadata authoring by suggesting the most appropriate values for template fields when 
acquiring metadata. We outline our approach and then explain how we implemented it in the CEDAR Workbench. 

Description of the approach 

Let t be a metadata template, which contains a set of template fields f1..fn. Now suppose that a user is filling out the 
template t with metadata. Our approach generates a ranked list of suggested values for fields f1..fn based on: (1) the 
template instances previously authored for the template; and (2) the field values already entered by the user for the 
current template, which we call the recommendation context. 

For a template field being filled out, our approach retrieves all values previously entered into that field and 
calculates a relevancy score in the interval [0,1]. This score represents the likelihood of the value occurring again 
based on previously created template instances and on the recommendation context. The relevancy score for a field-
value pair p in a template instance s, derived from a template t, is calculated as: 
 

!"#$%(', !) =
+,-"ℎ/0120!-,0"%!(3)

+,-"ℎ/0120!-,0"%!(45(!))
, 6/-ℎ	3 = {'} ∪ 45(!) 
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where instances(t) are all previously authored instances of the template t, and matchingInstances(A) returns the 
instances that contain all the field-value pairs in A. The matchingInstances(A) function is defined as:  
 

+,-"ℎ/0120!-,0"%! ; = {< ∈ /0!-,0"%!(-)	|	∀, ∈ ;, , ∈ 45(<)} 
 
Here, fv(s) represents all the field-value pairs for an instance s: 
 

45(!) 	= {(4, 5)	|	4 ∈ 4/%@A!(!) ∧ 5 ∈ 5,@C%!(!) ∧ 5,@C%(4) = 5 
 
where fields(s) are the fields in the template t, from which s is derived, values(s) are all the values in the instance s, 
and value(f) is the value assigned to a field f in the instance s. While the instance is being created fv(s) represents the 
recommendation context. 

Example: Suppose we have a template t with disease and tissue fields and have four instances of t with values as 
shown in Table 1. 

Table 1. Field names and values for four sample instances of a template with disease and tissue fields. 

Field instance 1 instance 2 instance 3 instance 4 

Disease liver cirrhosis liver cirrhosis liver cirrhosis breast cancer 

Tissue liver liver blood Breast 
 

Suppose that the user is populating a new instance of t and has entered liver cirrhosis as a value for the disease field. 
The relevancy scores for the values liver, blood, and breast of the tissue field can be calculated as follows: 

!"#$%((-/!!C%, @/5%$), !) =
+,-"ℎ/0120!-,0"%!({(tissue, liver), (disease, liver	cirrhosis)})

+,-"ℎ/0120!-,0"%!({(disease, liver	cirrhosis)})
=
2
3
= 0.67 

!"#$%((-/!!C%, W@##A), !) =
+,-"ℎ/0120!-,0"%!({(tissue, blood), (disease, liver	cirrhosis)})

+,-"ℎ/0120!-,0"%!({(disease, liver	cirrhosis)})
=
1
3
= 0.33 

!"#$%((-/!!C%, W$%,!-), !) =
+,-"ℎ/0120!-,0"%!({(tissue, breast), (disease, liver	cirrhosis)})

+,-"ℎ/0120!-,0"%!({(disease, liver	cirrhosis)})
=
0
3
= 0 

Our method takes advantage of previously populated fields to generate a context-sensitive estimate of the values for 
an unpopulated field. When there is no context (i.e., when no other fields in a template have been filled out), it 
simply computes the frequencies of all the values found for the unpopulated field and ranks the values accordingly. 
The method does not impose any restriction on the order in which the fields must be filled out. The analysis for a 
field can be performed on all instances in the repository and using all the values previously entered for other fields, 
independently of the order they were filled out. This ability of the method to consider contextual information 
enables it to go beyond simple one-cause, one-effect relationships and to consider the combined effects that 
previously entered values may have on the target field. 

The basic approach can be extended to deal with fields whose values have been constrained to particular ontologies, 
ontology branches, or lists of ontology terms (e.g., a disease field could be constrained to contain diseases from the 
Disease Ontology17). When dealing with these ontology-based field values, our method calculates the frequencies of 
the underlying term identifiers independently of the display value used. For example, suppose that the repository 
contains template instances that refer to hypertension in different ways, such as HTN, increased blood pressure, and 
high blood pressure, and that those instances have been linked to the identifier of the term hypertension in the 
Disease Ontology (http://purl.obolibrary.org/obo/DOID_10763). In this case, our analysis approach would use the 
term identifier to calculate the frequency of the Disease Ontology term, effectively aggregating the frequencies of all 
synonyms of hypertension. 

The generated recommendation scores can be used to produce a ranked list of suggested values for a target template 
field. Each recommendation consists of the suggested value and a number in the interval [0,1] that represents the 
frequency of the value in previously populated instances. For plain text metadata, the system suggests textual values. 
For ontology-based metadata, the system suggests ontology term identifiers. These recommendations can be 
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presented to the user using a user-friendly preferred label for the ontology term defined in its source ontology (e.g., 
hypertension is the preferred label for http://purl.obolibrary.org/obo/DOID_10763 in the Disease Ontology). The 
recommendations for a particular field can be calculated in real time as a template is being filled in. The metadata 
repository’s recommendation index can be updated whenever a template instance is saved, allowing other metadata 
instance creators to immediately use the updated recommendation values. 

Implementation 

We implemented our approach for metadata recommendation as a Web service called the Value Recommender, and 
integrated it into the CEDAR Workbench. The CEDAR Workbench provides two core tools that form a metadata 
authoring pipeline: the Template Designer and the Metadata Editor. The Template Designer allows users to 
interactively create metadata templates in much the same way as they would create survey forms. Using live lookup 
to BioPortal, the Template Designer allows template authors to find terms in ontologies to annotate their templates, 
and to constrain the values of template fields to specific ontology terms18. The Metadata Editor uses a template 
specification generated by the Template Designer to automatically generate a forms-based metadata acquisition 
interface for that template. The generated interfaces allow users to populate metadata templates with metadata.  

 
Figure 1. Workflow of the Value Recommender service in the CEDAR Workbench. Template authors use the Template 
Designer to create templates. Metadata authors fill in templates with metadata. The Value Recommender uses the Search Engine 
to analyze the metadata stored in the Metadata Repository and to provide metadata authors with suggestions. 

We modified both tools and several other CEDAR components to work with the Value Recommender service (see 
Figure 1). We extended the Template Designer to allow users to specify the fields for which value recommendations 
are enabled. We enhanced CEDAR’s template specification model to store this preference. This preference is used 
to signal to CEDAR’s metadata indexing engine that field-level metadata in its metadata repository should have 
additional analysis steps applied to it. Fields marked for value recommendation are indexed by CEDAR’s 
Elasticsearch-based engine (https://www.elastic.co) such that their values can be compared with other value 
recommended fields. These statistics are used in real time by the newly developed Value Recommender component. 
Note that users can also use standard CEDAR functionality to constrain fields to contain values from controlled 
terminologies held in the BioPortal server. Both constraint types can be specified simultaneously for a field. 

We extended the Metadata Editor to use the Value Recommender service to suggest appropriate values for metadata 
fields during field entry (see Figure 2). Users entering metadata using the Metadata Editor are prompted in real time 
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with drop-down lists, auto-completion suggestions, and verification hints supplied by the Value Recommender 
service. Recommendations for unfilled fields are updated in real time as users incrementally complete metadata 
acquisition forms. The editor presents a drop-down list for value-recommended fields containing suggested values 
ranked in order of likelihood. The editor can also be configured to indicate whether suggested values are ontology 
terms, in which case it also shows the BioPortal acronym for that ontology. 

 
Figure 2. Screen shot of the CEDAR Metadata Editor showing recommended values for a particular field. In this case the editor 
shows suggestions for disease values. It presents a drop-down list containing suggested values ranked in order of likelihood. 
Ontology-based terms are indicated with an ontology icon. The relevancy score for each suggested value is presented as a 
percentage. 

Evaluation 

We analyzed the performance of our framework when suggesting appropriate metadata values using both plain text 
metadata and metadata represented using ontology terms. We constructed an evaluation pipeline to drive the 
analysis workflow (see Figure 3). The main steps of our evaluation workflow are as follows. 

1. Preprocessing and ingestion 

We used the CEDAR Workbench to design a metadata template targeted to the BioSample metadata repository.19 
This repository, which is provided by the National Center for Biotechnology Information (NCBI), captures 
descriptive information about biological materials used in scientific experiments. BioSample defines several 
packages that represent specific types of biological samples, and specifies the list of attributes by which each sample 
should be described. The BioSample Human package,20 for example, is designed to capture metadata from studies 
involving human subjects, and includes attributes such as tissue, disease, age, and treatment. We used this package 
specification to develop a BioSample template in CEDAR to describe human samples.   

For the purpose of our evaluation, we populated BioSample template instances using metadata from the Gene 
Expression Omnibus (GEO),21 a database of gene expression data which contains experimental metadata largely 
authored by original data submitters. The GEO database currently contains over 2 million records, and includes over 
80,000 studies, each of which contains metadata for related biological samples. 

We downloaded metadata from the GEO repository using GEOmetadb,22 and extracted all corresponding metadata 
elements for all human samples. We chose the fields title, sample_id, series_id, status, submission_date, 
last_update, type, sources_name, organism, and characteristics (including disease and tissue). Then, we picked the 
human samples that contained both disease and tissue metadata (35,157 samples), and transformed them into 
BioSample template instances conforming to CEDAR's JSON-based model.23 
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Figure 3. Evaluation workflow. (1) Design a template for the BioSample repository, and populate it with metadata from the Gene 
Expression Omnibus (GEO); (2) Annotate the template instances obtained with terms from biomedical ontologies; (3) Upload the 
training set to the CEDAR Workbench; (4) For each of the test instances, generate suggestions for the disease, sex, and tissue 
fields; (5) Compare the suggestions obtained using the Value Recommender with the suggestions obtained using the baseline 
method. 

2. Semantic annotation 

We define semantic annotation (or simply annotation) as the process of finding a correspondence or relationship 
between a term in plain text and an ontology term that specifies the semantics of the term in plain text. We used a 
component of the CEDAR system, called the Semantic Annotation Pipeline (SAP),24 to automatically annotate all 
the fields values in 35,157 BioSample instances using biomedical ontologies. Table 2 shows the BioSample fields 
used in our evaluation. It presents both the number of plain text values and the number of ontology terms resulting 
from the semantic annotation process. The annotation ratio represents the mean number of plain text values per 
ontology term. For instance, we observed that the concept female was represented in plain text using values such as 
female, Female, f, F, and FEMALE. 

Table 2. Comparison between the number of plain text values for the fields disease, sex, and tissue, and the number of ontology 
terms resulting from applying our Semantic Annotation Pipeline (SAP) to the plain text values. 

Field Description 
Plain text Ontology terms 

Annotation 
ratio Values Examples Values Examples 

(preferred labels) 

disease Disease diagnosed 1,064 Lung carcinoma, 
carcinoma of lung 

261 lung carcinoma  4.07 

sex Sex of sampled organism 16 female, Female, f, 
F, FEMALE 

2 female 8 

tissue Type of tissue the sample 
was taken from 

604 liver, Liver, liver 
tissue, liver 
biopsy, Liver 
biopsy tissue  

171 liver 3.53 

 

BioSample 
template 
instances

SAP

Annotated 
BioSample 
template 
instances

Value 
Recommender

CEDAR
BioSample
template

Training 
dataset

Test 
dataset

Training 
data set

Evaluation 
results

CEDAR 
Metadata 

Repository

(1) Preprocessing 
and Ingestion

(2) Semantic 
annotation

(3) Training (4) Testing (5) Analysis

Split

Split

Test 
dataset

Gene 
Expression 
metadata

1277



  

3. Training 

We partitioned the sample data—both for plain text values and for values annotated with ontology terms—into two 
sets. We used 80% (28,126 instances) of the sample data for training and 20% (7,031 instances) of the data for 
testing. We uploaded the training set to the CEDAR Workbench using the CEDAR API. We then indexed the 
training set with Elasticsearch.  

4. Testing 

For each of the test instances, we used the Value Recommender to generate value recommendations for the disease, 
sex, and tissue fields. The Value Recommender suggested values for each field based on the values of the other 
fields (e.g., suggestions for tissue were generated using the values for disease and sex). We used the majority vote as 
our baseline, which means picking the value with more occurrences in the training data. This process differs from 
the Value Recommender in that it ignores co-occurring values. For each field, we compared the suggestions 
provided by both the Value Recommender and the baseline with the expected value. We considered that the 
expected value for a field was the value for the field contained in the instance. 

The Value Recommender produces a list of suggested values ranked by relevance. We assessed the performance of 
our method using the mean reciprocal rank (MRR) statistic. This statistic is commonly used for evaluating processes 
that produce a list of possible responses to a query, ordered by probability of correctness. We limited the output to 
the top three recommendations, and calculated the reciprocal rank (RR) as the multiplicative inverse of the rank of 
the first correct recommendation.  

For example, if the correct value were ranked in the 3rd position, the reciprocal rank would be calculated as 1/3. 
Then, MRR was calculated as the mean of all RRs obtained. Table 3 shows the RR statistic for some example 
recommendation results. The MRR of the three values suggested in the table can be calculated as the mean of the 
RR value for all three rows: (1 + 1/2 + 1/3) / 3 = 0.61. 

Table 3. Example of recommended values and reciprocal rank (RR) for the disease field. 

Expected value	 Recommended values	 RR	

asthma	 1) asthma	
2) lung cancer 
3) lipid metabolism disorder	

1	

lymphoma	 1) rheumatoid arthritis	
2) lymphoma 
3) acute myeloid leukemia	

1/2	

lung cancer 1) rheumatoid arthritis 
2) asthma 
3) lung cancer 

1/3 

 

5. Analysis of results 

Figure 4 compares the mean reciprocal ranks obtained using our recommendation framework with the majority 
value baseline. It shows results both for plain text values (left) and values annotated with ontology terms (right). 

The results indicate that our framework performs considerably better than the baseline for the three fields. Our 
context-sensitive recommendation method obtained an average MRR of 0.78 for plain text values, and 0.77 for 
ontology terms, compared to the baseline method’s average MRR of 0.21 for plain text values and 0.41 for ontology 
terms. By examining the results we see that, for example, our method correctly suggested asthma as a value for the 
disease field when the tissue was epithelium of bronchus. However, the baseline method suggested hepatocellular 
carcinoma, a disease that is not related to that kind of tissue. Our approach performs consistently well both for plain 
text values (0.78) and for ontology-based metadata (0.77). The importance of contextual information is particularly 
evident when analyzing the results obtained for plain text values, where there are substantially more values for each 
field than for ontology terms (for example, as shown in Table 2, there are 1,064 plain values versus 261 ontology 
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terms for the disease field). The average MRRs of the baseline are considerably lower for plain text values (0.21) 
than for ontology terms (0.41).  

 
Figure 4. Mean reciprocal rank for BioSample instances with plain text values (left) and with ontology-terms (right), both for the 
baseline and the Value Recommender (VR). 

Finally, we investigated more closely the effect of the context on the recommendations. The best results were 
obtained for the tissue field, with MRRs of 0.88 for plain text and 0.86 for ontology terms, illustrating the strong 
influence of the context on that field. Once disease and sex field values are provided, our approach is able to identify 
the appropriate value for the tissue field in most cases. Figure 5 shows the top suggestions provided by the Value 
Recommender for the disease field, with increasing levels of context. The figure shows how lung cancer can be 
much more clearly suggested as a likely choice when sex and tissue have been specified. This example reflects the 
increase in discrimination that is possible when more contextual information is available. 

 
Figure 5. Top 10 suggestions provided by the Value Recommender for the disease field of the BioSample template, with 
increasing levels of context. The last plot shows 6 different values because only 6 suggestions were returned. 
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Discussion 

We developed and deployed a metadata recommender service as part of an end-to-end metadata management system 
called the CEDAR Workbench. We found significant improvements could be obtained by considering contextual 
information when making recommendations. Our evaluation suggests that, by adding our recommendation 
capabilities on top of already-offered user interface optimizations, the CEDAR Workbench can provide major 
enhancements in both speed of metadata creation, and accuracy of those metadata. 

A limitation of our evaluation is that we did not use all values in GEO, restricting our analysis to human samples 
only. We plan to carry out further analyses using all samples in GEO to determine how our method generalizes to 
additional sample types. We also plan to perform similar analyses on data from the BioSample repository, which 
contains metadata on 2,787,750 public biological samples used in scientific experiments. Additionally, we plan to 
study how the metadata recommender service performs with templates that contain a greater number, and more 
diverse fields. While disease, sex, and tissue are relevant metadata for biological samples, they are a small and 
relatively simple set of fields and generalizability may be a challenge. 

The Value Recommender system is the first of a planned set of intelligent authoring components in the CEDAR 
system. Future efforts will concentrate on deeper analyses of metadata to discover more complex relationships 
among metadata fields, which will then drive tools to assist users when entering metadata. As a first step, we plan to 
extend the recommender to derive and use more in-depth knowledge of correlations among values in the dataset. 
Specifically, we will apply our previous research on association rule mining25 to identify degrees of correlation 
among metadata items. This approach will strengthen the positive associations that our current recommendation 
engine provides, and will allow us to point out possible errors by identifying unlikely values. With sufficient levels 
of accuracy, our system may be used to automatically fill in missing values for a significant number of metadata 
fields. 

Our work also has implications for scientists focused on retrospective augmentation of metadata. For example, the 
system could be used to interactively help curate previously submitted data by suggesting more specific values for 
populated fields, in addition to suggesting values for empty fields. It could also assist curators with suggestions for 
correcting incorrectly entered element values. In particular, the system could be targeted to both retrospective and 
real-time quality assurance by detecting unlikely field combinations. Strong discrepancies detected between the 
element value entered by a user and the predicted value could be highlighted to human curators for review. By 
rapidly providing highly interactive recommendation, the system could also help curators quickly deal with greater 
volumes of metadata submissions, and help address the problem of curation scalability faced by many repositories.  

Conclusion 

We have described the development of a recommendation framework that focuses on helping biomedical 
investigators annotate their experimental data with high quality metadata. The framework takes advantage of 
associations among the values of multiple fields in existing metadata to recommend context-sensitive metadata 
values. A key focus is on interoperation with ontologies. Using formal ontology-based specifications and interactive 
look-up services linked to the BioPortal ontology repository,26 the system tunes its recommendations to target 
controlled terminologies. We outlined an initial evaluation of the framework using metadata from the GEO 
repository,21 and provided an implementation of the system in a metadata management system called the CEDAR 
Workbench. 

These tools aim to provide a series of intelligent authoring functions that lower the barrier to the creation and 
population of metadata templates, and help ensure that the resulting metadata acquired using these templates is of 
high quality. The ultimate goal is to provide the ability for investigators to easily create metadata that are 
comprehensive, standardized, and make the corresponding data sets conform to FAIR principles.27  
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