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Abstract 

In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with 
rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience 
of care providers. We hypothesize that patients’ phenotypic information available in electronic medical records 
(EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document 
associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we 
proposed a collaborative filtering system enriched with natural language processing and semantic techniques to 
assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity 
measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and 
evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with 
phenotypic information is able to stratify patients with relatively similar rare diseases. 

Introduction 

In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time1. According to 
research conducted by Rare Disease Day2 and the National Organization for Rare Disorders (NORD)3, to date, there 
are over 7,000 known rare diseases inflicting 30 million Americans (nearly 1 in 10), more than half of whom are 
children2. However, due to the lack of scientific knowledge and clinical experience for rare diseases, most patients 
with rare diseases are frequently misdiagnosed or undiagnosed. In addition, only 5% of those diseases have 
corresponding treatment plans2. Therefore, there is an urgent need to accelerate the diagnosis of rare diseases as well 
as explore the science behind them. 

Almost 80% of rare diseases are genetic2 and the first step towards rare disease research and diagnosis is to identify 
patients with similar phenotypes, where a phenotype refers to a clinical observable sign or symptom. Multiple 
studies have reported on studying rare disease phenotyping. To facilitate the discovery of genotype-phenotype 
association, the Human Phenotype Ontology (HPO)4 was developed to capture human phenotype information and is 
one of the most representative efforts that conducts phenotype-oriented analysis for rare disease differential 
diagnosis. The current version of HPO contains more than 116,000 annotations for over 7,000 rare diseases. To 
understand genotypes for rare diseases, Phen-Gen5 provides a method to combine phenotypes and patients’ 
sequencing data with domain knowledge in order to locate genotypes for rare disorders. Other efforts, 
PhenomeNET6 and PheWAS7 leveraged phenotypic information to discover genotype-phenotype associations that 
can be applied to prioritize genes for rare diseases. 

Meanwhile, in the era of e-commerce, collaborative filtering techniques8 are popularly applied to recommend 
products to a customer based on customers with similar purchase preferences or other interests. The problem of 
diagnosing a patient with a disease based on patients’ phenotypic information is very similar to recommending a 
product to a customer, and therefore it is natural to propose the use of collaborating filtering for disease diagnosis.  
For example, given the hypothesis that disease prediction is achievable through analyzing phenotype and disease 
history, CARE provided an individualized healthcare framework by analyzing ICD-9-CM codes in patient’s medical 
history9-11. Similarly, Steinhaeuser and Chawla proposed a combined disease network and collaborative filtering to 
perform disease prediction on structured patient data12. 

In this study, we proposed a patient based collaborative filtering system enriched with natural language processing 
(NLP) and semantic techniques to assist rare disease diagnosis based on phenotypic information extracted from free-
text clinical notes. Specifically, we extracted the Unified Medical Language System (UMLS)13 concepts using 
MetaMap and used terms in the Human Phenotype Ontology (HPO)4, 14 and the Genetic and Rare Diseases 
Information Center (GARD)15 based on dictionary lookup to preprocess 2010-2015 clinical notes from Mayo Clinic 
Rochester campus. We then used a patient based collaborative filtering framework for rare disease diagnosis and 
compared four similarity measurements and two neighborhood algorithms.  
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In the following, we first introduce materials used in this study. Next, we describe the methods used to build the 
framework and conduct the evaluation. We then present the results followed by discussion. Lastly, we conclude and 
discuss potential future directions. 

Materials 

Clinical Data Collection 

We collected all clinical notes during the years of 2010 to 2015 generated at Mayo Clinic Rochester campus. The 
resulting corpus contains 12.8 million clinical notes corresponding to 729,000 patients. We limited our annotation to 
sections containing problems and diagnoses.  

The Unified Medical Language System and MetaMap 

The Unified Medical Language System (UMLS), developed at National Library of Medicine (NLM), is an 
integrated knowledge base that involves key medical terminologies and related resources. There are three 
components in the UMLS, the Metathesaurus, Semantic Network, and Specialist Lexicon. The Metathesaurus lists 
all clinical concepts integrated from over a hundred of terminological resources. A unique identifier, Concept 
Unique Identifier (CUI), is assigned to each medical concept. Each concept can be associated with one or more 
semantic types defined in Semantic Network. MetaMap16 is a configurable application for mapping biomedical text 
to the Metathesaurus. Here, we applied MetaMap with the UMLS version 2015 to extract UMLS concepts from 
clinical notes as a preprocessing step. 

Human Phenotype Ontology 

The Human Phenotype Ontology (HPO) has been developed as a controlled vocabulary for phenotypes by mining 
and integrating phenotype knowledge from medical literature and ontologies. HPO also provides associations with 
other biomedical resources such as Gene Ontology17. HPO contains four sub-ontologies focusing on different 
annotation areas: Phenotypic Abnormality, Mode of Inheritance, Clinical Modifier, and Mortality/Aging. HPO and 
the UMLS have been cross-referred and we limited phenotype concepts extracted from clinical notes only to UMLS 
concepts that are cross-referred with the HPO released on September 2016. We only considered concepts from HPO 
sub-ontology Phenotypic Abnormality (HP_0000118) and its descendants, consisting of 11,721 phenotypes. 

Genetic and Rare Diseases Information Center 

The Genetic and Rare Diseases (GARD) Information Center is a program initiated by the National Center for 
Advancing Translational Sciences (NCATS) and funded by the National Institutes of Health (NIH). GARD extracts 
information from NIH resources, medical textbooks/databases, literature and the Internet to aggregate knowledge of 
rare or genetic diseases and group them into 32 categories. In the current version, GARD contains 4,560 diseases. 
We limited rare diseases extracted from clinical notes only to UMLS concepts that can be mapped to GARD. 

Methods 

Figure 1 shows the overview of our system workflow which includes two modules: i) a preprocessing module 
leveraging NLP and semantic processing techniques to identify patients with rare diseases and collect their 
phenotypes; and ii) a collaborative filtering model to recommend similar patients and possible disease 
recommendations. 

Preprocessing Module 

We first extracted problems and diagnoses from clinical notes using MetaMap. We kept UMLS concepts from the 
following semantic types: Disease or Syndrome (dsyn), Neoplastic Process (neop), Mental or Behavioral 
Dysfunction (mobd), Anatomical Abnormality (anab), Congenital Abnormality (cgab), Injury or Poisoning (inpo), 
Finding (fndg) and Sign or Symptom (sosy). To limit our analysis to only patients’ phenotypes and rare diseases, we 
conducted another refinement round on preprocessed UMLS terms to only keep phenotype-related concepts in HPO 
and rare diseases in GARD. For patients with rare diseases, we collected their phenotypic information within the last 
twelve months of the first mention of rare diseases. 
Patient based Collaborative Filtering Module 

In traditional user-based collaborative filtering, user preference data with various features describe different angles 
of user interests. Similarly, in the clinical domain, we considered patients as users and leverage large clinical cohorts 
to extract phenotypes as items for each patient. In contrast to rating-based recommender systems in which 
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preference score matters, we considered patient profile with phenotypes as binary inputs, that is, the relationship 
between patient and phenotype is either yes or no.  

 
Figure 1. System workflow. 

This module was designed on top of a user based collaborative filtering engine consisting of similarity 
measurements and neighborhood algorithms. Specifically, in this study, we applied Tanimoto coefficient similarity 
(TANI)18, Overlap coefficient similarity (OL)19, Fager & McGowan coefficient similarity (FMG)20, and Log 
likelihood ratio similarity (LLRS)21 as four similarity measurements for binary data to calculate patients’ similarity 
based on phenotypes. Each measurement is feasible for different recommendation tasks, and as we did not have any 
a priori reason to prefer one measurement over another, we tested all four methods.   

Let |Phei| and |Phej| be the total number of phenotypes, and |Phei∩Phej| be the number of common phenotypes 
between any two patients i and j. Tanimoto, Overlap and Fager & McGowan coefficient similarity are defined as 
shown in Equations 1, 2, and 3, respectively. 

TANI i, j =
|Phe! ∩ Phe!|

|Phe!| + |Phe!| − |Phe! ∩ Phe!|
      (𝐸𝑞  1) 

 

OL i, j =
|Phe! ∩ Phe!|

min  (|Phe!|, |Phe!|)
      (𝐸𝑞  2) 

 

FMG i, j =
|Phe! ∩ Phe!|
|Phe!| ∗ |Phe!|

−
1

2 |Phe!| + |Phe!|
      (𝐸𝑞  3) 

Log likelihood ratio similarity is built based on Shannon entropy22. Given an event X with its possible value x!, 
Shannon entropy is defined in Equation 4. 

H X = − P(X = x!)LogP(X = x!)
|!|

!!!

  (𝐸𝑞  4) 

In Shannon entropy, let p!", p!!,  p!!, p!! denote probabilities of common phenotypes shared by both patient i and j, 
patient j but not i, patient i but not j, and neither patient i nor j, respectively. The Log likelihood ratio (LLR) between 
any two patients i and j can be defined as shown in Equation 5. 

LLR i, j = 2 ∗ (H p!" + p!!  , p!! + p!! + H p!" +   p!!  , p!! + p!! − H p!"  , p!!  , p!!  , p!!   )      (𝐸𝑞  5) 

As a result, Log likelihood ratio similarity (LLRS) between patient i and j is defined in Equation 6. 

LLRS i, j = 1 −
1

1 + LLR i, j
    (𝐸𝑞  6) 
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We also applied two commonly used neighborhood algorithms in collaborative filtering for given similarity metrics 
to recommend patients. One is K Nearest Neighbor (KNN)23, where the neighbors included are the k nearest 
neighbors. The other is Threshold Patient Neighbor (TPN)24, where a similarity threshold t is used to select 
neighbors.  

Evaluation 

This proposed system was implemented in Java with Eclipse Standard/SDK version Luna 4.4.025 running on 64 bit 
Linux CentOS 6.8 servers hosted by Mayo Clinic. We used the Apache Mahout framework26 to establish the 
environment for implementing the collaborative filtering framework. We evaluated eight different experimental 
groups formed as: 1) TANI with KNN; 2) LLRS with KNN; 3) OL with KNN; 4) FMG KNN; 5) TANI with TPN; 
6) LLRS with TPN; 7) OL with TPN; 8) FMG with TPN. 

To determine the best k and t, we first conducted a 10-fold cross validation for each experimental group. For each 
round, we randomly selected 90% data for training and the rest 10% for testing. To deal with binary preference 
value (i.e. either yes or no to a phenotype), for a specific patient, the Apache Mahout framework considered 
phenotype preference values as the summation of all his/her neighbors who also have the same phenotype. To 
determine the best k for KNN and t for TPN, we compared those estimated preference values with patients’ actual 
phenotype binary values (0 or 1). Specifically, for each predicted value pi’ and its corresponding actual value pi, we 
applied root-mean-square error (RMSE)27 on the total n results across all patients as shown in Equation 7. 

𝑅𝑀𝑆𝐸 =
(𝑝!! − 𝑝!)!!

!!!
𝑛

        (𝐸𝑞  7) 

We then computed second derivative for each RMSE function to select the optimal k and t at the biggest second 
derivative value. For function y=f(x), second derivative sd can be used to detect the concavity of a graph as shown in 
Equation 8. 

𝑠𝑑 =
𝑑!𝑦
𝑑𝑥!  

      (𝐸𝑞  8) 

After the optimal k and t for each experiment was confirmed, the system returned a number of neighbors for each 
patient ranked in descending order by similarity scores.   

To evaluate the performance of patient recommendation, we used information retrieval techniques to evaluate all 
ranked recommendations. We selected k recommended patients for KNN and all patients with similarity higher than 
t for TPN. We considered each patient as a query and their neighbors as a group of ranked recommendations. In 
addition, we used patients’ diseases as a gold standard to validate their similarity and considered a recommendation 
as an optimal one as long as the recommended patient affected similar rare disease(s). The confusion matrix in Table 
1 generally depicts how to evaluate the system performance. According to Table 1, precision, recall and F measure 
can be computed as shown in Equations 9, 10 and 11. To analyze the performance and observe the trade-off between 
precision and recall, starting from top ranked patients, we divided them into ten portions and plotted precision-recall 
curves for each experiment. In addition, we calculated precision-recall area under curve (PRAUC)28 for each case. 
Moreover, we computed mean average precision (MAP)29 for recommendations of all patients. As shown in 
Equation 12, for each query q, we computed average precision AveP over all relevant answers and calculated 
summation of AveP for all queries then divided by the number of total queries |Q| to compute the MAP. 

To further evaluate performance for individual rare disease prediction, we assigned similarity scores of 
recommended patients to their corresponding rare diseases and accumulated all similarity scores for each disease. 
We considered the rare disease with the highest accumulated similarity score as the final diagnosis to evaluate 
performance for rare disease prediction. We used the optimal algorithm to conduct the evaluation. Precision, recall 
and F measure were computed for each rare disease as evaluation outputs. 

Here we applied three level matching criteria to determine if two rare diseases are similar or not. The first one is 
string matching. That is, we compared two diseases directly by checking their exact names. Considering each 
physician might use different terms or concepts to make a diagnosis, the use of strict string matching would 
probably miss some semantically similar diseases. The Systematized Nomenclature of Medicine – Clinical Terms 
(SNOMED-CT)30 groups comprehensive medical terminologies with a semantic hierarchy in a standard manner. 
Therefore, as a second level matching, we mapped diseases to SNOMED-CT and considered two diseases to be 
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related if they contributed to a common ancestor node within 3 hierarchical generations31. In addition, to have 
broader rare disease similarity checking in terms of categorization, we used the GARD dictionary and considered 
two diseases have a close relationship if they were listed in the same rare disease category. Therefore, for different 
matching criteria, definitions of relevant or not in confusion matrix are different. 

Table 1. Confusion matrix for system performance evaluation. 

 Recommended Rare Disease Not Recommended Rare Disease 

Relevant Rare Disease True Positive (TP) False Negative (FN) 

Not Relevant Rare Disease False Positive (FP) True Negative (TN) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      (𝐸𝑞  9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (𝐸𝑞  10) 

 

𝐹  𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

    (𝐸𝑞  11) 

 

𝑀𝐴𝑃 =
𝐴𝑣𝑒𝑃(𝑞)|!|

!!!

|𝑄|
    (𝐸𝑞  12) 

Results 

After pre-processing, there are about 31,000 patients with at least one rare disease diagnosis. After removing rare 
diseases affecting only one patient, the final data set includes about 29,000 patients with 437 rare diseases (29 out of 
32 GARD categories) and 2,400 phenotypes. In addition, 24,000 patients were diagnosed with only 1 rare disease 
and 5,000 patients were diagnosed with 2 rare diseases. 

Figure 2 shows statistics of rare diseases in our clinical notes with GARD categories. Unique count indicates the 
number of unique rare diseases in each GARD category, and category coverage shows the percentile of rare diseases 
out of the total number of rare disease in each GARD category. The category with the biggest unique count is Rare 
Cancer consisting of 155 diseases, for instance, lentigo maligna melanoma and papillary thyroid carcinoma. In 
terms of category coverage, Autoimmune Autoinflammatory Diseases is the highest one with 45.45% (5 of 11), 
which includes autoimmune hepatitis, crest syndrome, addison’s disease and so on. 

 
Figure 2. Statistics of rare disease in clinical notes with GARD categories. 
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Root-Mean-Square Error for Optimal Threshold Selection 

For different similarity measurements with KNN, Figure 3(a) plots the relationship between RMSE and the 
increasing number of neighbors from 2 to 30. Since KNN selected the closest k nodes incrementally, more neighbors 
will be included with k increased even though they do not locate within an absolutely close distance, which should 
increase the error. We found that with k increased, RMSE for LLRS had a fastest increase rate after optimal k, 
indicating that LLRS is too sensitive to the change of k. RMSE didn’t change obviously for OL and FMG, which 
shows that these two similarities with KNN are not capable of differentiating neighbors and non-neighbors. RMSE 
for TANI slightly increased RMSE after its optimal k, suggesting that TANI+KNN is able to group neighbors in a 
moderate way. 

Similarly, Figure 3(b) depicts the relationship between RMSE and patient similarity threshold varying from 0.01 to 
0.99 for different similarity measurements with TPN. Generally, RMSE decreased as we increased patient similarity. 
The reason is that criteria for neighbor selection became higher when we increased the user similarity, which 
resulted in more precise neighbor detection and thus decreased the error. We found that RMSE for LLRS stayed 
stable until similarity threshold t became relatively higher, which indicates that LLRS is less sensitive to similarity 
threshold. We also found that curves for TANI, OL, and FMG had the similar trends but OL started with the highest 
RMSE and FMG started with the lowest RMSE. TANI had the moderate RMSE at the beginning and reached its 
optimal threshold t before OL and after FMG.  

As a result, the best k and t for each combination are given in Table 2. 

 
Figure 3. RMSE evaluation for KNN (a) and TPN (b) with four similarity measurements.  

Table 2. The optimal k and t for different experiments. 

 TANI OL FMG LLRS 

Best k for KNN 8 11 10 4 

Best t for TPN 0.21 0.34 0.17 0.84 

 

Performance for Patient Recommendation 

Figure 4 shows precision-recall curves for 8 experiments and PRAUC for each matching criterion. We found that 
GARD matching yielded the best performance overall, and SNOMED-CT semantic matching always performed 
better than string matching. There is no significant difference between TANI+KNN and TANI+TPN for each of the 
three matching criteria. Specifically, TANI+TPN contributed to the best PRAUC for string matching while 
TANI+KNN led to the best PRAUC for SNOMED-CT and GARD matching. LLRS was suboptimal and 
LLRS+KNN outperformed LLRS+TPN with all three matching criteria. In contrast, PRAUC indicated that 
FMG+TPN performed better than FMG+KNN. OL contributed to relatively lower PRAUC than other three 
similarity measurements, OL+KNN performed slightly better for SNOMED-CT and GARD matching while 
OL+TPN was more suitable for string matching. 

Table 3 shows mean average precision for patients with all their recommendations. MAP scores showed consistent 
performance with what PRAUC evaluated. But the only difference is that MAP scores indicated that TANI with 
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KNN performed slightly better for string matching while TANI with TPN was slightly better for SNOMED-CT and 
GARD matching.  

 
Figure 4. Precision-Recall curves for 8 experiments with 3 matching criteria (number in bracket indicates PRAUC). 

Table 3. Mean average precision for 8 experiments with 3 matching criteria (highest value in bold). 

 TANI LLRS OL FMG 

 KNN TPN KNN TPN KNN TPN KNN TPN 

String 0.4229 0.4228 0.3736 0.3672 0.2671 0.2672 0.2124 0.3007 

SNOMED 0.4727 0.4729 0.4297 0.4215 0.2989 0.2988 0.2387 0.3303 

GARD 0.7525 0.7530 0.7116 0.7084 0.6114 0.6094 0.5964 0.6841 

 

Performance for Rare Disease Prediction 

Here we chose TANI with KNN as the optimal algorithm and applied it on 24,000 patients with only one rare 
disease. Scatter plots in Figure 5 describe prediction performance for different matching criteria. There are 417 rare 
diseases in total. For these diseases, string, SNOMED-CT and GARD matching found 49.4%, 56.6%, and 92.1% 
correct predicted rare diseases, and weighted micro-average F measure for them are 0.4, 0.44, and 0.71 respectively.  

Table 4 shows the top five diseases with the best F measures for each matching criterion. To protect patients’ 
privacy, any rare disease with affected cases less than 10 were marked as <10. We found for some diseases, the 
unique features affecting very few patients may contribute to a high prediction performance. For example, there 
were less than 10 patients with ichthyosis bullosa of siemens, but the prediction F measure with string matching is 
0.8. All these patients have symptom ichthyosis, some of them have ichthyosis and hyperkeratosis, and some others 
have ichthyosis and congenital bullous ichthyosiform erythroderma. These phenotypes grouped as unique 
combinations that can help diagnose ichthyosis bullosa of siemens. Meanwhile, with 1,380 affected patients, 
abdominal aortic aneurysm had a high F measure with string matching. However, not all rare diseases with a 
relatively large number of affected patients yielded the same performance. For instance, meningioma had 1,476 
affected patients, but prediction F measures for it is only 0.44. 

For string matching, some rare diseases didn’t get any correct predictions, such as cadasil (<10 patients) and 
myotonic dystrophy (25 patients), the reason is that those diseases not only had a small group of affected patients but 
also didn’t show unique groups of symptoms and signs. Due to the semantic hierarchical processing, SNOMED-CT 
matching had a slightly better performance than string matching. It was able to predict some diseases that string 
matching considered as non-relevant, such as acquired von willebrand syndrome (<10 patients) and acute 
disseminated encephalomyelitis (<10 patients). What is more, GARD gave predictions based on category and all top 
5 predictions are 100% predicted. This indicates that phenotypes can help to infer similar type of rare diseases. 
Although such prediction cannot identify the exact rare diseases, similar rare diseases within the same category can 
still give clues for physicians to make diagnoses. 
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Discussion 

Our study utilized similarity measurements that do not take individual preference scores, therefore, other methods 
provided by the Mahout collaborative filtering engine that either consider preference values or preference rankings 
were not suitable for our preprocessed clinical notes (e.g., Euclidean distance similarity, Pearson correlation 
similarity, Uncentered cosine similarity, and Spearman correlation similarity)26. TANI is similar to LLRS, with the 
only difference that the latter gives more weight to dissimilar patients if they have common phenotypes and assigns 
less weight to similar patients even they share exactly the same phenotypes. This weighting difference slightly 
depressed LLRS’s performance relative to TANI. Similar to LLRS, FMG gives weight to similarity, but not as much 
as LLRS. In addition, OL gives too much weight to patients’ similarities even with few shared phenotypes, which 
lacks the ability to stratify patients well. What is more, FMG is the only one that is sensitive to the selection of KNN 
or TPN, and significantly outperformed TPN. The reason is that setting threshold as 0.17 is more suitable than 
selecting 10 neighbors according to the neighborhood density formed by FMG in our clinical notes. Therefore, 
making a good balance between KNN and TPN has a potential ability to optimize the overall performance with 
idealized neighbors and similarity at the same time. 

 
Figure 5. Scatter plot of precision-recall for rare disease prediction (circle size is proportional to the number of affected patients). 

Table 4. Recommendation performance for selected rare diseases. 

Approaches Top Diseases Number of 
Affections 

Precision Recall F Measure 

Tani+KNN with 

String Matching 

osteochondritis dissecans  158 0.94 0.9 0.92 

frontotemporal dementia 221 0.81 0.91 0.85 

spasmodic dysphonia 173 0.8 0.9 0.84 

abdominal aortic aneurysm 1,380 0.71 0.92 0.8 

ichthyosis bullosa of siemens <10 0.8 0.8 0.8 

Tani+KNN with 

SNOMED 
Matching 

acute myelomonocytic leukemia  11 1 1 1 

osteochondritis dissecans 158 0.94 0.9 0.92 

frontotemporal dementia 221 0.81 0.91 0.85 

spasmodic dysphonia 173 0.8 0.89 0.84 

abdominal aortic aneurysm 1,380 0.71 0.92 0.8 

Tani+KNN with 

GARD Matching 

acute myelomonocytic leukemia 11 1 1 1 

angioimmunoblastic t-cell 
lymphoma 

18 1 1 1 

ataxia telangiectasia <10 1 1 1 

chronic myelomonocytic 
leukemia 

<10 1 1 1 

congenital heart block <10 1 1 1 
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For overall performance across all recommendations, considering physicians have different descriptions of specific 
diagnosis, string matching may overlook some associations, so we enriched disease matching with semantic 
similarity. There exist some ontologies that describe diseases, such as Disease Ontology (DO)32 and Orphanet Rare 
Disease Ontology (ORDO)33. However, for the detected rare diseases from clinical notes, only 56% and 52% are 
covered by DO and ORDO, respectively. Therefore, we used SNOMED-CT, a more comprehensive ontology that 
comprises 60% of our extracted rare diseases and maintains a more complicated hierarchical semantic relationship 
for discovering disease associations. Nevertheless, due to the limited coverage, semantic disease checking didn’t 
significantly improve the performance. To address this, some associations among rare diseases can be mined from 
literature for evaluation.  

For rare disease prediction with string matching, some phenotypes cannot uniquely characterize a certain type of 
rare disease in our clinical notes. For example, hypopituitarism has 51 affected patients and prediction F measure is 
0. Top frequent phenotypes for hypopituitarism are hypothyroidism, neoplasm, hypertension, apnea and 
hyperlipidemia, which are very common symptoms shared with other rare diseases and are not useful to make 
correct diagnose. Therefore, common comorbidities may create noises for decision making. In this preliminary 
study, we only focused on patients with rare diseases and filtered out phenotypes that didn’t happen within 12 
months of their rare disease diagnosis encounter time. To better characterize rare diseases and comorbidities, in the 
future, we will pass all patients’ data to our system and target on giving recommendations for misdiagnosed and 
undiagnosed cases. In addition, it would be interesting to investigate cross-institutional rare diseases to acquire 
diagnosis experiences and intelligence from different hospitals and healthcare systems to build a more generic rare 
disease diagnosis system. 

Conclusion and Future Work 

In this study, we have investigated patient based collaborative filtering with NLP and semantic techniques on large 
patient cohort to assist rare disease diagnosis. We demonstrated its potential in facilitating rare disease prediction. 

In the future, we plan to incorporate HPO phenotypic information content14, topic modeling34, word embedding35 
and deep learning temporal sequence analysis36 to give more degrees of similarity measurement for improving 
prediction performance. In addition to phenotype based analysis, we plan to involve rare disease genotype from 
PheWAS7 and literature to assist rare disease diagnose as well. 
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